
1

www.keyestudio.com

Keyestudio Raspberry Pi Pico 42 in 1 Sensor Kit

1. Description

The Keyestudio Raspberry Pi Pico 42 in 1 sensor kit mainly contains 37

commonly used sensors/modules, a Raspberry Pi Pico board, a Raspberry

Pi Pico expansion board and Dupont wires.

The 42 sensors and modules are fully compatible with the Raspberry Pi

2

www.keyestudio.com

Pico shield. You only need to stack the Raspberry Pi Pico board onto the

Raspberry Pi Pico shield, and hook up them with Dupont wires, which is

simple and convenient.

To make you master the electronic knowledge, detailed tutorials

(Micropython), schematic diagrams, wiring methods and test code are

included. Through these projects, you will have a better understanding

about programming, logic and electronics.

2. Kit

Picture Name QTY

1
Keyestudio Purple LED

Module
1

2
Keyestudio Common

Cathode RGB Module
1

3
Keyestudio Traffic

Lights Module
1

3

www.keyestudio.com

4
Keyestudio Active

Buzzer
1

5
Keyestudio 8002b

Audio Power Amplifier
1

6
Keyestudio Button

Module
1

7 Keyestudio Tilt Sensor 1

8
Keyestudio PIR Motion

Sensor
1

9
Keyestudio Obstacle

Avoidance Sensor
1

10
Keyestudio 6812 RGB

Module
1

4

www.keyestudio.com

11

Keyestudio

NTC-MF52AT

Thermistor

1

12
Keyestudio

Photoresistor
1

13
Keyestudio Sound

Sensor
1

14
Keyestudio

Rotary Potentiometer
1

15 Keyestudio IR Receiver 1

16
Keyestudio Reed

Switch Sensor
1

17
Keyestudio Rotary

Encoder Module
1

18
Keyestudio Joystick

Module
1

5

www.keyestudio.com

19
Keyestudio HT16K33

8X8 Dot Matrix Module
1

20
Keyestudio TM1650

4-Digit Tube Display
1

21
Keyestudio Thin-film

Pressure Sensor
1

22
Keyestudio DS1307

Clock Sensor
1

23
Keyestudio SR01

Ultrasonic Sensor
1

24 9G 90° Servo 1

25
Keyestudio Capacitive

Sensor
1

26
Keyestudio Photo

Interrupter
1

6

www.keyestudio.com

27 Keyestudio Hall Sensor 1

28
Keyestudio Flame

Sensor
1

29
Keyestudio line

Tracking Sensor
1

30
Keyestudio Analog Gas

Sensor
1

31

Keyestudio XHT11

Temperature and

Humidity Sensor

1

32
Keyestudio 18B20

Temperature Sensor
1

33 keyestudio 130 Motor 1

7

www.keyestudio.com

34 Fan 1

35
Keyestudio Laser

Module
1

36
Keyestudio Steam

Sensor
1

37
Keyestudio Ultraviolet

Sensor
1

38
Keyestudio RFID

Module
1

39
Keyestudio Collision

Sensor
1

40
Keyestudio Alcohol

Sensor
1

8

www.keyestudio.com

41

Kyestudio

LCD_128X32_DOT

Module

1

42 5-Channel AD Button Module 1

43 DXL345 Acceleration Module 1

44 Raspberry Pi Pico Board 1

45

Keyestudio Raspberry

Pico IO Expansion

Board

1

46

Keyestudio JMFP-4

17-Key Remote

Control(without

batteries)

1

47 USB Cable 1

9

www.keyestudio.com

3. Preparations

3.1 Tools needed for the Raspberry Pi system

Hardware Tool:

 Raspberry Pi 4B/3B/2B

 Above 16G TFT Memory Card

 Card Reader

 Computer and other parts

3.1.1 Install Software Tools

Windows System:

(1) Putty

48 F-F Dupont Wire 1

49 White Card 1

50 ABS RFID Key 1

10

www.keyestudio.com

Download link: https://www.chiark.greenend.org.uk/~sgtatham/putty/

https://www.chiark.greenend.org.uk/~sgtatham/putty/

11

www.keyestudio.com

a. After downloading the package file , double-click it and

tap “Next”.

12

www.keyestudio.com

b. Click “Next”.

c. Choose “Install PuTTY files” and click “Install”.

13

www.keyestudio.com

d. After a few seconds, click "Finish".

(2) SSH Remote Login software -WinSCP

Link: https://winscp.net/eng/download.php

https://winscp.net/eng/download.php

14

www.keyestudio.com

a. After downloading the package file , click

and .

b. Click “Accept”.

15

www.keyestudio.com

16

www.keyestudio.com

17

www.keyestudio.com

18

www.keyestudio.com

19

www.keyestudio.com

Download link:

http://www.canadiancontent.net/tech/download/SD_Card_Formatter.html

http://www.canadiancontent.net/tech/download/SD_Card_Formatter.html

20

www.keyestudio.com

21

www.keyestudio.com

a. Unzip the SDCardFormatterv5_WinEN package, double-click

to run it.

b. Click“Next”and choose , then tap“Next”.

22

www.keyestudio.com

c. Click“Next”and“Install”.

23

www.keyestudio.com

d. After a few seconds, click "Finish".

(4) Win32DiskImager

24

www.keyestudio.com

Download link: https://sourceforge.net/projects/win32diskimager/

a. After the download, double-click and tap

“Run”.

https://sourceforge.net/projects/win32diskimager/

25

www.keyestudio.com

b. Select and click“Next”.

26

www.keyestudio.com

c. Click“Browse...”and find out the folder where the Win32DiskImager is located,

tap“Next”.

27

www.keyestudio.com

d. Tick and click “Next”and“Install”.

28

www.keyestudio.com

e. Click “Finish” after the installation is complete.

(5) WNetWatcher

Download：http://www.nirsoft.net/utils/wnetwatcher.zip

29

www.keyestudio.com

3.1.2 Raspberry Pi Imager

Download link for the latest version:

https://www.raspberrypi.org/downloads/raspberry-pi-os/

Old version：

 Raspbian：https://downloads.raspberrypi.org/raspbian/images/

 Raspbian full：

 https://downloads.raspberrypi.org/raspbian_full/images/

 Raspbian lite：

 https://downloads.raspberrypi.org/raspbian_lite/images/

We use the 2020.08.20 version in the tutorial and recommend you to use

this version

(Please download this version as shown in the picture below.)

https://www.raspberrypi.org/downloads/raspberry-pi-os/
https://downloads.raspberrypi.org/raspbian/images/
https://downloads.raspberrypi.org/raspbian_full/images/
https://downloads.raspberrypi.org/raspbian_lite/images/

30

www.keyestudio.com

3.2 Install Raspberry Pi OS on Raspberry Pi

Interface the TFT memory card with a card reader, then plug the card reader into

a computer’s USB port.

Use the SD Card Formatter to format a TFT memory card, as illustrated below.

31

www.keyestudio.com

32

www.keyestudio.com

(1) Burn system

Burn the Raspberry Pi OS to the TFT memory card using Win32DiskImager

software.

33

www.keyestudio.com

Don’t eject card reader after burning mirror system, build a file named SSH,

then delete .txt.

The SSH login function can be activated by copying SSH file to boot

category, as shown below.

34

www.keyestudio.com

Eject card reader.

(2) Log in system

(Raspberry and PC should be in the same local area network.)

Insert TFT memory card into Raspberry Pi, connect internet cable and plug

in power. If you have screen and HDMI cable of Raspberry Pi, you could

view Raspberry Pi OS activating. If not, you can enter the desktop of

35

www.keyestudio.com

Raspberry Pi via SSH remote login software---WinSCP and xrdp.

(3) Remote login

Enter default user name, password and host name on WinSCP to log in.

Only a Raspberry Pi is connected in same network.

(4) Check IP and mac address

36

www.keyestudio.com

Click to open terminal and input the password: raspberry, and press“Enter”

on keyboard.

37

www.keyestudio.com

Logging in successfully, open the terminal, input ip a and tap“Enter ”to

check IP and mac address.

From the above figure, mac address of this Raspberry Pi is a6:32:17:61:9c,

and IP address is 192.168.1.128(use IP address to finish xrdp remote login).

Since mac address never changes, you could confirm IP via mac address

when not sure which IP it is.

38

www.keyestudio.com

(5) Fix IP address of Raspberry Pi

IP address is changeable, therefore, we need to make IP address fixed for

convenient use.

Follow the below steps:

Switch to root user

If without root user’s password

① Set root password

Input password in the terminal: sudo passwd root to set password.

② Switch to root user

su root

③ Fix the configuration file of IP address

Firstly change IP address of the following configuration file.

(#New IP address: address 192.168.1.99)

Copy the above new address to terminal and press“Enter”.

Configuration File:

echo -e '

auto eth0

iface eth0 inet static

39

www.keyestudio.com

#Change IP address

address 192.168.1.99

netmask 255.255.255.0

gateway 192.168.1.1

network 192.168.1.0

broadcast 192.168.1.255

dns-domain 119.29.29.29

dns-nameservers 119.29.29.29

metric 0

mtu 1492

'>/etc/network/interfaces.d/eth0

As shown below:

④ Reboot the system to activate the configuration file.

Input the restart command in the terminal: sudo reboot

You could log in via fixed IP afterwards.

⑤ Check IP and insure IP address fixed well.

40

www.keyestudio.com

(6) Log in desktop on Raspberry Pi wirelessly

In fact, we can log in desktop on Raspberry Pi wirelessly even without

screen and HDMI cable.

VNC and Xrdp are commonly used to log in desktop of Raspberry Pi

wirelessly. Let’s take example of Xrdp.

Install Xrdp Service in the terminal

Installation commands:

Switch to Root User: su root

Installation: apt-get install xrdp

Enter y and press“Enter”.

As shown below:

41

www.keyestudio.com

Open the remote desktop connection on Windows

Press WIN+R on keyboard and enter mstsc.exe.

As shown below:

Input IP address of Raspberry Pi, as shown below.

Click“Connect”and tap“Connect”.

192.168.1.99 is IP address we use, you could change into your IP address.

42

www.keyestudio.com

Click“Yes”.

Input user name: pi, default password: raspberry, as shown below.

43

www.keyestudio.com

Click“OK”or “Enter”, you will view the desktop of Raspberry Pi OS, as

shown below.

Now, we finish the basic configuration of Raspberry Pi OS.

3.3 Raspberry Pi Pico

44

www.keyestudio.com

At the end of January 2021, the Raspberry Pi Foundation launched the

Raspberry Pi Pico, which received a lot of attention due to its

high-performance and low-cost.

The size of Pico is 21mm × 51mm, which is similar to Arduino Nano’s.

Raspberry Pi Pico is a low-cost, high-performance microcontroller board

with flexible digital interfaces. It integrates RP2040 microcontroller chip

designed by Raspberry Pi, with dual-core Arm Cortex M0+ processor

running up to 133 MHz, embedded 264KB of SRAM and 2MB of on-board

45

www.keyestudio.com

Flash memory, as well as 26 multi-function GPIO pins. For software

development, either Raspberry Pi's C/C++ SDK, or the MicroPython is

available. In this tutorial, we will use MicroPython.

The bare board does not come with pins and you need to solder them

yourself. This is a well-made board that can also be used as an SMD

component and soldered directly to a printed circuit board.

46

www.keyestudio.com

The most predominant feature on the board is the microUSB connector at

one end. This is used both for communication and to supply power to the

Pico. An on-board LED is mounted next to the microUSB connector, it is

internally connected to GPIO pin 25. It’s worthwhile to note that this is the

only LED on the entire Pico board.

The BOOTSEL pushbutton switch is mounted a bit down from the LED, it

allows you to change the boot mode of the Pico so that you can load

MicroPython onto it and perform drag-and-drop programming.

At the bottom of the board, you’ll see three connections, these are for a

serial Debug option that we won’t be exploring here.

47

www.keyestudio.com

In the center of the board is the brains of the whole thing, the RP2040 MCU,

which is capable of supporting up to 16MB of off-chip Flash memory,

although in the Pico there is only 4MB.

 Dual-core 32-bit Arm Cortex M0+ processor

 Runs at 48MHz, but can be overclocked to 133MHz

 30 GPIO pins(26 exposed)

 Can support USB Host or Device mode

 8 Programmable I/O(PIO) state machines

The Pico is a 3.3V logic device, however, it can be powered with a range of

power supplies thanks to a built-in voltage converter and regulator.

GND: Ground connection. 8 grounding wires plus an additional one on the 3-pin

48

www.keyestudio.com

Debug connector. They are square as opposed to rounded like the other

connections.

VBUS: This is the power from the microUSB bus, 5V. If the Pico is not being

powered by the microUSB connector then there will be no output here.

VSYS: This is the input voltage, which can range from 2 to 5V. The on-board

voltage converter will change it to 3.3V for the Pico.

3V3: This is a 3.3V output from the Pico’s internal regulator. It can be used

to power additional components, providing you keep the load under

300ma.

3V3_EN: You can use this input to disable the Pico’ s internal voltage

regulator, which will shut off the Pico and any components powered by it.

RUN: It can enable or disable the RP2040 microcontroller, it can also reset

it.

49

www.keyestudio.com

There are 26 exposed GPIO connections on the Raspberry Pi Pico board.

They are laid out pretty-well in order, with a“gap”between GP22 and GP26

(those “ missing ” pins are used internally). All these pins have multiple

functions, and you can configure up to 16 of them for PWM. There are two

I2C buses, two UARTs, and two SPI buses, these can be configured to use a

wide variety of GPIO pins.

The Pico has three Analog-to-Digital Converters, they are ADC0-GP26,

ADC1-GP27, ADC2-GP28, and plus ADC-VREF converter used internally for

an on-board temperature sensor. Note: The ADCs have a 12-bit resolution.

However, the MicroPython has scaled the 12-bit resolution into a 16-bit

resolution, which means that we will receive ADC values from 0 to 65535.

50

www.keyestudio.com

The microcontroller ’ s working voltage is 3.3V, indicating that 0

corresponds to 0V and 65535 corresponds to 3.3V.

You can also provide an external precision voltage-reference on the

ADC_VREF pin. One of the grounds, the ADC_GND on pin 33 is used as a

ground point for that reference.

Raspberry Pi Pico Configuration

Dual-core Arm Cortex-M0 + @ 133MHz

2 × SPI, 2 × I2C, 2 × UART

264KB of SRAM, and 2MB of on-board Flash memory

16 PWM channels

QSPI bus controller, supporting up to 16 MB of

external Flash memory

USB 1.1 with host and device support

DMA controller

8 × Programmable I/O (PIO) state machines for

custom peripheral support

30 GPIO pins, of which 4 can optionally be used as

analog inputs

Drag-and-drop programming using mass storage over

USB

51

www.keyestudio.com

Pinout Diagram:

Raspberry Pi did release a ton of technical documentation, plus a great

guide called Get Started with MicroPython on Raspberry Pi Pico. It ’ s

available in softcover, and as a PDF download as well. For more information,

please refer to:

https://www.raspberrypi.com/products/raspberry-pi-pico/

3.4 Using MicroPython

MicroPython is a lean and efficient implementation of the Python 3

programming language that includes a small subset of the Python

52

www.keyestudio.com

standard library and is optimised to run on microcontrollers and in

constrained environments. MicroPython is packed full of advanced features

such as an interactive prompt, arbitrary precision integers, closures, list

comprehension, generators, exception handling and more. Yet it is

compact enough to fit and run within just 256k of code space and 16k of

RAM. MicroPython aims to be as compatible with normal Python as

possible to allow you to transfer code with ease from the desktop to a

microcontroller or embedded system.

For more information, please go to the official website:

https://micropython.org/

Programming the Pico: You could use C/C++ or MicroPython.

MicroPython is an interpreted language that is made specifically for

microcontrollers. Many microcontroller users have familiarity with C/C++

as they are used on the Arduino and ESP32 boards. In this tutorial, we will

use Thonny recommended by Raspberry Pi. Thonny bills itself as a“Python

IDE for Beginners”, and it is available for Windows, Mac OSX and Linux. It

was also part of the Raspberry Pi operating system(formerly Raspbian).

Boot and Install MicroPython: The first thing that we need to do is to get

MicroPython installed onto the Pico.

https://micropython.org/

53

www.keyestudio.com

Download and burn firmware

Go to the official website to download the UF2 file:

https://www.raspberrypi.com/documentation/microcontrollers/#getting-s

tarted-with-micropython

What I downloaded is . Once the

download is complete, we proceed to burn the firmware.

With BOOTSEL held down, then plug the Pico into Raspberry Pi or your

computer’s USB port.

Release it after the connection was finished. You should see a drive

appearing on your computer with the name“RPI-RP2”.

Move the UF2 file into“RPI-RP2”, and the Raspberry Pi Pico will

automatically restart. At this point, the burning is complete.

https://www.raspberrypi.com/documentation/microcontrollers/#getting-started-with-micropython，
https://www.raspberrypi.com/documentation/microcontrollers/#getting-started-with-micropython，

54

www.keyestudio.com

Connect the Pico from a Raspberry Pi over USB

The MicroPython firmware is equipped with a virtual USB serial port which

is accessed through the micro USB connector on Raspberry Pi Pico. Your

computer should notice this serial port and list it as a character device,

most likely /dev/ttyACM0.

You can run ls /dev/tty* to list your serial ports. There may be quite a few,

but MicroPython ’ s USB serial will start with /dev/ttyACM. If in doubt,

unplug the micro USB connector and see which one disappears. If you don’

t see anything, you can try rebooting your Raspberry Pi.

Enter the following command to install minicom:

55

www.keyestudio.com

sudo apt install minicom

open it as such:

minicom -o -D /dev/ttyACM0

Press Ctrl + B.

56

www.keyestudio.com

Enter print("hello world"), it will show“hello world”.

The on-board LED on Raspberry Pi Pico is connected to GPIO pin 25. The

machine module is used to control on-chip hardware. This is standard on

all MicroPython ports. Here we are using it to take control of a GPIO, so we

can drive it high and low. If you type this in to light up the LED.

from machine import Pin

led = Pin(25, Pin.OUT)

led.value(1)

57

www.keyestudio.com

You can turn the LED off with:

led.value(0)

Now we have successfully connected the Pico from a Raspberry Pi over

USB.

Install Thonny

The Raspberry Pi Imager that we downloaded comes with some commonly

used software, and Thonny is among them.

58

www.keyestudio.com

If the Raspberry Pi Imager does not have Thonny, you need to manually

download it yourself. Enter the following command in the terminal to

download and install Thonny.

sudo apt install thonny

When opening Thonny for the first time select "Standard Mode" in the top

right of the window. Open Thonny again, the interface is shown in the figure

below.

59

www.keyestudio.com

Select "MicroPython (Raspberry Pi Pico)" from the list, as shown below.

Click “Tools” and “Options”.

60

www.keyestudio.com

Select MicroPython(Raspberry Pi Pico) and the port as shown below.

61

www.keyestudio.com

Or select MicroPython (generic)：

62

www.keyestudio.com

Click “Ok”.

Thonny User Interface

Now we will introduce Thonny user interface. At the top is the main menu,

there are“File”,“Edit”,“View”,“Run”,“Tools”and“Help”.

63

www.keyestudio.com

Click“File”, it shows some operations related to files.

Click“Edit”, these are some options about code, such as copying, cutting,

64

www.keyestudio.com

pasting.

In the View drop-down menu, these are tools to assist you. For example, if

we do not tick Shell (the Shell is the“command line”of the Pico, and you

can execute code directly here.), the result won ’ t be displayed. Click

“Files”, the files we saved will be shown on the left.

65

www.keyestudio.com

We can select interpreter in the Run drop-down menu, there are also some

shortcuts used in programming.

In Tools menu, we can select interpreter, font and import modules, etc.

66

www.keyestudio.com

In Help menu, we will see“Help contents”,“Version history”and more.

The icons below the main menu are our commonly used tool shortcuts.

67

www.keyestudio.com

When we open or save files, it will shows the following contents.

Note: if we select“MicroPython(generic)”, then“MicroPython Device”

will be displayed.

68

www.keyestudio.com

We can open programs saved on the Raspberry Pi or the Pico, or save them

on This computer or Raspberry Pi Pico.

Copy the code below to the Thonny and save it to the Pico as test.py.

from machine import Pin, Timer

led = Pin(25, Pin.OUT)

tim = Timer()

def tick(timer):

global led

led.toggle()

tim.init(freq=2.5, mode=Timer.PERIODIC, callback=tick)

69

www.keyestudio.com

Click to run the code, the on-board LED will blink, then click to

stop, the LED won’t blink. If we unplug the MicroUSB cable and plug it in

again, the LED won’t blink after powering up. This is because we did not

name the file main.py and save it to the Pico. Click“File”, then click“Save

as...”to choose Raspberry Pi Pico. After that, enter main.py as the file name

(don’t forget to enter the .py file extension) and click“OK”. Run the code

again, the LED will continue to blink.

70

www.keyestudio.com

When we unplug the cable again, then plug it in and power on, the LED will

blink. This is because the Raspberry Pi Pico starts running the program

saved on main.py after powering up.

Add Modules

Python is a powerful language due to its modules. Python scripting

language with the most rich and powerful class library, enough to support

the vast majority of day-to-day applications. By importing modules, this

makes it easier for us when using some complex sensors.

The method is simple, just save the module that we need to the Pico, or

open the file saved on our computer, click“File”to choose“Save as”, then

save it to the Pico board (right click the mouse, you can delete files). For

instance, I saved some library files required for these courses on my Pico.

Click“View”to choose“Files”, they will be displayed on the left of the

interface.

71

www.keyestudio.com

When using sensors, we can import the corresponding modules directly.

We save all the code in this tutorial to the Raspberry Pi. Open the terminal

and create a folder in /home/pi.

72

www.keyestudio.com

Copy the code to the folder and enter ls, it will show the following content.

When using Thonny, we open this path to find the code we saved directly.

73

www.keyestudio.com

3.5 Keyestudio Raspberry Pico IO Shield

(1) Overview

The Keyestudio Raspberry Pico IO shield is designed for Raspberry Pi Pico. No

soldering required. To make the connection easier, the interfaces on the

shield have silkscreen labels.The silkscreen labels of the 3pin interface

generally are G, V, S. On the shield, G represents GND, V represents the VCC

interface (3.3V), and S represents digital ports or analog ports. The pitch of

the pin header on the shield is 2.54 mm. The sequence of the pin header is

the same as the Pico board’s when wiring. The shield also comes with a

reset button, a PWR power indicator and four holes.

The shield offers a variety of communication interfaces including I2C, UART,

74

www.keyestudio.com

SPI, analog IO and digital IO, and provides an interface of power supply

ranging from 6.5V to 12V.

(2) Specifications:

Output current: ≦500mA

DC input voltage: 6.5 - 12V

Output voltage: DC 3.3V/5V

Ambient temperature(recommended): -10°C ~ 50°C

Dimensions: 45.339MM *83.617MM

Pin pitch: 2.54mm

(3) Schematic diagram

(4) Pinout

75

www.keyestudio.com

(5) Connection

As shown below, stack the Raspberry Pi Pico board onto the Raspberry Pi

Pico shield.

76

www.keyestudio.com

4. Projects

There are 37 sensors and modules in this kit. Next, we will analyze and

introduce how they work step by step. Interface sensors with the Raspberry

Pi Pico board and the Pico shield, run test codes and observe experimental

phenomenon.

Note: please wire up components according to the given connection

diagrams.

Project 1: Lighting up LED

77

www.keyestudio.com

Overview

In this project, we will make an experiment to light up the white LED

module. The high and low levels can be controlled by programming, then

the state of the LED can be controlled.

Working Principle

The two circuit diagrams are given. The left one is wrong wiring-up

diagram. Why? Theoretically, when the S terminal outputs high levels, LED

will receive the voltage and light up.

Due to limitation of IO ports of Pico board, weak current can’t make LED

brighten.

The right one is correct wiring-up diagram. GND and VCC are powered up.

When the S terminal is a high level, the triode Q1 will be connected and

78

www.keyestudio.com

LED will light up(note: current passes through LED and R3 to reach GND by

VCC not IO ports). Conversely, when the S terminal is a low level, the triode

Q1 will be disconnected and LED will go off.

The triode Q1 is equal to a switch and R1 and R3 stand for limited resistors

which can curb the size of current to prevent from burning out

components

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Expansion

Board*1

Keyestudio

Purple LED

Module*1

3P

Dupont

Wire*1

Micro

USB

Cable*1

79

www.keyestudio.com

(Note: in all experiments, the microUSB cable is connected to the pico via a

Raspberry Pi, and the 3p Dupont wire is torn from a 40P Dupont wire.)

Connection Diagram

Run the test code

After opening Thonny and connecting to the Pico, click“View”and“Files”,

then the code saved on the Raspberry Pi and the Pico will be shown on the

left side.

80

www.keyestudio.com

We have saved the code on the Raspberry Pi earlier. Find and click LED.py

and Bink.py. Next, click to run the code. If it did not work, try clicking

to stop running, then run the code again. You also can press the reset

button on the Pico shield and click to run it again.

81

www.keyestudio.com

Code Explanation

Machine module is indispensable, we will use import machine or from

machine import... to program pico with microPython.

time.sleep() function is used to set delayed time, as time.sleep(0.01),

which means, the delayed time is 10ms.

1. led = Pin(0, Pin.OUT)，created a pin example and we name led.

0 is indicative of connected pin GP0，Pin.OUT represents output mode，

can use .value() to output high levels (3.3V)led.value(1) or low levels

(0V)led.value(0)。

import machine is used to import modules. When creating pins examples,

it will change into led = machine.Pin(0, machine.Pin.OUT)

82

www.keyestudio.com

2. while True is loop function，

It means that sentences under this function will loop unless True changes

into False. For the function while，led.value(1), outputs high levels to the

pin 0; then LED lights up. Then the delayed function time.sleep(1) will wait

for 1s. When led.value(0) output low levels to the pin 0, the LED will go off，

and the function time.sleep(1) will wait for 1s, cyclically, and LED will flash.

Test Result

Code 1: upload the code and power on, the purple LED on the module will

light up

Code 2: upload the code and power on, the purple LED will flash with the

interval of 1s.

83

www.keyestudio.com

Test Code

Code 1：
'''
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 1.1
* turn on led
* turn on led
* http://www.keyestudio.com

'''
from machine import Pin
led = Pin(0, Pin.OUT)# create led, connect LED to pin 0，and set pin 0 to OUTPUT
led.value(1)# light up

Code 2：
'''
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 1.2
* Blink
* http://www.keyestudio.com

'''
from machine import Pin
import time

led = Pin(0, Pin.OUT)# create led, connect LED to pin 0，and set pin0 to OUTPUT
while True:

led.value(1)# led lights up
time.sleep(1)# wait for 1s
led.value(0)# led goes off
time.sleep(1)# wait for 1s

84

www.keyestudio.com

Project 2: Traffic Lights Module

Overview

In this lesson, we will learn how to control multiple LED lights and simulate

the operation of traffic lights.

Traffic lights are signal devices positioned at road intersections, pedestrian

crossings, and other locations to control flows of traffic.

In this kit, we will use the traffic light module to simulate the traffic light.

Working Principle

In previous lesson, we already know how to control an LED. In this part, we

only need to control three separated LEDs. Output high levels to the signal

R(3.3V), then the red LED will be on.

85

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico

Expansion

Board*1

Keyestudio

DIY Traffic

Lights

Module*1

5P

Dupont

Wire*1

Micro

USB

Cable*1

86

www.keyestudio.com

Connection Diagram

Run the test code

Find and double-click Traffic_Light.py to open it, then click to run the

code.

87

www.keyestudio.com

Code Explanation

Create pins, set pins mode and delayed functions.

We use the for loop.

The simplest form is for i in range().

In the code, we used range(3), which means the variable i starts from 0,

increase 1 for each time, to 2.

Test Result

Run the code, the green LED will be on for 5s then off, the yellow LED will

88

www.keyestudio.com

flash for 3s then go off and the red one will be on for 5s then off.

Test Code'
''
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 2
* Traffic_Light
* http://www.keyestudio.com

'''
import machine
import time

led_red = machine.Pin(14, machine.Pin.OUT)
led_amber = machine.Pin(13, machine.Pin.OUT)
led_green = machine.Pin(12, machine.Pin.OUT)

while True:
led_green.value(1) # the green LED lights up for 5s
time.sleep(5)# after 5s
led_green.value(0)# the green LED will go off
for i in range(3):#the yellow LED flashes for three times

led_amber.value(1)
time.sleep(0.5)
led_amber.value(0)
time.sleep(0.5)

led_red.value(1) # the red LED lights up for 5s
time.sleep(5)
led_red.value(0)

89

www.keyestudio.com

Project 3: Laser Sensor

Description

Lasers are widely used to cut, weld, surface treat, and more on specific materials.

The energy of the laser is very high. The toy laser pointer may cause glare to the

human eye, and it may cause retinal damage for a long time. my country also

prohibits the use of laser to illuminate the aircraft.

Working Principle

The laser head sensor module is mainly composed of a laser head with a

light-emitting die, a condenser lens, and a copper adjustable sleeve.

We can see the circuit schematic diagram of this module which is very similar to

90

www.keyestudio.com

the LED we have learned. They are all driven by triodes. A high-level digital signal

is directly input at the signal end, then the sensor will start to work; if inputting

low levels, the sensor won’t work

Note: don’t point an laser emitter at eyes of people.

Components

91

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Expansion

Board*1

Keyestudio

DIY Laser

Module*1

3P

Dupont

Wire*1

Micro

USB

Cable*1

Connection Diagram

Run the test code

Find Laser.py, then double-click the code and click

92

www.keyestudio.com

Test Result

Upload the test code and power up, the laser tube on the module emits a

red laser signal for 2 seconds, and stops emitting a red laser signal for 2

seconds.

93

www.keyestudio.com

Test Code

'''
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 3

* Laser

* http://www.keyestudio.com

'''

from machine import Pin

import time

laser = Pin(2, Pin.OUT)# create the laser, connect it to the pin 0 and set the pin 2 to OUTPUT

while True:

laser.value(1)# the laser module is on

time.sleep(2)# wait for 2s

laser.value(0)# the laser module is off

time.sleep(2)# wait for 2s

94

www.keyestudio.com

Project 4: Button Sensor

Overview

In this kit, there is a Keyestudio single-channel button module, which

mainly uses a tact switch and comes with a yellow button cap.

In previous lessons, we learned how to make the pins of our single-chip

microcomputer output a high level or low level. In this experiment, we will

read the high level (3.3V) and low level (0V).

We can determine whether the button on the sensor is pressed by reading

the high and low level of the S terminal on the sensor.

Working Principle

The button module has four pins. The pin 1 is connected to the pin 3 and

the pin 2 is linked with the pin 4. When the button is not pressed, they are

95

www.keyestudio.com

disconnected. Yet, when the button is pressed, they are connected. If the

button is released, the signal end is high level.

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Button

Module*1

3P Dupont

Wire*1

Micro USB

Cable*1

96

www.keyestudio.com

Connection Diagram

Run the test code

Find button.py，double-click，and click

Code Explanation

97

www.keyestudio.com

button = Pin(15, Pin.IN, Pin.PULL_UP), we define the pin of the button as

GP15 and set to PULL-UP mode

We can use button = Pin(15, Pin.IN) to set INPUT mode, at this time, the

pins are in high resistance state.

1. button.value(), read levels of buttons. Function returns High or Low

2. if..else.. sentence, when the logic judge is TRUE, the code under the if

will be activated; otherwise, the code udder the else will be activated.

3. When pico detects the button pressed, the signal end is low level (GP 15

is low level). button.value() is 0. If pico detects the button unpressed,

button.value() is 1 and else sentence will be activated.

Test Result

Upload the test code successfully. After powering on the USB cable, open the

serial monitor and set the baud rate to 9600. The serial monitor will display the

corresponding data and characters. When the button is pressed, val is 0， the

monitor will show“Press the button”；when the button is released，val is 1，

the monitor will show“Loosen the button”; as shown below

98

www.keyestudio.com

Test Code
'''
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 4
* button
* http://www.keyestudio.com

'''

99

www.keyestudio.com

from machine import Pin
import time

button = Pin(15, Pin.IN, Pin.PULL_UP)

while True:
if button.value() == 0:

print("You pressed the button!") #Print information
else:

print("You loosen the button!")
time.sleep(0.1) #delay in 0.1s

Project 5: Capacitive Sensor

Description

In this kit, there is a capacitive touch module which mainly uses a

TTP223-BA6 chip. It is a touch detection chip, which provides a touch

button, and its function is to replace the traditional button with a variable

100

www.keyestudio.com

area button. When we power on, the sensor needs about 0.5 seconds to

stabilize. Do not touch the keys during this time period. At this time, all

functions are disabled, and self-calibration is always performed. The

calibration period is about 4 seconds. We display the test results in the

shell.

Working Principle

When our fingers touch the module, the signal S outputs high levels, the red LED

on the module flashes. We can determine if the button is pressed or not by

reading high and low levels on the sensor.

Required Components

101

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Capacitive

Module*1

3P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

Run the test code

Find Touch.py, double-click and click

102

www.keyestudio.com

Code Explanation

When we touch the sensor, the Shell monitor will show“You pressed the

button!”, if not,“You loosen the button!”will be shown on the monitor.

Test Result

The shell monitor shows corresponding data and characters. In the

experiment, when the button is pressed, the red LED lights up and val is

1.Then the shell shows“You pressed the button!”; if the button is released,

the red LED is off and val is 0;“You loosen the button!”will be displayed

103

www.keyestudio.com

Test Code
'''
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 5
* Touch sensor
* http://www.keyestudio.com

'''
from machine import Pin
import time

button = Pin(3, Pin.IN, Pin.PULL_UP)

104

www.keyestudio.com

while True:
if button.value() == 1:

print("You pressed the button!") #press to print information
else:

print("You loosen the button!")
time.sleep(0.1) #delay in 0.1s

Project 6: Obstacle Avoidance Sensor

Overview

In this kit, there is a Keyestudio obstacle avoidance sensor, which mainly

uses an infrared emitting and a receiving tube. In the experiment, we will

determine whether there is an obstacle by reading the high and low level

of the S terminal on the sensor.

Working Principle

105

www.keyestudio.com

NE555 circuit provides IR signals with frequency to the emitter TX, then the

IR signals will fade with the increase of transmission distance. If

encountering the obstacle, it will be reflected back.

When the receiver RX meets the weak signals reflected back, the receiving

pin will output high levels, which indicates the obstacle is far away. On the

contrary, it the reflected signals are stronger, low levels will be output,

which represents the obstacle is close. There are two potentiometers on

the module, and one is for adjusting emission power, another one is for

receiving frequency.

106

www.keyestudio.com

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Obstacle

Avoidance

Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

Run the test code

Find Avoid.py，double-click and click

107

www.keyestudio.com

Code Explanation

Run the code, we start to adjust the two potentiometers to sense distance.

1. Adjust the potentiometer transmitting power. Make the P LED at the

critical point of ON and OFF states.

2. Adjust the potentiometer receiving frequency. Rotate it clockwise, the

108

www.keyestudio.com

frequency will increase. Make the S LED at the critical point of ON and OFF

states, then the 38KHz square wave can be produced.

Test Result

Run the code, when the sensor detects the obstacle, the Shell will show

“There are obstacles”; if the obstacle is not detected,“All going well”will

be shown.

109

www.keyestudio.com

Test Code
'''
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 6
* Infrared obstacle avoidance sensor
* http://www.keyestudio.com

'''
from machine import Pin
import time

sensor = Pin(16, Pin.IN)
while True:

if sensor.value() == 0:
print("There are obstacles")

else:
print("All going well")

time.sleep(0.1)

110

www.keyestudio.com

Project 7: Line Tracking Sensor

Description

In this kit, there is a DIY electronic building block single-channel line

tracking sensor which mainly uses a TCRT5000 reflective black and white

line recognition sensor element.

In the experiment, we judge the color (black and white) of the object

detected by the sensor by reading the high and low levels of the S terminal

on the module; and display the test results on the shell.

111

www.keyestudio.com

Working Principle

When a black or no object is detected, the signal terminal will output high

levels; when white object is detected, the signal terminal is low level; its

detection height is 0-3cm. We can adjust the sensitivity by rotating the

potentiometer on the sensor. When the potentiometer is rotated, the

sensitivity is best when the red LED on the sensor is at the critical point

between off and on.

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Line Tracking

Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

112

www.keyestudio.com

Connection Diagram

Run the test code

Find Line_tracking.py，double-click and click

113

www.keyestudio.com

Test Result

Upload test code, the shell displays the corresponding data and characters.

In the experiment, when the sensor doesn’t detect an object or detects a

black object, the val is 1, and the shell will display "Black" ; when a white

object (can reflect light) is detected, the val is 0, and the shell displays

"White" ;

Test Code
'''
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 7
* Line Tracking sensor

114

www.keyestudio.com

* http://www.keyestudio.com
'''
from machine import Pin
import time

sensor = Pin(3, Pin.IN, Pin.PULL_UP)

while True:
if sensor.value() == 0:

print("0 White") #print information
else:

print("1 Black")
time.sleep(0.1) #delay in 0.1s

Project 8: Photo Interrupter

Description

This kit contains a photo interrupter which mainly uses 1 ITR-9608

photoelectric switch. It is a photoelectric switch optical switch sensor.

Working Principle

115

www.keyestudio.com

When the paper is put in the slot, C is connected with VCC and the signal end S of

the sensor are high levels; then the red LED will be off. Otherwise, the red LED

will be on.

Required Components

116

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Photo

Interrupter*1

3P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

Run the test code

Find Photo_Interrupt.py，double-click and click

117

www.keyestudio.com

Code Explanation

Logic setting:

Initial Setting

Set PushCounter to 0

Set State to 0 (value of the sensor)

Set lastState to 0

when an object

enters the slot

lastState is 0，State turns

into 1; lastState turns

Set

PushCounter to

118

www.keyestudio.com

into 1 PushCounter+1

print the value

of PushCounter

when the object

leaves the slot

lastState is 1 ， State

becomes 0，two data are

not equal，lastState turns

into 0.

PushCounterdo

esn’t change;

Don’t print the

value of

PushCounter

When the object

goes through this

slot again

lastState is 0, State

becomes 1，two data are

not equal，lastState turns

into 1.

Set

PushCounter to

PushCounter+1

And print the

value of

PushCounter

When the object

leaves this slot

again

lastState is 1，State turns

into 0，two data are not

equal lastState turns into

0

PushCounter

doesn’t change;

Don’t print the

PushCounter

value

Test Result

119

www.keyestudio.com

Wire up, upload test code, and the shell displays the PushCounter data.

Every time when the object passes through the slot of the sensor, the

PushCounter data will increase by 1 continuously, as shown below;

Test Code
'''

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 8

* Photo_Interrupt

* http://www.keyestudio.com

'''

from machine import Pin

import time

sensor = Pin(3, Pin.IN, Pin.PULL_UP)

lastState = 0

120

www.keyestudio.com

PushCounter = 0

while True:

State = sensor.value()

if State != lastState:

if State == 1:

PushCounter += 1

print(PushCounter) #press to print information

lastState = State

Project 9: Tilt Module

Overview

In this kit, there is a Keyestudio tilt sensor. The tilt switch can output signals

121

www.keyestudio.com

of different levels according to whether the module is tilted. There is a ball

inside. When the switch is higher than the horizontal level, the switch is

turned on, and when it is lower than the horizontal level, the switch is

turned off. This tilt module can be used for tilt detection, alarm or other

detection.

Working Principle

The working principle is pretty simple. When pin 1 and 2 of the ball switch

P1 are connected, the signal S is low level and the red LED will light up;

when they are disconnected, the pin will be pulled up by the 4.7K R1 and

make S a high level, then LED will be off.

Components

122

www.keyestudio.com

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Expansion

Board*1

Keyestudio

Tilt

Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

Run the test code

Find Tilt switch.py，double-click and click

123

www.keyestudio.com

Test Result

Upload the test code and observe Shell

When the tilt module is inclined to one side, the red LED on the module will

be off and the monitor will display“1 The switch is turned off”. In contrast,

if you make it incline the other side, the red LED will light up and the

monitor will display“0 The switch is turned on”.

124

www.keyestudio.com

Test Code
'''
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 9
* Tilt switch
* http://www.keyestudio.com

'''
from machine import Pin
import time

TiltSensor = Pin(17, Pin.IN)

while True:
value = TiltSensor.value()
print(value, end = " ")
if value== 0:

print("The switch is turned on")
else:

125

www.keyestudio.com

print("The switch is turned off")
time.sleep(0.1)

Project 10: Collision Sensor

Description

The collision sensor uses a tact switch. This sensor is often used as a limit

switch in 3D printers. In the experiment, we judge whether the sensor

shrapnel is pressed down by reading the high and low levels of the S

terminal on the module; and, we display the test results in the shell.

Working Principle

It mainly uses a tact switch. When the shrapnel of the tact switch is pressed,

126

www.keyestudio.com

2 and 3 are connected, the signal terminal S is low level, and the red LED on

the module lights up; when the touch switch is not pressed, 2 and 3 are not

connected, and 3 is pulled up to a high level by the 4.7K resistor R1, that is,

the sensor signal terminal S is a high level, and the built-in red LED will be

off at this time.

Components Required

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Expansion

Board*1

Keyestudio

Collision

Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

127

www.keyestudio.com

Connection Diagram

Run the test code

Find collision sensor.py，double-click and click

128

www.keyestudio.com

Test Result

Run the test code, the shell displays the corresponding data and characters.

In the experiment, when the shrapnel on the sensor is pressed down, val is

0, the red LED of the module is on, and "The end of his!" is printed; when

the shrapnel is released, the val is 1, the red LED of the module is off, and

"All going well" is printed. !" character, as shown below.

129

www.keyestudio.com

Test Code'''
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 10

* collision sensor

* http://www.keyestudio.com

'''

from machine import Pin

import time

TiltSensor = Pin(17, Pin.IN)

while True:

value = TiltSensor.value()

print(value, end = " ")

if value== 0:

print("The end of his!")

else:

print("All going well")

130

www.keyestudio.com

time.sleep(0.1)

Project 11: Hall Sensor

Description

In this kit, there is a Hall sensor which mainly adopts a A3144 linear Hall

element. The element P1 is composed of a voltage regulator, a Hall voltage

generator, a differential amplifier, a Schmitt trigger, a temperature

compensation circuit and an open-collector output stage. In the

experiment, we use the Hall sensor to detect the magnetic field and display

the test results on the shell.

Working Principle

When the sensor detects no magnetic field or a north pole magnetic field,

131

www.keyestudio.com

the signal terminal will be high level; when it senses a south pole magnetic

field, the signal terminal will be low levels.

The stronger the magnetic field strength is, induction distance is longer.

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Hall Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

132

www.keyestudio.com

Connection Diagram

Run the test code

Find and double-click Hall.py and click

Test Result

133

www.keyestudio.com

Upload the test code, when the sensor detects no magnetic fields or the

north pole magnetic field, Shell will show“1 There is no magnetic field”and

the LED on the sensor will be off; When it detects the south pole magnetic

field, the Shell will show“0 A magnetic field”and the LED on the sensor will

be off.

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 10
* Hall magnetic
* http://www.keyestudio.com

'''
from machine import Pin

134

www.keyestudio.com

import time

hall = Pin(5, Pin.IN)
while True:

value = hall.value()
print(value, end = " ")
if value == 0:

print("A magnetic field")
else:

print("There is no magnetic field")
time.sleep(0.1)

Project 12: Reed Switch Module

Overview

135

www.keyestudio.com

In this kit, there is a Keyestudio reed switch module, which mainly uses a

MKA10110 green reed component.

The reed switch is the abbreviation of the dry reed switch. It is a passive

electronic switch element with contacts.

It has the advantages of simple structure, small size and easy control.

Its shell is a sealed glass tube with two iron elastic reed electric plates.

In the experiment, we will determine whether there is a magnetic field near

the module by reading the high and low level of the S terminal on the

module; and, we display the test result in the shell.

Working Principle

Reed switch is an abbreviation of the dry reed contacts a passive

136

www.keyestudio.com

electronic switching elements, and has the advantages of simple structure,

small size and ease of control, its shell is a sealed glass tube, the tubes are

installed two iron elastic reed plate, but also filling called rhodium metal

inert gas. In peacetime, the glass tube in the two reeds made of special

materials are separated.

When a magnetic substance close to the glass tube, in the role of the

magnetic field lines, the pipe within the two reeds are magnetized to

attract each other in contact, the reed will suck together, so that the

junction point of the connected circuit communication. After the

disappearance of the outer magnetic reed because of their flexibility and

separate, the line is disconnected. Therefore, as a use of the magnetic field

signals to control the line switching device, reed tube can be used as a

sensor for counting the number, spacing, etc., and also are widely used in a

variety of communication devices.

Components

137

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Reed Switch 干

Module*1

3P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

Run the test code

Find Reed Switch.py，double-click and click

138

www.keyestudio.com

Test Result

Upload the code and observe the Shell monitor. When the sensor detects a

magnetic field, val is 0 and the red LED of the module lights up, "A

magnetic field" will be displayed; when no magnetic field is detected, val is

1, and the LED on the module goes out, "There is no magnetic field" will be

shown, as shown below.

139

www.keyestudio.com

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 11
* Reed Switch
* http://www.keyestudio.com

'''
from machine import Pin
import time

ReedSensor = Pin(18, Pin.IN)
while True:

value = ReedSensor.value()
print(value, end = " ")
if value == 0:

print("A magnetic field")
else:

print("There is no magnetic field")
time.sleep(0.1)

140

www.keyestudio.com

Project 13: PIR Motion Sensor

Overview

In this kit, there is a Keyestudio PIR motion sensor, which mainly uses an

RE200B-P sensor elements. It is a human body pyroelectric motion sensor

based on pyroelectric effect, which can detect infrared rays emitted by

humans or animals, and the Fresnel lens can make the sensor's detection

range farther and wider.

In the experiment, we determine if there is someone moving nearby by

reading the high and low levels of the S terminal on the module. The

detected results will be displayed on the Shell.

141

www.keyestudio.com

Working Principle

The upper left part is voltage conversion(VCC to 3.3V). The working voltage

of sensors we use is 3.3V, therefore we can’t use 5V directly. The voltage

conversion circuit is needed.

When no person is detected or no infrared signal is received, and pin 1 of

the sensor outputs low level. At this time, the LED on the module will light

up and the MOS tube Q1 will be connected and the signal terminal S will

detect Low levels.

When one is detected or an infrared signal is received, and pin 1 of the

sensor outputs a high level. Then LED on the module will go off, the MOS

tube Q1 is disconnected and the signal terminal S will detect high levels.

Required Components

142

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

PIR Motion

Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

Run the Test Code

Find and double-click PIR motion.py to open it, click to run the code.

143

www.keyestudio.com

Test Result

Upload the code and open the Shell monitor. When the sensor detects

someone nearby, value is 1, the LED will go off and the monitor will show

“Somebody is in this area!”. On the contrary, the value is 0, the LED will go

up and“0 No one!”will be shown.

144

www.keyestudio.com

Test Code
'''
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 12
* PIR motion
* http://www.keyestudio.com

'''
from machine import Pin
import time

PIR = Pin(19, Pin.IN)
while True:

value = PIR.value()
print(value, end = " ")
if value == 1:

print("Some body is in this area!")
else:

print("No one!")
time.sleep(0.1)

145

www.keyestudio.com

Project 14: Active Buzzer

Overview

In this kit, it contains an active buzzer module and a power amplifier

module (the principle is equivalent to a passive buzzer). In this experiment,

we control the active buzzer to emit sounds. Since it has its own oscillating

circuit, the buzzer will automatically sound if given large voltage.

Working Principle

146

www.keyestudio.com

From the schematic diagram, the pin of buzzer is connected to a resistor

R2 and another port is linked with a NPN triode Q1. So, if this triode Q1 is

powered, the buzzer will sound.

If the base electrode of the triode connected to the R1 resistor is a high

level, the triode Q1 will be connected.If the base electrode is pulled down

by the resistor R3, the triode is disconnected.

When we output a high level from the IO port to the triode, the buzzer will

emit sounds; if outputting low levels, the buzzer won’t emit sounds.

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

Active

Buzzer*1

3P Dupont

Wire*1

Micro USB

Cable*1

147

www.keyestudio.com

Connection Diagram

Run the Test Code

Find and double-click A-buzzer.py to open it, then click to run the code.

148

www.keyestudio.com

Code Explanation

In the experiment, we set the pin number to 20. When setting to high, the

active buzzer will beep; when setting to low, the active buzzer will stop

emitting sounds

Test Result

Upload the code and power on. The active buzzer will emit sound for 1

second, and stop for 1 second.

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 13
* Active buzzer
* http://www.keyestudio.com

'''
from machine import Pin
import time

buzzer = Pin(20, Pin.OUT)
while True:

149

www.keyestudio.com

buzzer.value(1)
time.sleep(1)
buzzer.value(0)
time.sleep(1)

Project 15: 8002b Audio Power Amplifier

Overview

In this kit, there is a Keyestudio 8002b audio power amplifier. The main

components of this module are an adjustable potentiometer, a speaker,

and an audio amplifier chip;

The main function of this module is: it can amplify the output audio signal,

with a magnification of 8.5 times, and play sound or music through the

150

www.keyestudio.com

built-in low-power speaker, as an external amplifying device for some

music playing equipment.

In the experiment, we used the 8002b power amplifier speaker module to

emit sounds of various frequencies.

Working Principle

In fact, it is similar to a passive buzzer. The active buzzer has its own

oscillation source.Yet, the passive buzzer does not have internal oscillation.

When controlling the circuit, we need to input square waves of different

frequencies to the positive pole of the component and ground the

negative pole to control the buzzer to chime sounds of different

frequencies.

151

www.keyestudio.com

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

8002b Audio

Power

Amplifier*1

3P Dupont Wire*1
Micro USB

Cable*1

Connection Diagram

152

www.keyestudio.com

Run the test code

Find and double-click Horn.py to open it, then click to run the code.

Code Explanation

1. In this experiment, we use the PWM class of the machine module, buzzer

= PWM(Pin(21)) to create an instance of the PWM class, and the buzzer pin

is connected to GP21.

The buzzer.duty_u16(1000): set the duty cycle, and the duty cycle is

1000/65535. The larger the value, the louder the buzzer. When set to 0, the

153

www.keyestudio.com

buzzer does not emit sound. buzzer.freq() is the frequency setting

method.

In the experiment, we use the PWM on the machine module. buzzer =

PWM(Pin(21))

Test Result

Upload the test code successfully and power on. The power amplifier

module will emit the sound of the corresponding frequency corresponding

to the beat:

DO for 0.5s, Re for 0.5s, Mi for 0.5s, Fa for 0.5s, So for 0.5s, La 0.5s and Si for

0.5s

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 14
* Passive buzzer
* http://www.keyestudio.com

'''
from machine import Pin, PWM
from time import sleep
buzzer = PWM(Pin(21))

buzzer.duty_u16(1000)

154

www.keyestudio.com

buzzer.freq(523)#DO
sleep(0.5)
buzzer.freq(586)#RE
sleep(0.5)
buzzer.freq(658)#MI
sleep(0.5)
buzzer.freq(697)#FA
sleep(0.5)
buzzer.freq(783)#SO
sleep(0.5)
buzzer.freq(879)#LA
sleep(0.5)
buzzer.freq(987)#SI
sleep(0.5)
buzzer.duty_u16(0)

155

www.keyestudio.com

Project 16: 130 Motor

Description

The 130 motor driver module is compatible with servo motors, which has

high efficiency and good quality fans.

It adopts a HR1124S motor control chip. HR1124S is a single-channel

H-bridge driver chip for DC motor solutions. In addition, this chip has low

standby current and low quiescent current.

The module is compatible with various single-chip control boards. In the

experiment, we can control the rotation direction of the motor by

outputting the voltage directions of the two signal terminals IN+ and IN-

to make the motor rotate.

Working Principle

156

www.keyestudio.com

The chip is used to help drive the motor.

We can’t drive it with a triode or an IO port due to its a large current of

need. It is very simple to make the motor rotate. Just apply voltage to both

ends of the motor. The direction of the motor is different in different

voltage directions. Within the rated voltage, the higher the voltage, the

faster the motor rotates; on the contrary, the lower the voltage, the slower

the motor rotates, or even unable to rotate.

So we can use the PWM port to control the speed of the motor. We haven't

learned PWM here, so we use the high and low levels to control the motor

first.

157

www.keyestudio.com

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

keyestudio DIY

130 Motor*1

4P Dupont

Wire*1
Micro USB Cable*1

Note: the motor is separated with its fan, you need to assemble it first.

Connection Diagram

158

www.keyestudio.com

Run the test code

Find Motor.py，double-click and click

159

www.keyestudio.com

Code Explanation

Set pins to 14 and 15, when the pin 14 outputs high levels and the pin 15 outputs

low levels, the motor will rotate counterclockwise; when both pins are set to low,

the motor stops rotating.

Test Result

Wire up, upload test code and test the 130 motor, the fan will rotate

counterclockwise for 2 seconds, stop for 1 second; and rotate clockwise for

2 seconds and stop for 1 second; cycle alternately.

160

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 15

* 130-DC Motor

* http://www.keyestudio.com

'''

from machine import Pin

import time

#two pins of the motor

INA = Pin(14, Pin.OUT)

INB = Pin(15, Pin.OUT)

while True:

#turn anticlockwise for 2s

INA.value(1)

INB.value(0)

time.sleep(2)

#stop 1s

INA.value(0)

161

www.keyestudio.com

INB.value(0)

time.sleep(1)

#turn clockwise for 2s

INA.value(0)

INB.value(1)

time.sleep(2)

#stop 1s

INA.value(0)

INB.value(0)

time.sleep(1)

162

www.keyestudio.com

Project 17: RGB Module

Overview

Among these modules is a RGB module. It adopts a F10-full color RGB

foggy common cathode LED. We connect the RGB module to the PWM

port of MCU and the other pin to GND(for common anode RGB, the rest

pin will be connected to VCC). So what is PWM?

PWM is a means of controlling the analog output via digital means. Digital

control is used to generate square waves with different duty cycles (a signal

that constantly switches between high and low levels) to control the analog

163

www.keyestudio.com

output.In general, the input voltages of ports are 0V and 5V. What if the 3V

is required? Or a switch among 1V, 3V and 3.5V? We cannot change

resistors constantly. For this reason, we resort to PWM.

For Arduino digital port voltage outputs, there are only LOW and HIGH

levels, which correspond to the voltage outputs of 0V and 5V respectively.

You can define LOW as“0”and HIGH as“1’, and let the Arduino output

five hundred‘0’or“1”within 1 second. If output five hundred‘1’, that

is 5V; if all of which is‘0’,that is 0V; if output 250 01 pattern, that is 2.5V.

This process can be likened to showing a movie. The movie we watch are

not completely continuous. Actually, it generates 25 pictures per second,

which cannot be told by human eyes. Therefore, we mistake it as a

continuous process. PWM works in the same way. To output different

voltages, we need to control the ratio of 0 and 1. The more‘0’or‘1’

output per unit time, the more accurate the control.

164

www.keyestudio.com

Working Principle

For our experiment, we will control the RGB module to display different

colors through three PWM values.

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

Common Cathode

RGB Module *1

4P Dupont

Wire*1

Micro USB

Cable*1

165

www.keyestudio.com

Connection Diagram

Run the test code

Find rgb1.py and rgb2.py，double-click and click

166

www.keyestudio.com

Test Code 1：

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 16.1

* RGB

* http://www.keyestudio.com

'''

from machine import Pin

from time import sleep

red = Pin(9, Pin.OUT)

green = Pin(10, Pin.OUT)

blue = Pin(11, Pin.OUT)

while 1:

red.value(1)

green.value(0)

blue.value(0)

sleep(1)

red.value(0)

167

www.keyestudio.com

green.value(1)

blue.value(0)

sleep(1)

red.value(0)

green.value(0)

blue.value(1)

sleep(1)

Code 2：

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 16.2

* RGB

* http://www.keyestudio.com

'''

from machine import Pin, PWM

from time import sleep

pwm_r = PWM(Pin(9))

pwm_g = PWM(Pin(10))

pwm_b = PWM(Pin(11))

pwm_r.freq(1000)

168

www.keyestudio.com

pwm_g.freq(1000)

pwm_b.freq(1000)

def light(red, green, blue):

pwm_r.duty_u16(red)

pwm_g.duty_u16(green)

pwm_b.duty_u16(blue)

while 1:

light(65535, 0, 0)#red

sleep(1)

light(65535, 25088, 0)#orange

sleep(1)

light(65535, 65535, 0)#yellow

sleep(1)

light(0, 65535, 0)#green

sleep(1)

light(0, 0, 65535)#blue

sleep(1)

light(0, 65535, 65535)#cyanogen

sleep(1)

light(41216, 8448, 61696)#purple

169

www.keyestudio.com

sleep(1)

Explanation

Code 1：

In the code 1, red, green and blue represent the red, green and blue ports.

According to the wiring diagram, we have connected to GP9, GP10 and

GP11,then set to 9, 10 and 11.Use the function .value(1) to set three LEDs.If

the corresponding digital port is high level, and the corresponding LED will

be on.

The RGB module displays red color for 1 second, green color for 1 second,

and blue color for 1 second, cycle alternately.

Code 2：

1. In the code 2, we use PWM output, and set frequency

to .freq(1000)。.duty_u16()

The number in the brackets means the proportion of the color of LED. The

larger the duty cycle data we set, the larger the proportion of the color.

170

www.keyestudio.com

(Note: the duty cycle above we set is maximum to .duty_u16(65535),

this value is 256*256 - 1, that is 0~65535. As for the following the

RGB color table, you only need to make values below multiply by 256

In the experiment, we adjust the ratio of red, green and blue colors on the

RGB LED by setting the corresponding values, so as to control the RGB LED

to display corresponding colors. So theoretically, there are 256*256*256

colors that can be set (for details, please refer to the common RGB color

table below)

RGB Color Chart

171

www.keyestudio.com

172

www.keyestudio.com

173

www.keyestudio.com

Test Result

Upload the code 1, the RGB on the module will show red, green and blue

color with an interval of 1s.

Upload the code 2, the RGB on the module will show red, orange, yellow,

green, cyan-blue, blue, purple and white color with an interval of 1s.

174

www.keyestudio.com

Project 18: Potentiometer

Overview

The following we will introduce is the Keyestudio rotary potentiometer

which is an analog sensor.

The digital IO ports can read the voltage value between 0 and 3.3V and the

module only outputs high levels. However, the analog sensor can read the

voltage value through ADC analog ports(GP26~GP28) on the pico board.

In the experiment, we will display the test results on the Shell.

175

www.keyestudio.com

Working Principle

It uses a 10K adjustable resistor. We can change the resistance by rotating

the potentiometer. The signal S can detect the voltage changes(0-3.3V)

which are analog quantity

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

Rotary

Potentiometer*1

3P Dupont

Wire*1

Micro USB

Cable*1

176

www.keyestudio.com

Connection Diagram

Run the Test Code

Find and double-click potentiometer.py to open it, then click to run the

code.

177

www.keyestudio.com

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 17
* Rotary potentiometer
* http://www.keyestudio.com

'''
import machine
import utime

potentiometer = machine.ADC(26)

while True:
pot_value = potentiometer.read_u16()
print(pot_value)
utime.sleep(0.1)

Code Explanation

In the experiment, we will create ADC example, connect GP26 ADC(26).

That means ADC(0).

.read_u16() is used to read analog values, in the range of 0~65535.

potentiometer.read_u16() means that reading the analog value of

ADC(26) pin then assign it to the variable pot_value

1. utime.sleep() is the delay function which works as same as the

function time.sleep()

178

www.keyestudio.com

Test Result

Run the test code, observe the analog value in the Shell monitor. In the

experiment , run the test code then observe the analog value. Rotate the knob of

the potentiometer clockwise to increase the analog value. On the contrary, the

analog value will be reduced by rotating the potentiometer anticlockwise. The

value is in the range of 0-65535.

Code Explanation

analogVal means analog value. The rotary potentiometer outputs analog

values(0~4095), therefore, we set pins to analog ports. For example, we connect

to ADC0(GP26)

analogRead(pin): read the value of the specified analog pin. The pico board

contains a multi-channel, 12-bit converter. This means that it will map the

input voltage between 0 and the working voltage (5V or 3.3V) to an

integer value between 0 and 4095. For example, this will produce a

resolution among readings: 3.3V/4096 stands for 0.0008V per unit.

Pin: the name of analog input pin. GP26 is connected to GP28, GP29

measures VSYS voltage and ADC4 measures the internal temperature.

179

www.keyestudio.com

Test Result

Upload the code power up by a USB cable, open the serial monitor and set

baud rate to 9600.

In the experiment, rotate the potentiometer clockwise, the analog value

increases, and turn the potentiometer counterclockwise, the analog value

decreases(0-4095), as shown in the figure below.

180

www.keyestudio.com

Project 19: Steam Sensor

Description

This is a commonly used steam sensor. Its principle is to detect the amount

of water by bare printed parallel lines on the circuit board. The more the

water is, the more wires will be connected. As the conductive contact area

increases, the output voltage will gradually rise. It can detect water vapor in

the air as well. The steam sensor can be used as a rain water detector and

level switch. When the humidity on the sensor surface surges, the output

voltage will increase.

In the experiment, we connect the signal terminal (S terminal) of the sensor to

the analog port of the pico development board. The analog value detected will be

displayed on the serial monitor.

181

www.keyestudio.com

This is a DIY electronic building block water drop sensor. It is an analog

(digital) input module, also called rain, rain sensor. It can be used to

monitor various weather conditions, detect whether it is raining and the

amount of rain, convert it into digital signal (DO) and analog signal (AO)

output, and is widely used in Arduino robot kits, raindrops, rain sensors,

and can be used for various It can monitor various weather conditions, and

convert it into digital signal and AO output, and can also be used for

automobile automatic wiper system, intelligent lighting system and

intelligent sunroof system. In the experiment, we input the sensor signal

terminal (S terminal) to the analog port of the pico development board,

sense the change of the analog value, and display the corresponding

analog value on the shell.

Its principle is to detect the amount of water through the exposed printed parallel

lines on the circuit board. The more water there is, the more wires will be

connected, and the conductive contact area increases. The voltage output by pin

2 will gradually increase. The larger the analog value detected by the signal

terminal S is.

It can also detect steam in the air. Two position holes are used to install on the

other devices

182

www.keyestudio.com

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Steam Sensor *1

3P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

183

www.keyestudio.com

Run the test code

Find Water.py，double-click and click

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 18
* Steam sensor

184

www.keyestudio.com

* http://www.keyestudio.com
'''
import machine
import utime

sensor = machine.ADC(26)#ADC0

while True:
value = sensor.read_u16()
print(value)
utime.sleep(0.1)

Test Result

Wire up, run the test code, then the output analog value is displayed in the

shell. The more water volume, the greater the output voltage and the

analog value, as shown below.

185

www.keyestudio.com

Project 20: Sound Sensor

Overview

In this kit, there is a sound sensor. In the experiment, we test the analog

value corresponding to the sound level in the current environment with it.

The louder the sound, the larger the analog value;

Working Principle

186

www.keyestudio.com

It uses a high-sensitive microphone component and an LM386 chip.

We build the circuit with the LM386 chip and amplify the sound through

the high-sensitive microphone. In addition, we can adjust the sound

volume by the potentiometer. Rotate it clockwise, the sound will get

louder.

Components

187

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Sound Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

Run the test code

Find MicroPhone.py，double-click and click

188

www.keyestudio.com

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 19
* MicroPhone
* http://www.keyestudio.com

'''
import machine
import utime

MicroPhone = machine.ADC(27)
while True:

value = MicroPhone.read_u16()
print(value)
utime.sleep(0.1)

Test Result

Upload the code and observe the analog value on the Shell monitor.

189

www.keyestudio.com

Rotate clockwise the potentiometer and speak at the MIC. Then you can

see the analog value get larger, as shown below

190

www.keyestudio.com

Project 21: Photoresistor

Description

In this kit, there is a photoresistor which consists of photosensitive

resistance elements. Its resistance changes with the light intensity. Also, it

converts the resistance change into a voltage change through the

characteristic of the photosensitive resistive element. When wiring it up, we

interface its signal terminal (S terminal) with the analog port of pico , so as

to sense the change of the analog value, and display the corresponding

analog value in the shell.

Working Principle

191

www.keyestudio.com

If there is no light, the resistance is 0.2MΩ and the detected voltage at the

terminal 2 is close to 0. When the light intensity increases, the resistance of

photoresistor and detected voltage will diminish.

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Photoresistor*1

3P Dupont

Wire*1
Micro USB Cable*1

Connection Diagram

192

www.keyestudio.com

Run the test code

Find photoresistance.py to double-click and click

193

www.keyestudio.com

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 20
* Photoresistance
* http://www.keyestudio.com

'''
import machine
import utime

photoresistance = machine.ADC(28)
while True:

value = photoresistance.read_u16()
print(value)
utime.sleep(0.1)

Test Result

Wire up, run the test code, observe the Shell monitor. Then you will view

the analog value of the light intensity. The brighter the light, the greater

the analog value

194

www.keyestudio.com

195

www.keyestudio.com

Project 22: NTC-MF52AT Thermistor

Overview

In the experiment, there is a NTC-MF52AT analog thermistor. We connect

its signal terminal to the analog port of the Raspberry Pi Pico Board and

read the corresponding analog value.

We can use analog values to calculate the temperature of the current

196

www.keyestudio.com

environment through specific formulas. Since the temperature calculation

formula is more complicated, we only read the corresponding analog

value.

Working Principle

This module mainly uses NTC-MF52AT thermistor elements. The

NTC-MF52AT thermistor element can sense the changes of the

surrounding environment temperature. Resistance changes with the

temperature, causing the voltage of the signal terminal S to change.

This sensor uses the characteristics of NTC-MF52AT thermistor element to

convert resistance changes into voltage changes.

Components

197

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

NTC-MF52AT

Thermistor*1

3P Dupont

Wire*1
Micro USB Cable*1

Connection Diagram

Run the test code

Find and double-click temperature.py and click

198

www.keyestudio.com

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 21
* Temperature sensor
* http://www.keyestudio.com

'''
import machine
import utime
import math

sensor = machine.ADC(0)
while True:

temp = sensor.read_u16()
print("Temperature ADC: ", end = " ")
print(temp)
utime.sleep(0.1)

Test Result

Upload the code and observe the Shell monitor. The higher the

199

www.keyestudio.com

temperature, the larger the analog value.

200

www.keyestudio.com

Project 23: Thin-film Pressure Sensor

Overview

In this kit, there is a Keyestudio thin-film pressure sensor. The thin-film

pressure sensor composed of a new type of nano pressure-sensitive

material and a comfortable ultra-thin film substrate, has waterproof and

pressure-sensitive functions.

In the experiment, we determine the pressure by collecting the analog

signal on the S end of the module. The smaller the analog value, the

greater the pressure; and the displayed results will shown on the Shell.

Working Principle

201

www.keyestudio.com

When the sensor is pressed by external forces, the resistance value of

sensor will vary. We convert the pressure signals detected by the sensor

into the electric signals through a circuit. Then we can obtain the pressure

changes by detecting voltage signal changes.

Components

202

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

Thin-film

Pressure

Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

Run the test code

Find the film pressure.py open it and double-click

203

www.keyestudio.com

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 22
* Film pressure sensor
* http://www.keyestudio.com

'''
import machine
import utime

film = machine.ADC(1)
while True:

value = film.read_u16()
print(value)
utime.sleep(0.1)

Test Result

204

www.keyestudio.com

Upload the code and observe the Shell monitor. When the thin-film is pressed

by fingers, the analog value will decrease, as shown below;

205

www.keyestudio.com

Project 24: Flame Sensor

Description
In daily life, it is often seen that a fire broke out without any precaution. It will
cause great economic and human loss. So how can we avoid this situation? Right,
install a flame sensor and a speaker in those places that easily break out a fire.
When the flame sensor detects a fire, the speaker will alarm people quickly to put
out the fire.
So in this project, you will learn how to use a flame sensor and an active buzzer
module to simulate the fire alarm system.

Working Principle

This flame sensor can be used to detect fire or other light sources with
wavelength stands at 760nm ~ 1100nm. Its detection angle is about 60°. You can
rotate the potentiometer on the sensor to control its sensitivity. Adjust the
potentiometer to make the LED at the critical point between on and off state. The

206

www.keyestudio.com

sensitivity is the best.

From the below figure, power up. When detecting fire, the digital pin outputs low

levels, the red LED2 will light up first, the digital signal terminal D0 outputs a low

level, and the red LED1 will light up. The stronger the external infrared light, the

smaller the value; the weaker the infrared light, the larger the value.

Required Components

207

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

keyestudio DIY

Flame Sensor*1

4P Dupont

Wire*1
Micro USB Cable*1

Connection Diagram

Run the test code

Find and double-click Flame_sensor.py and click

208

www.keyestudio.com

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 23
* Flame sensor
* http://www.keyestudio.com

'''
import machine
import utime

flame_D = machine.Pin(22, machine.Pin.IN)
flame_A = machine.ADC(26)

while True:
digitalVal = flame_D.value()
analogVal = flame_A.read_u16()
print(digitalVal, end = " ")
print(analogVal)
utime.sleep(0.1)

Code Explanation

Two pins we use are defined as 22 and 26 according to the wiring-up

209

www.keyestudio.com

diagram, and print digital signals and analog signals respectively.

Test Result

Upload the test code and power up，LED2 is on and LED1 is off. Open the

monitor and set baud rate to 9600. When fire is detected, LED1 will be on.

the digital value will change from 1 to 0, and the analog value will become

smaller, as shown in the figure below.

210

www.keyestudio.com

Project 25: MQ-2 Gas Sensor

Description

This analog gas sensor - MQ2 is used in gas leakage detecting equipment

in consumer electronics and industrial markets.

This sensor is suitable for detecting LPG, I-butane, propane, methane,

alcohol, Hydrogen and smoke. It has high sensitivity and quick response.

In addition, the sensitivity can be adjusted by rotating the potentiometer.

In the experiment, we read the analog value at the A0 port and the D0 port

to determine the content of gas.

211

www.keyestudio.com

Working Principle

The greater the concentration of smoke, the greater the conductivity, the

lower the output resistance, the greater the output analog signal.

When in use, the A0 terminal reads the analog value of the corresponding

gas; the D0 terminal is connected to an LM393 chip (voltage comparator),

we can adjust the alarm threshold of the measured gas through the

potentiometer, and output the digital value at D0. When the measured gas

212

www.keyestudio.com

content exceeds the critical point, the D0 terminal outputs a low level;

when the measured gas content does not exceed the critical point, the D0

terminal outputs a high level.

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

keyestudio

DIY Analog

Gas Sensor*1

4P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

213

www.keyestudio.com

Run the test code

Find and double-click MQ-2.py and click

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

214

www.keyestudio.com

* lesson 24
* Gas sensor
* http://www.keyestudio.com

'''
import machine
import utime

mq2_D = machine.Pin(22, machine.Pin.IN)
mq2_A = machine.ADC(26)

while True:
digitalVal = mq2_D.value()
analogVal = mq2_A.read_u16()
print(digitalVal, end = " ")
print(analogVal, end = " ")
if digitalVal == 0:

print("Exceeding")
else:

print("Normal")
utime.sleep(0.1)

Test Result

Run the test code, the yellow-green LED on the module lights up, observe

the shell, and display the corresponding data and characters. In the

experiment, we can see that when the simulated value of the test is less

than or equal to 45627, the gas content does not exceed the critical point,

and the red LED is off; when the simulated value of the test is greater than

or equal to 45627, the gas content exceeds the critical point, and the red

LED lights up. ; Then it means that the analog value of the critical point of

gas content is between 43018-45627, we can adjust the critical point by

rotating the potentiometer on the sensor.

215

www.keyestudio.com

Project 26: MQ-3 Alcohol Sensor

Description

In this kit, there is a MQ-3 alcohol sensor, which uses the gas-sensing

material is tin dioxide (SnO2) which has a low conductivity in clean air.

When there is alcohol vapor in the environment where the sensor is

located, the conductivity of the sensor increases with the increase of the

alcohol gas concentration in the air. The change in conductivity can be

216

www.keyestudio.com

converted into an output signal corresponding to the gas concentration

using a simple circuit.

In the experiment, we read the analog value at the A0 end of the sensor

and the digital value at the D0 end to judge the content of alcohol vapor in

the air and whether they exceed the standard.

Working Principle

At a certain temperature, the conductivity changes with the composition of

the ambient gas. When in use, A0 terminal reads the analog value

corresponding to alcohol vapor; D0 terminal is connected to an LM393

217

www.keyestudio.com

chip (comparator), we can adjust and measure the alcohol vapor alarm

threshold through the potentiometer, and output the digital value at D0.

When the measured alcohol vapor content exceeds the critical point, the

D0 terminal outputs a low level; when the measured alcohol vapor content

does not exceed the critical point, the D0 terminal outputs a high level.

Components Required

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

keyestudio

Alcohol

Sensor*1

Dupont

Wire4P*1
Micro USB Cable*1

Connection Diagram

218

www.keyestudio.com

Run the test code

Find the MQ-3.py, double-click the code and click

219

www.keyestudio.com

Test Code'''

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 26

* Alcohol Senso

* http://www.keyestudio.com

'''

import machine

import utime

mq2_D = machine.Pin(22, machine.Pin.IN)

mq2_A = machine.ADC(26)

while True:

digitalVal = mq2_D.value()

analogVal = mq2_A.read_u16()

print(digitalVal, end = " ")

print(analogVal, end = " ")

if digitalVal == 0:

print("Exceeding")

220

www.keyestudio.com

else:

print("Normal")

utime.sleep(0.1)

Test Result

Run the test code, the red LED on the module lights up, and the shell

displays the corresponding data and characters. In the experiment, when

the tested simulated value is less than or equal to 45387, the gas content

does not exceed the critical point, and the yellow-green LED will be off;

when the tested simulated value is greater than or equal to 45419, the gas

content exceeds the critical point, and the yellow-green LED will light up;

That means the critical point is in the range of 45387-45419. We can adjust

the critical point by rotating the potentiometer on the sensor.

221

www.keyestudio.com

Project 27: Five-key AD Button Module

Description

When we talked about analog and digital sensors earlier, we talked about

the single-channel key module. When we press the key, it outputs a low

level, and when we release the key, it outputs a high level. We can only

read these two digital signals. In fact, the key module ADC acquisition can

also be performed. In this kit, a DIY electronic building block five-way AD

button module is included.

222

www.keyestudio.com

We can judge which key is pressed through the analog value. In the

experiment, we print out the key press information in the shell.

Working Principle

Let’s look at the schematic diagram, when we do not press the key, the OUT of S

output to the signal end is pulled down by R1. At this time, we read the low level

0V. When we press the key SW1, the OUT of the output to the signal end S is

directly connected to the VCC. At this time, we read the high level 3.3V(the figure

is marked as a 10-bit ADC(0~1023) and VCC is 5V. The principle is the same. Here

we have VCC of 3.3V and ADC mapped to 16 bits), which is an analog value of

65535.

223

www.keyestudio.com

Next,when we press the key SW2, the OUT terminal voltage of the signal we read

is the voltage between R2 and R1, namely VCC*R1/(R2+R1), which is about

2.64V, and the analog value is about 52219.

When we press the key SW3, the OUT terminal voltage of the signal we read is

the voltage between R2+R3 and R1, namely VCC*R1/(R3+R2+R1), which is

about 1.99V, and the analog value is about 39360.

When we press the key SW4, the OUT terminal voltage of the signal we read is

the voltage between R2+R3+R4 and R1, namely VCC*R1/(R4+R3+R2+R1),

about 1.31V, and the analog value is about 26109.

Similarly, when we press the key SW5, the OUT terminal voltage of the signal we

read is the voltage between R2+R3+R4+R5 and R1, namely

VCC*R1/(R5+R4+R3+R2+R1), which is about 0.68V, and the analog value is

about 13415.

224

www.keyestudio.com

Components Required

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion

Board*1

keyestudio

5-Channel

AD Button

Module*1

3P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

Run the test code

225

www.keyestudio.com

Find the AD key.py, double-click the code and click

Test Code
'''

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 27

* AD key

* http://www.keyestudio.com

'''

import machine

import utime

ad_key = machine.ADC(26)

while True:

value = ad_key.read_u16()

print(value, end = '')

if value <= 6000:

226

www.keyestudio.com

print(" no key is pressed")

elif value <= 20000:

print(" SW5 is pressed")

elif value <= 32000:

print(" SW4 is pressed")

elif value <= 45000:

print(" SW3 is pressed")

elif value <= 59000:

print(" SW2 is pressed")

else:

print(" SW1 is pressed")

utime.sleep(0.1)

Code Explanation

We assign the read analog value to the variable val, and the shell displays

the value of val, (our default setting is 9600, which can be changed). We

judge the read analog value. When the analog value is lower than 6000, we

judge that the button is not pressed; when the analog value is between

6000 and 20000, we judge that the button SW5 is pressed; Between 20000

and 32000, we judge that the button SW4 is pressed; when the analog

value is between 32000 and 45000, we judge that the button SW3 is

pressed; when the analog value is between 45000 and 59000, we judge

that the button SW2 is pressed. Press; otherwise, when the analog value is

above 59000, we judge that the button SW1 is pressed; if we only use a

fixed value, there will inevitably be errors, so we use the interval to judge.

227

www.keyestudio.com

Test Result

After uploading the test code successfully, when the button is pressed, the

shell prints out the corresponding information, as shown in the figure

below.

228

www.keyestudio.com

Project 28: Joystick Module

Overview

Game handle controllers are ubiquitous.

It mainly uses PS2 joysticks. When controlling it, we need to connect the X

and Y ports of the module to the analog port of the single-chip

microcomputer, port B to the digital port of the single-chip microcomputer,

VCC to the power output port(3.3-5V), and GND to the GND of the MCU.

We can read the high and low levels of two analog values and one digital

port) to determine the working status of the joystick on the module.

In the experiment, two analog values(x axis and y axis) will be shown on

Shell.

229

www.keyestudio.com

Working Principle

In fact, its working principle is very simple. Its inside structure is equivalent

to two adjustable potentiometers and a button. When this button is not

pressed and the module is pulled down by R1, low levels will be output ; on

the contrary, when the button is pressed, VCC will be connected (high

levels), When we move the joystick, the internal potentiometer will adjust

to output different voltages, and we can read the analog value.

230

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Expansion

Board*1

Keyestudio

Joystick

Module*1

5P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

231

www.keyestudio.com

Run the Test Code

Find and double-click joystick.py, then click to run the code.

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 25
* Joystick
* http://www.keyestudio.com

'''
import machine
import utime

B = machine.Pin(22, machine.Pin.IN)
X = machine.ADC(26)
Y = machine.ADC(27)
while True:

B_value = B.value()

232

www.keyestudio.com

X_value = X.read_u16()
Y_value = Y.read_u16()
print("button:", end = " ")
print(B_value, end = " ")
print("X:", end = " ")
print(X_value, end = " ")
print("Y:", end = " ")
print(Y_value)
utime.sleep(0.1)

Code Explanation

In the experiment, according to the wiring diagram, the x pin is set to

ADC(26), the y pin is set to ADC(27) and the pin of the joystick is set to

GP22.

Then print() function will print without changing lines.

Test Result

Run the test code and observe Shell monitor to display corresponding value. Move

the joystick, analog values at X and Y axis will change then press the button, the

digital value is 1, on the contrary, the value will be 0. as shown below;

233

www.keyestudio.com

234

www.keyestudio.com

Project 29: Ultraviolet Sensor

Description

There is a ultraviolet Sensor used for UV index monitoring, UV radiation

dose measurement, flame detection. Suitable for measuring UV index of

smart wearable devices, such as UV index detection of watches,

smartphones and outdoor equipment. It can also be used to monitor the

intensity of UV light, or as a UV flame detector when UV sanitizing items.

The sensor has a specific spectral response. In the experiment, we use the

purple led module to test the UV module, and then display the results on

the shell.

235

www.keyestudio.com

Working Principle

The output current of the UV sensor is proportional to the light intensity,

and the output of the product has a very high consistency. The module

circuit has been set up, and we directly use the ADC to collect the analog

signal.

Required Components

236

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

Ultraviolet

Sensor*1

3P Dupont

Wire*2

Micro USB

Cable*1

Keyestudio DIY

Purple LED*1

Connection Diagram

(V of led module is connected to VUSB(5V) to make the LED brighter)

Run the test code

Find and double Ultraviolet.py and click

237

www.keyestudio.com

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 26
* UV_sensor
* http://www.keyestudio.com

'''
import machine
import utime

led = machine.Pin(27, machine.Pin.OUT)
sensor = machine.ADC(26)
led.value(1)#light up LED

while True:
analogVal = sensor.read_u16()
print(analogVal)
utime.sleep(0.1)

238

www.keyestudio.com

Test Result

After running the test code, the Shell displays the corresponding UV value.

When we make the LED close to the ultraviolet module. Then view the data on

the Shell monitor, as shown below:

Project 30: SK6812 RGB Module

239

www.keyestudio.com

Overview

In previous lessons, we learned about the plug-in RGB module and used

PWM signals to color the three pins of the module.

There is a Keyestudio 6812 RGB module whose the driving principle is

different from the plug-in RGB module. It can only control with one pin.

This is a set. It is an intelligent externally controlled LED light source with

the control circuit and the light-emitting circuit. Each LED element is the

same as a 5050 LED lamp bead, and each component is a pixel. There are

four lamp beads on the module, which indicates four pixels

In the experiment, we make different lights show different colors.

Working Principle

From the schematic diagram, we can see that these four pixel lighting

beads are all connected in series. In fact, no matter how many they are, we

can use a pin to control a light and let it display any color. The pixel point

contains a data latch signal shaping amplifier drive circuit, a high-precision

240

www.keyestudio.com

internal oscillator and a 12V high-voltage programmable constant current

control part, which effectively ensures the color of the pixel point light is

highly consistent.

The data protocol adopts a single-wire zero-code communication method.

After the pixel is powered up and reset, the S terminal receives the data

transmitted from the controller. The first 24bit data sent is extracted by the

first pixel and sent to the data latch of the pixel.

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

6812 RGB

Module*1

3P Dupont

Wire*1
Micro USB Cable*1

Connection Diagram

241

www.keyestudio.com

Run the test code

Find and double-click sk6812.py and click

Test Code
'''

242

www.keyestudio.com

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 27
* 6812 RGB LED
* http://www.keyestudio.com

'''
import array, time
from machine import Pin
import rp2

Configure the number of sk6812 LEDs, pins and brightness.
NUM_LEDS = 4
PIN_NUM = 16
brightness = 0.1

@rp2.asm_pio(sideset_init=rp2.PIO.OUT_LOW, out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=24)
def sk6812():

T1 = 2
T2 = 5
T3 = 3
wrap_target()
label("bitloop")
out(x, 1) .side(0) [T3 - 1]
jmp(not_x, "do_zero") .side(1) [T1 - 1]
jmp("bitloop") .side(1) [T2 - 1]
label("do_zero")
nop() .side(0) [T2 - 1]
wrap()

Create the StateMachine with the sk6812 program, outputting on Pin(16).
sm = rp2.StateMachine(0, sk6812, freq=8_000_000, sideset_base=Pin(PIN_NUM))

Start the StateMachine, it will wait for data on its FIFO.
sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.
ar = array.array("I", [0 for _ in range(NUM_LEDS)])

def pixels_show():
dimmer_ar = array.array("I", [0 for _ in range(NUM_LEDS)])
for i,c in enumerate(ar):

r = int(((c >> 8) & 0xFF) * brightness)
g = int(((c >> 16) & 0xFF) * brightness)

243

www.keyestudio.com

b = int((c & 0xFF) * brightness)
dimmer_ar[i] = (g<<16) + (r<<8) + b

sm.put(dimmer_ar, 8)
time.sleep_ms(10)

def pixels_set(i, color):
ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]

def pixels_fill(color):
for i in range(len(ar)):

pixels_set(i, color)

RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)

pixels_set(0, RED)
pixels_set(1, GREEN)
pixels_set(2, BLUE)
pixels_set(3, WHITE)
pixels_show()
time.sleep(5)
'''
for i in range(len(ar)):

pixels_set(i, BLACK)
pixels_show()
'''

Code Explanation

A few function ports and functions:

NUM_LEDS = 4, there are four LED beads, so we set to 4.

PIN_NUM = 16, this is the pin number, we connect to GP16

brightness = 0.1, brightness setting. 1 implies brightest

244

www.keyestudio.com

pixels_show()，this function is used to refresh

pixels_set(i, color)，this function is used to set locations and color of LED

beads.

pixels_fill(color)，display colors of LED beads

Test Result

Run the test code, wire up and power up. Then we can see four LED beads

show red, green, blue and white color; as shown below;

245

www.keyestudio.com

Project 31: Rotary Encoder

Overview

In this kit, there is a Keyestudio rotary encoder, dubbed as switch encoder.

It is applied to automotive electronics, multimedia audio, instrumentation,

household appliances, smart home, medical equipment and so on.

In the experiment, it it used for counting. When we rotate the rotary

encoder clockwise, the set data falls by 1; if you rotate it anticlockwise, the

set data is up 1; and when the middle button is pressed, the value will be

show on Shell.

246

www.keyestudio.com

Working Principle

The incremental encoder converts the displacement into a periodic electri

c signal, and then converts this signal into a counting pulse, and the num

ber of pulses indicates the size of the displacement.This module mainly us

es 20-pulse rotary encoder components. It can calculate the number of pu

lses output during clockwise and reverse rotation. There is no limit to cou

nt rotation. It resets to the initial state, that is, starts counting from 0.

Components

247

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

Rotary

Encoder*1

5P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

Run the test code

Find and double-click encoder.py to open it, then click to run the code.

248

www.keyestudio.com

This is because we did not import the module needed by the encoder. We

have mentioned how to import modules before, please refer to the

previous method.

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 28
* Encoder
* http://www.keyestudio.com

'''
import time
from rotary_irq_rp2 import RotaryIRQ
from machine import Pin
SW=Pin(20,Pin.IN,Pin.PULL_UP)
r = RotaryIRQ(pin_num_clk=18,

pin_num_dt=19,

249

www.keyestudio.com

min_val=0,
reverse=False,
range_mode=RotaryIRQ.RANGE_UNBOUNDED)

val_old = r.value()
while True:

try:
val_new = r.value()
if SW.value()==0 and n==0:

print("Button Pressed")
print("Selected Number is : ",val_new)
n=1
while SW.value()==0:

continue
n=0
if val_old != val_new:

val_old = val_new
print('result =', val_new)

time.sleep_ms(50)
except KeyboardInterrupt:

break

Code Explanation

In the experiment, we need to add the rotary encoder to pico, then import

the module.

You only need to save the .py file to pico

1. After adding the rotary encoder, click File

250

www.keyestudio.com

2. We will see the file rotary.py and rotary_irq_rp2.py. This means the we

save them in the pico successfully. Then we can use from rotary_irq_rp2

import RotaryIRQ

3. SW=Pin(20,Pin.IN,Pin.PULL_UP) indicates that the SW pin is

connected to GP20, pin_num_clk=18 indicates that the pin CLK is

connected to GP18, and pin_num_dt=19 means that the DT pin is

connected to GP19. We can change these pin numbers.

4. try/except is the python language exception capture processing

statement, try executes the code, except executes the code when an

exception occurs, and when we press Ctrl+C, the program exits.

5. r.value() returns the value of the encoder

Test Result

Run the test code, observe the Shell below. Rotate the encoder clockwise,

the displayed data decrease; rotate the encoder counterclockwise, the

displayed data increase; press the button of the encoder, the displayed

data is the value of the encoder, as shown in the figure below.

251

www.keyestudio.com

252

www.keyestudio.com

Project 32: Servo Control

Overview

Servo motor is a position control rotary actuator. It mainly consists of a

housing, a circuit board, a core-less motor, a gear and a position sensor. Its

working principle is that the servo receives the signal sent by MCU or

receiver and produces a reference signal with a period of 20ms and width

of 1.5ms, then compares the acquired DC bias voltage to the voltage of the

potentiometer and obtain the voltage difference output.

In general, servo has three lines in brown, red and orange. The brown wire

is grounded, the red one is a positive pole line and the orange one is a

signal line.

253

www.keyestudio.com

Working Principle

When the motor speed is constant, the potentiometer is driven to rotate

through the cascade reduction gear, which leads that the voltage

difference is 0, and the motor stops rotating. Generally, the angle range of

servo rotation is 0° --180 °

The rotation angle of servo motor is controlled by regulating the duty cycle

of PWM (Pulse-Width Modulation) signal. The standard cycle of PWM

signal is 20ms (50Hz). Theoretically, the width is distributed

between 1ms-2ms, but in fact, it's between 0.5ms-2.5ms. The width

254

www.keyestudio.com

corresponds the rotation angle from 0° to 180°. But note that for different

brand motors, the same signal may have different rotation angles.

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1
Servo*1 Micro USB Cable*1

Connection Diagram

255

www.keyestudio.com

Run the Test Code

Find Servo test 1.py and Servo test 2.py, double-click to open them. Then

click to run the code.

256

www.keyestudio.com

Test Code 1//：
'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 29.1

* Servo test 1

* http://www.keyestudio.com

'''

from machine import Pin, PWM

import time

pwm = PWM(Pin(0))

pwm.freq(50)

'''

0°----2.5%----1638

45°----5%----3276

90°----7.5%----4915

135°----10%----6553

180°----12.5%----8192

'''

angle_0 = 1638

angle_90 = 4915

angle_180 = 8192

while True:

pwm.duty_u16(angle_0)

time.sleep(1)

pwm.duty_u16(angle_90)

time.sleep(1)

pwm.duty_u16(angle_180)

time.sleep(1)

Code 2：
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 29.2
* Servo test 2

257

www.keyestudio.com

* http://www.keyestudio.com
'''
from utime import sleep
from machine import Pin
from machine import PWM

pwm = PWM(Pin(0))#the pin of the servo is connected with GPO
pwm.freq(50)#20ms，frequency is 50Hz
'''
Duty cycles that angles correspond
0°----2.5%----1638
45°----5%----3276
90°----7.5%----4915
135°----10%----6553
180°----12.5%----8192
Considering the error, set the duty cycle at 1000~9000, so that it can rotate 0~180 degrees smoothly
'''
set rotation angles of the servo
def setServoCycle (position):

pwm.duty_u16(position)
sleep(0.01)

calculate rotation angles into duty cycle
def convert(x, i_m, i_M, o_m, o_M):

return max(min(o_M, (x - i_m) * (o_M - o_m) // (i_M - i_m) + o_m), o_m)

while True:
for degree in range(0, 180, 1):#rotate from 0° to 180°

pos = convert(degree, 0, 180, 1000, 9000)
setServoCycle(pos)

for degree in range(180, 0, -1):#rotate from 180° to 0°
pos = convert(degree, 0, 180, 1000, 9000)
setServoCycle(pos)

Code Explanation

Code 1：

According to the angle of the signal pulse width, it is converted into a duty

258

www.keyestudio.com

cycle. The formula is: 2.5+angle/180*10. The PWM pin resolution of Pi Pico

is 2^16 = 65535. When converted to 0 degree, its duty cycle is 65535 *

2.5% = 1638.375 , when the angle is 180 degrees, its duty cycle value is

65535 * 12.5% = 8191.875, these two values will be related to the program,

considering the error and rotation angle, I set the duty cycle at 1000

Between 9000 and 9000, the servo can rotate smoothly 0~180 degrees

Code 2：

1. convert(x, i_m, i_M, o_m, o_M): x is the value we want to map; i_m, i_M

are the lower and upper limits of the current value; o_m, o_M are the lower

and upper limits of the target range we want to map to.

Test Result 1：

Run the test code successfully, the servo rotates cyclically from 0 degrees,

90 degrees, and 180 degrees.

Test Result 2：

Run the test code successfully, the servo rotates back and forth from 0 to

180 degrees, one degree every 10ms.

259

www.keyestudio.com

Project 33: Ultrasonic Sensor

Overview

In this kit, there is a keyes HC-SR04 ultrasonic sensor, which can detect obstacles

in front and the detailed distance between the sensor and the obstacle. Its

principle is the same as that of bat flying. It can emit the ultrasonic signals that

cannot be heard by humans. When these signals hit an obstacle and come back

immediately. The distance between the sensor and the obstacle can be calculated

by the time gap of emitting signals and receiving signals.

In the experiment, we use the sensor to detect the distance between the sensor

and the obstacle, and print the test result.

Ultrasonic detector module can provide 2cm-450cm non-contact sensing

260

www.keyestudio.com

distance, and its ranging accuracy is up to 3mm, very good to meet the normal

requirements. The module includes an ultrasonic transmitter and receiver as well

as the corresponding control circuit.

Working Principle

The most common ultrasonic ranging method is the echo detection. As

shown below; when the ultrasonic emitter emits the ultrasonic waves

towards certain direction, the counter will count. The ultrasonic waves

travel and reflect back once encountering the obstacle. Then the counter

will stop counting when the receiver receives the ultrasonic waves coming

back.

The ultrasonic wave is also sound wave, and its speed of sound V is related

to temperature. Generally, it travels 340m/s in the air. According to time t,

we can calculate the distance s from the emitting spot to the obstacle.

s=340t/2.

The HC-SR04 ultrasonic ranging module can provide a non-contact

distance sensing function of 2cm-400cm, and the ranging accuracy can

reach as high as 3mm; the module includes an ultrasonic transmitter,

receiver and control circuit. Basic working principle:

261

www.keyestudio.com

1. First pull down the TRIG, and then trigger it with at least 10us high level

signal;

2. After triggering, the module will automatically transmit eight 40KHZ

square waves, and automatically detect whether there is a signal to return.

3. If there is a signal returned back, through the ECHO to output a high

level, the duration time of high level is actually the time from emission to

reception of ultrasonic.

Test distance = high level duration * 340m/s * 0.5.

Components

262

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

keyestudio

SR01

Ultrasonic

Sensor*1

4P Dupont

Wire*1
Micro USB Cable*1

Connection Diagram

Run the test code

Find and double-click ultrasonic.pyto to open it, then click to run the

code.

263

www.keyestudio.com

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 30
* Ultrasonic
* http://www.keyestudio.com

'''
from machine import Pin
import utime

ultrasonic ranging，unit：cm
def getDistance(trigger, echo):

produce 10us square waves
trigger.low() #preserve a short low level to secure a high level:
utime.sleep_us(2)
trigger.high()
utime.sleep_us(10)#pull up levels, wait for 10ms and set to low levels
trigger.low()

while echo.value() == 0: #build up a while loop pin 0 and record time

264

www.keyestudio.com

start = utime.ticks_us()
while echo.value() == 1: #build up a while loop pin 1 and record time

end = utime.ticks_us()
d = (end - start) * 0.0343 / 2 #travel time x sound speed(343.2 m/s，0.0343cm for one ms)，the distance is

divided by 2
return d

set pins
trigger = Pin(14, Pin.OUT)
echo = Pin(13, Pin.IN)
main program
while True:

distance = getDistance(trigger, echo)
print("The distance is ：{:.2f} cm".format(distance))
utime.sleep(0.1)

Code Explanation

The maximum distance of the sensor is 3-4m，the minimum distance is 2cm. The

distance value on the Shell is the distance between the sensor and the

obstacle

utime.ticks_us(): return the program to run

Test Result

Run the test code and observe the Shell monitor.

Display the distance between the sensor and the obstacle, the unit is cm, as

shown below;

265

www.keyestudio.com

266

www.keyestudio.com

Project 34: IR Receiver Module

Overview

There is no doubt that infrared remote control is ubiquitous in daily life. It

is used to control various household appliances, such as TVs, stereos, video

recorders and satellite signal receivers. Infrared remote control is

composed of infrared transmitting and infrared receiving systems, that is,

an infrared remote control and infrared receiving module and a single-chip

microcomputer capable of decoding.​

In this experiment, we need to know how to use the infrared receiving

sensor. The infrared receiving sensor mainly uses the VS1838B infrared

267

www.keyestudio.com

receiving sensor element. It integrates receiving, amplifying, and

demodulating. The internal IC has already completed the demodulation,

and the output is a digital signal. It can receive 38KHz modulated remote

control signal. In the experiment, we use the IR receiver to receive the

infrared signal emitted by the external infrared transmitting device, and

display the received signal in the shell.

Working Principle

The main part of the IR remote control system is modulation, transmission

and reception. The modulated carrier frequency is generally between

30khz and 60khz, and most of them use a square wave of 38kHz and a duty

ratio of 1/3. A 4.7K pull-up resistor R3 is added to the signal end of the

infrared receiver.

268

www.keyestudio.com

Components

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Expansion

Board*1

Keyestudio DIY

IR Receiver*1

3P Dupont

Wire*1

Micro USB

Cable*1

Remote

Control*1

Connection Diagram

269

www.keyestudio.com

Run the test code：

Double-click IR receive.py，and click to run the code

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 31
* IR Receiver
* http://www.keyestudio.com

'''
import utime
from machine import Pin

ird = Pin(16,Pin.IN)

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2": "LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":
"LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5": "LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":
"LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

270

www.keyestudio.com

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8": "LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":
"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

"0": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up": "LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":
"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":
"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok": "LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

"*": "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#": "LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):
wait = 1
complete = 0
seq0 = []
seq1 = []

while wait == 1:
if ird.value() == 0:

wait = 0
while wait == 0 and complete == 0:

start = utime.ticks_us()
while ird.value() == 0:

ms1 = utime.ticks_us()
diff = utime.ticks_diff(ms1,start)
seq0.append(diff)
while ird.value() == 1 and complete == 0:

ms2 = utime.ticks_us()
diff = utime.ticks_diff(ms2,ms1)
if diff > 10000:

complete = 1
seq1.append(diff)

code = ""
for val in seq1:

if val < 2000:
if val < 700:

code += "L"
else:

code += "H"
print(code)
command = ""
for k,v in act.items():

if code == v:
command = k

if command == "":
command = code

271

www.keyestudio.com

return command

while True:
command = read_ircode(ird)
print(command)
utime.sleep(0.5)

Test Result

Find the infrared remote control, pull out the insulating sheet, and press

the button at the receiving head of the infrared receiving sensor. After

receiving the signal, the LED on the infrared receiving sensor also starts to

flash, as shown in the figure below.

272

www.keyestudio.com

Project 35: DS18B20 Temperature Sensor

Description

The DS18B20 is a 1-wire programmable Temperature sensor from maxim

integrated. It is widely used to measure temperature in hard environments

like in chemical solutions, mines or soil etc. The constriction of the sensor is

rugged and also can be purchased with a waterproof option making the

mounting process easy. It can measure a wide range of temperature from

273

www.keyestudio.com

-55°C to +125° with a decent accuracy of ±5°C. Each sensor has a unique

address and requires only one pin of the MCU to transfer data so it a very

good choice for measuring temperature at multiple points without

compromising much of your digital pins on the microcontroller.

Working Principle

The hardware interface of the 1-Wire bus is very simple, just connect the

data pin of the DS18B20 to an IO port of the microcontroller. The timing of

the 1-Wire bus is relatively complex. Many students can’t understand the

timing diagram independently here. We have encapsulated the complex

timing operations in the library, and you can use the library functions

directly.

Schematic Diagram of DS18B20

This can save up to 12-bit temperature vale. In the register, save in code

complement. As shown below;

274

www.keyestudio.com

A total of 2 bytes, LSB is the low byte, MSB is the high byte, where MSb is

the high byte of the byte, LSb is the low byte of the byte. As you can see,

the binary number, the meaning of the temperature represented by each

bit, is expressed. Among them, S represents the sign bit, and the lower 11

bits are all powers of 2, which are used to represent the final temperature.

The temperature measurement range of DS18B20 is from -55 degrees to

+125 degrees, and the expression form of temperature data, S represents

positive and negative temperature, and the resolution is 2﹣⒋, which is

0.0625.

Required Components

275

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

18B20

Temperature

Sensor*1

3P Dupont

Wire*1
Micro USB Cable*1

Connection Diagram

Import the 18B20 module ， save the test code in the pico and name

onewire.py

Test Code
'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 32
* DS18B20
* http://www.keyestudio.com

'''
import machine, onewire, ds18x20, time

ds_pin = machine.Pin(3)

ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin))

276

www.keyestudio.com

roms = ds_sensor.scan()

print('Found DS devices: ', roms)

while True:

ds_sensor.convert_temp()

time.sleep_ms(750)

for rom in roms:

#print(rom)

print(ds_sensor.read_temp(rom))

time.sleep(1)

Code Explanation

We need to import the DS18B20 module.

。

Set the pin to 3.

Shell means temperature value, ds_sensor.read_temp(rom) is used to read

temperature value.

Test Result

277

www.keyestudio.com

Run the test code, the shell displays the temperature of the current

environment, as shown below.

278

www.keyestudio.com

Project 36: XHT11 Temperature and Humidity Sensor

Description

This DHT11 temperature and humidity sensor is a composite sensor which

contains a calibrated digital signal output of the temperature and humidity.

DHT11 temperature and humidity sensor uses the acquisition technology

of the digital module and temperature and humidity sensing technology,

ensuring high reliability and excellent long-term stability.

279

www.keyestudio.com

It includes a resistive element and a NTC temperature measuring device.

Working Principle

The communication and synchronization between the single-chip

microcomputer and XHT11 adopts the single bus data format. The

communication time is about 4ms. The data is divided into fractional part

and integer part.

Operation process: A complete data transmission is 40bit, high bit first out.

Data format: 8bit humidity integer data + 8bit humidity decimal data +

8bit temperature integer data + 8bit temperature decimal data + 8bit

checksum

8-bit checksum: 8-bit humidity integer data + 8-bit humidity decimal data

+ 8-bit temperature integer data + 8-bit temperature decimal data "Add

the last 8 bits of the result.

280

www.keyestudio.com

Required Components

Raspberry Pi Pico

Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

XHT11

Temperature and

Humidity Sensor

（compatible

with DHT11)*1

3P Dupont

Wire*1
Micro USB Cable*1

Connection Diagram

Run the test code

Import the xht11 module, save it in pico and name dht.py

Test Code

281

www.keyestudio.com

'''
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 33
* xht11
* http://www.keyestudio.com

'''
import machine
import utime
import dht

pin = machine.Pin(22, machine.Pin.OUT, machine.Pin.PULL_DOWN)
sensor = dht.DHT11(pin)

while True:
print("temperature：{} ℃ humidity：{} %".format(sensor.temperature, sensor.humidity))
utime.sleep(1)

Code Explanation

1. In the experiment, we need to import the XHT11 library：

1. We set the pin to GP22, read the temperature data sensor.temperature,

read the humidity data sensor.humidity.

Test Result

282

www.keyestudio.com

After running the test code, the shell displays the temperature and

humidity data, as shown below.

283

www.keyestudio.com

Project 37: DS1307 Clock Module

Overview

The DS1307 serial real-time clock (RTC) is a low-power, full binary-coded

decimal (BCD) clock/calendar plus 56 bytes of NV SRAM. Address and

data are transferred serially through an I2C, bidirectional bus.

The clock/calendar provides seconds, minutes, hours, day, date, month,

284

www.keyestudio.com

and year information. The end of the month date is automatically

adjusted for months with fewer than 31 days, including corrections for leap

year. The clock operates in either the 24-hour or 12-hour format with

AM/PM indicator. The DS1307 has a built-in power-sense circuit that

detects power failures and automatically switches to the backup supply.

Timekeeping operation continues while the part operates from the backup

supply.

Working Principle

Detailed address and data:

285

www.keyestudio.com

Serial real-time clock records year, month, day, hour, minute, second and

week; AM and PM indicate morning and afternoon respectively; 56 bytes of

NVRAM store data; 2-wire serial port; programmable square wave output;

power failure detection and automatic switching circuit; battery current is

less than 500nA.

Pins description：X1, 32.768kHz crystal terminal ;

VBAT:X2：+3V input;

SDA：serial data;

SCL：serial clock;

SQW/OUT：square waves/output drivers

Components

286

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

DS1307 Clock

Module*1

4P Dupont

Wire*1
Micro USB Cable*1

Connection Diagram

VUSB is 5V，then connect the power to VUSB.

287

www.keyestudio.com

Run the DS1307.py：

288

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 34

* DS1307 Real Time Clock

* http://www.keyestudio.com

'''

from machine import I2C, Pin

from urtc import DS1307

import utime

i2c = I2C(1,scl = Pin(15),sda = Pin(14),freq = 400000)

rtc = DS1307(i2c)

year = int(input("Year : "))

month = int(input("month (Jan --> 1 , Dec --> 12): "))

date = int(input("date : "))

day = int(input("day (1 --> monday , 2 --> Tuesday ... 0 --> Sunday):

"))

hour = int(input("hour (24 Hour format): "))

minute = int(input("minute : "))

second = int(input("second : "))

289

www.keyestudio.com

now = (year,month,date,day,hour,minute,second,0)

rtc.datetime(now)

#(year,month,date,day,hour,minute,second,p1) = rtc.datetime()

while True:

DateTimeTuple = rtc.datetime()

print(DateTimeTuple[0], end = '-')

print(DateTimeTuple[1], end = '-')

print(DateTimeTuple[2], end = ' ')

print(DateTimeTuple[4], end = ':')

print(DateTimeTuple[5], end = ':')

print(DateTimeTuple[6], end = ' week:')

print(DateTimeTuple[3])

utime.sleep(1)

Code Explanation

rtc.datetime()：Return a tuple of time. When the program is running, we set

the "please input" program, run the code, it will prompt us to input the

time and date, after the input is completed, the data will be printed every

second.

290

www.keyestudio.com

DateTimeTuple[0]: save time

DateTimeTuple[1]: save months

DateTimeTuple[2]: save days

DateTimeTuple[3]: save weeks

Rtc.GetDateTime().Month(): return months

DateTimeTuple[4]: save hours

DateTimeTuple[5]: save minutes

DateTimeTuple[6]: save seconds

Test Result

Upload the code and view the Shell monitor. We can see the displayed year,

month, day, hour, minute, second and week, as shown below;

291

www.keyestudio.com

292

www.keyestudio.com

Project 38: ADXL345 Acceleration Sensor

In this kit, there is a DIY electronic building block ADXL345 acceleration sensor

module, which uses the ADXL345BCCZ chip. The chip is a small, thin, low-power

3-axis accelerometer with a high resolution (13 bits) and a measurement range of

±16g that can measure both dynamic acceleration due to motion or impact as

well as stationary acceleration such as gravitational acceleration, making the

device usable as a tilt sensor.

In the study, we test the acceleration value of sensor X, Y and Z axis. What’s

more, we show the test data in the shell.

Working Principle

293

www.keyestudio.com

The ADXL345 is a complete 3-axis acceleration measurement system with a

selection of measurement ranges of ±2 g, ±4 g, ±8 g or ±16 g. Its digital

output data is in 16-bit binary complement format and can be accessed through

an SPI (3-wire or 4-wire) or I2C digital interface.

The sensor can measure static acceleration due to gravity in tilt detection

applications, as well as dynamic acceleration due to motion or impact. Its high

resolution (3.9mg/LSB) enables measurement of tilt Angle changes of less than

1.0°.

Required Components

294

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

ADXL345

Acceleration

Module*1

4P Dupont

Wire*1
Micro USB Cable*1

Connection Diagram

Run the sample code:

Find adxl345_test.py, and then double-click to open the code. Before

running the code, we need to import the clock module ADXL345.py.

We can save the following code directly on pico and name it ADXL345.py:

295

www.keyestudio.com

from machine import Pin

from machine import I2C

import time

import ustruct

DATA_FORMAT = 0x31

BW_RATE = 0x2c

POWER_CTL = 0x2d

INT_ENABLE = 0x2E

OFSX = 0x1e

OFSY =0x1f

OFSZ =0x20

class adxl345:

def __init__(self, bus, scl, sda):

self.bus = bus

self.scl = scl

self.sda = sda

time.sleep(1)

self.i2c = I2C(self.bus, scl = self.scl, sda = self.sda, freq =

10000)

slv = self.i2c.scan()

296

www.keyestudio.com

print(slv)

for s in slv:

buf = self.i2c.readfrom_mem(s, 0, 1)

print(buf)

if(buf[0] == 0xe5):

self.slvAddr = s

print('adxl345 found')

print(self.slvAddr)

print('adxl345 found')

break

#self.writeByte(POWER_CTL,0x00) #sleep

#time.sleep(0.001)

#Low-level interrupt output, 13-bit full resolution,

right-justified output data, 16g range

self.writeByte(DATA_FORMAT,0x2B)

#Data output speed is 100Hz

self.writeByte(BW_RATE,0x0A)

#do not use interrupts

self.writeByte(INT_ENABLE,0x00)

self.writeByte(OFSX,0x00)

self.writeByte(OFSY,0x00)

297

www.keyestudio.com

self.writeByte(OFSZ,0x00)

#

self.writeByte(POWER_CTL,0x28)

time.sleep(1)

def readXYZ(self):

fmt = '<h' #little-endian

buf1 = self.readByte(0x32)

buf2 = self.readByte(0x33)

buf = bytearray([buf1[0], buf2[0]])

x, = ustruct.unpack(fmt, buf)

x = x*3.9

#print('x:',x)

buf1 = self.readByte(0x34)

buf2 = self.readByte(0x35)

buf = bytearray([buf1[0], buf2[0]])

y, = ustruct.unpack(fmt, buf)

y = y*3.9

#print('y:',y)

buf1 = self.readByte(0x36)

298

www.keyestudio.com

buf2 = self.readByte(0x37)

buf = bytearray([buf1[0], buf2[0]])

z, = ustruct.unpack(fmt, buf)

z = z*3.9

#print('z:',z)

#print('************************')

#time.sleep(0.5)

return (x,y,z)

def writeByte(self, addr, data):

d = bytearray([data])

self.i2c.writeto_mem(self.slvAddr, addr, d)

def readByte(self, addr):

return self.i2c.readfrom_mem(self.slvAddr, addr, 1)

299

www.keyestudio.com

然后我们再来运行 adxl345_test.py：

300

www.keyestudio.com

Code Explanation

Set IIC pins, select IIC0，sda-->20, scl-->21，then assign the value to x, y and z.

The shell shows the value of x,y and z，unit is mg.

Test Result

Run the test code and watch the shell.

The shell displays the corresponding value of the three-axis acceleration in

mg, as shown in the following figure.

301

www.keyestudio.com

Test Code：

'''

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 38

* ADXL345

* http://www.keyestudio.com

'''

from machine import Pin

import time

from ADXL345 import adxl345

scl = Pin(21)

sda = Pin(20)

bus = 0

snsr = adxl345(bus, scl, sda)

while True:

x,y,z = snsr.readXYZ()

print('x:',x,'y:',y,'z:',z,'uint:mg')

time.sleep(0.1)

302

www.keyestudio.com

Project 39: TM1650 4-Digit Tube Display

Overview

This module is mainly composed of a 0.36 inch red common anode 4-digit

digital tube, and its driver chip is TM1650. When using it, we only need two

signal lines to make the single-chip microcomputer control a 4-bitdigit

tube, which greatly saves the IO port resources of the control board.

TM1650 is a special circuit for LED (light emitting diode display) drive

control. It integrates MCU input and output control digital interface, data

latch, LED drivers, keyboard scanning, brightness adjustment and other

circuits.

TM1650 has stable performance, reliable quality and strong

303

www.keyestudio.com

anti-interference ability.

It can be applied to the application of long-term continuous working for 24

hours.

TM1650 uses 2-wire serial transmission protocol for communication (note

that this data transmission protocol is not a standard I2C protocol). The

chip can drive the digital tube and save MCU pin resources through two

pins and MCU communication.

Working Principle

TM1650 adopts IIC treaty and SDA and SCL wire

Data command setting is 0x48. This means that lighting up the tube

display not perform its button scanning function.

304

www.keyestudio.com

Data command setting: 0x48 means that we light up the digital tube,

instead of enable the function of key scanning

Command display setting:

bit[6:4]：set the brightness of tube display, and 000 is brightest

bit[3]：set to show decimal points

bit[0]：start the display of the tube display

Components

305

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

TM16504-Digit

Segment

Display*1

4P Dupont

Wire*1

Micro USB

Cable*1

Run the test code：

Double-click TM1650.p to open the code and click to run the code.

Connection Diagram

306

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 35

* TM1650 Four digital tube

* http://www.keyestudio.com

'''

from machine import Pin

import time

definitions for TM1650

ADDR_DIS = 0x48 #mode command

ADDR_KEY = 0x49 #read key value command

definitions for brightness

307

www.keyestudio.com

BRIGHT_DARKEST = 0

BRIGHT_TYPICAL = 2

BRIGHTEST = 7

on = 1

off = 0

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]

DIG = [0x68,0x6a,0x6c,0x6e]

DIG = [0x6e,0x6c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15

dioPin = 14

clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):

global clk,dio

308

www.keyestudio.com

for i in range(8):

if(wr_data & 0x80 == 0x80):

dio.value(1)

else:

dio.value(0)

clk.value(0)

time.sleep(0.0001)

clk.value(1)

time.sleep(0.0001)

clk.value(0)

wr_data <<= 1

return

def start():

global clk,dio

dio.value(1)

clk.value(1)

time.sleep(0.0001)

dio.value(0)

return

def ack():

309

www.keyestudio.com

global clk,dio

dy = 0

clk.value(0)

time.sleep(0.0001)

dio = Pin(dioPin, machine.Pin.IN)

while(dio.value() == 1):

time.sleep(0.0001)

dy += 1

if(dy>5000):

break

clk.value(1)

time.sleep(0.0001)

clk.value(0)

dio = Pin(dioPin, machine.Pin.OUT)

return

def stop():

global clk,dio

dio.value(0)

clk.value(1)

time.sleep(0.0001)

dio.value(1)

310

www.keyestudio.com

return

def displayBit(bit, num):

global ADDR_DIS

if(num > 9 and bit > 4):

return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

if(DOT[bit-1] == 1):

writeByte(NUM[num] | 0x80)

else:

writeByte(NUM[num])

ack()

stop()

return

311

www.keyestudio.com

def clearBit(bit):

if(bit > 4):

return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

writeByte(0x00)

ack()

stop()

return

def setBrightness(b = BRIGHT_TYPICAL):

global DisplayCommand,brightness

DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

312

www.keyestudio.com

return

def setMode(segment = 0):

global DisplayCommand

DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

def displayOnOFF(OnOff = 1):

global DisplayCommand

DisplayCommand = (DisplayCommand & 0xfe)+OnOff

return

def displayDot(bit, OnOff):

if(bit > 4):

return

if(OnOff == 1):

DOT[bit-1] = 1;

else:

DOT[bit-1] = 0;

return

def InitDigitalTube():

313

www.keyestudio.com

setBrightness(2)

setMode(0)

displayOnOFF(1)

for _ in range(4):

clearBit(_)

return

def ShowNum(num): #0~9999

displayBit(1,num%10)

if(num < 10):

clearBit(2)

clearBit(3)

clearBit(4)

if(num > 9 and num < 100):

displayBit(2,num//10%10)

clearBit(3)

clearBit(4)

if(num > 99 and num < 1000):

displayBit(2,num//10%10)

displayBit(3,num//100%10)

clearBit(4)

if(num > 999 and num < 10000):

314

www.keyestudio.com

displayBit(2,num//10%10)

displayBit(3,num//100%10)

displayBit(4,num//1000)

InitDigitalTube()

while True:

#displayDot(1,on) # on or off,

DigitalTube.Display(bit,number); bit=1---4 number=0---9

for i in range(0,9999):

ShowNum(i)

time.sleep(0.01)

Code Explanation

clkPin = 15、dioPin = 14 is pin number，CLK is connected to GP15，DIO is

connected to GOP14. We can set any pin at random.

displayBit(bit, num): show numbers at bit(1~4) bit num(0~9)

clearBit(bit): clear up bit(1~4)

setBrightness(): brightness setting

displayOnOFF() 0 means OFF, 1 means ON

displayDot(bit, OnOff)shows dots，0 means OFF, 1 means ON

315

www.keyestudio.com

ShowNum(num): show integer num，in the range of 0~9999

Test Result

Run the test code, wire up and power on. The 4-digit tube display will show

integer from 0 to 99999, an increase of 1 for each 10ms, then start from 0

once reaching 99999

316

www.keyestudio.com

Project 40: HT16K33_8X8 Dot Matrix Module

Overview

What is the dot matrix display?

The 8X8 dot matrix is composed of 64 light-emitting diodes, and each

light-emitting diode is placed at the intersection of the row line and the

column line. When the corresponding row is set to 1 level, and a certain

column is set to 0 level, the corresponding diode will light up.

317

www.keyestudio.com

Working Principle

As the schematic diagram shown, to light up the LED at the first row and column,

we only need to set C1 to high level and R1 to low level. To turn on LEDs at the

first row, we set R1 to low level and C1-C8 to high level.

16 IO ports are needed, which will highly waste the MCU resources.

Therefore, we designed this module, using the HT16K33 chip to drive an 8*8 dot

matrix, which greatly saves the resources of the single-chip microcomputer.

There are three DIP switches on the module, all of which are set to I2C

communication address. The setting method is shown below.

A0，A1and A2 are grounded, that is, the address is 0x70

A0

（1）

A1

（2）

A2

（3）

A0

（1）

A1

（2）

A2

（3）

A0

（1）

A1

（2）

A2

（3）

0

（OFF

）

0

（OFF

）

0

（OFF

）

1

（ ON

）

0

（OFF

）

0

（OFF

）

0

（OFF

）

1

（ ON

）

0

（OFF

）

OX70 OX71 OX72

A0

（1）

A1

（2）

A2

（3）

A0

（1）

A1

（2）

A2

（3）

A0

（1）

A1

（2）

A2

（3）

318

www.keyestudio.com

1

（ ON

）

1

（ ON

）

0

（OFF

）

0

（OFF

）

0

（OFF

）

1

（ ON

）

1

（ ON

）

0

（OFF

）

1

（ ON

）

OX73 OX74 OX75

A0

（1）

A1

（2）

A2

（3）

A0

（1）

A1

（2）

A2

（3）

0

（OFF

）

1

（ ON

）

1

（ ON

）

1

（ ON

）

1

（ ON

）

1

（ ON

）

OX76 OX77

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

HT16K33_

8X8 Dot Matrix*1

4P Dupont

Wire*1
Micro USB Cable*1

319

www.keyestudio.com

Connection Diagram

Run the test code：

Save the following code to pico, import modules, name it as ht16k33_matrix.py：

ht16k33_matrix.py：

import machine
showbytes = 0
class ht16k33_matrix:

_HT16K33_BLINK_CMD = const(0x80)
_HT16K33_BLINK_DISPLAYON = const(0x01)
_HT16K33_CMD_BRIGHTNESS = const(0xE0)
_HT16K33_OSCILATOR_ON = const(0x21)

def __init__(self,dt,clk,bus,addr):
self.addr = addr
self.i2c = machine.I2C(bus,sda=machine.Pin(dt),scl=machine.Pin(clk))
self.setup()

def setup(self):
self.reg_write(_HT16K33_OSCILATOR_ON,0x00) # 00100001 turn on multiplexing
self.reg_write(_HT16K33_BLINK_CMD | _HT16K33_BLINK_DISPLAYON,0x00)

320

www.keyestudio.com

self.set_brightness(15)

def show_char(self, c):
bytes = bytearray() # 是可变的二进制数据(byte)
global showbytes
for item in c:

temp = item
for i in range(8):

if temp & 0x01:
showbytes |= 0x01

showbytes <<= 1
temp >>= 1

bytes.append(((showbytes & 0xFE)<<0)|((showbytes & 0x01)>>7)) # 往右移的位

数，再判断 01
#bytes.append((item & 0x01)<<7)
bytes.append(0x00)

self.i2c.writeto_mem(self.addr, 0x00, bytes)

def set_brightness(self,brightness):
self.reg_write(_HT16K33_CMD_BRIGHTNESS | brightness,0x00)

def reg_write(self, reg, data):
msg = bytearray()
msg.append(data)
self.i2c.writeto_mem(self.addr, reg, msg)

Then save the following code to pico and name it matrix_fonts.py

textFont1={
' ':[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],

'!':[0x18, 0x3c, 0x3c, 0x18, 0x18, 0x00, 0x18, 0x00],
'"':[0x66, 0x66, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00],
'#':[0x6c, 0x6c, 0xfe, 0x6c, 0xfe, 0x6c, 0x6c, 0x00],
'%':[0x00, 0xc6, 0xcc, 0x18, 0x30, 0x66, 0xc6, 0x00],
'&':[0x38, 0x6c, 0x38, 0x76, 0xdc, 0xcc, 0x76, 0x00],
'\'':[0x18, 0x18, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00],
'(':[0x0c, 0x18, 0x30, 0x30, 0x30, 0x18, 0x0c, 0x00],
')':[0x30, 0x18, 0x0c, 0x0c, 0x0c, 0x18, 0x30, 0x00],
'*':[0x00, 0x66, 0x3c, 0xff, 0x3c, 0x66, 0x00, 0x00],
'+':[0x00, 0x18, 0x18, 0x7e, 0x18, 0x18, 0x00, 0x00],
'-':[0x00, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x00, 0x00],

321

www.keyestudio.com

'.':[0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00],
'/':[0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0, 0x80, 0x00],
'0':[0x7c, 0xc6, 0xce, 0xd6, 0xe6, 0xc6, 0x7c, 0x00],
'1':[0x18, 0x38, 0x18, 0x18, 0x18, 0x18, 0x7e, 0x00],
'2':[0x7c, 0xc6, 0x06, 0x1c, 0x30, 0x66, 0xfe, 0x00],
'3':[0x7c, 0xc6, 0x06, 0x3c, 0x06, 0xc6, 0x7c, 0x00],
'4':[0x1c, 0x3c, 0x6c, 0xcc, 0xfe, 0x0c, 0x1e, 0x00],
'5':[0xfe, 0xc0, 0xc0, 0xfc, 0x06, 0xc6, 0x7c, 0x00],
'6':[0x38, 0x60, 0xc0, 0xfc, 0xc6, 0xc6, 0x7c, 0x00],
'7':[0xfe, 0xc6, 0x0c, 0x18, 0x30, 0x30, 0x30, 0x00],
'8':[0x7c, 0xc6, 0xc6, 0x7c, 0xc6, 0xc6, 0x7c, 0x00],
'9':[0x7c, 0xc6, 0xc6, 0x7e, 0x06, 0x0c, 0x78, 0x00],
':':[0x00, 0x18, 0x18, 0x00, 0x00, 0x18, 0x18, 0x00],
';':[0x7c, 0xc6, 0x0c, 0x18, 0x18, 0x00, 0x18, 0x00],
'<':[0x06, 0x0c, 0x18, 0x30, 0x18, 0x0c, 0x06, 0x00],
'=':[0x00, 0x00, 0x7e, 0x00, 0x00, 0x7e, 0x00, 0x00],
'>':[0x60, 0x30, 0x18, 0x0c, 0x18, 0x30, 0x60, 0x00],
'?':[0x7c, 0xc6, 0x0c, 0x18, 0x18, 0x00, 0x18, 0x00],
'@':[0x7c, 0xc6, 0xde, 0xde, 0xde, 0xc0, 0x78, 0x00],
'A':[0x38, 0x6c, 0xc6, 0xfe, 0xc6, 0xc6, 0xc6, 0x00],
'B':[0xfc, 0x66, 0x66, 0x7c, 0x66, 0x66, 0xfc, 0x00],
'C':[0x3c, 0x66, 0xc0, 0xc0, 0xc0, 0x66, 0x3c, 0x00],
'D':[0xf8, 0x6c, 0x66, 0x66, 0x66, 0x6c, 0xf8, 0x00],
'E':[0xfe, 0x62, 0x68, 0x78, 0x68, 0x62, 0xfe, 0x00],
'F':[0xfe, 0x62, 0x68, 0x78, 0x68, 0x60, 0xf0, 0x00],
'G':[0x3c, 0x66, 0xc0, 0xc0, 0xce, 0x66, 0x3a, 0x00],
'H':[0xc6, 0xc6, 0xc6, 0xfe, 0xc6, 0xc6, 0xc6, 0x00],
'I':[0x3c, 0x18, 0x18, 0x18, 0x18, 0x18, 0x3c, 0x00],
'J':[0x1e, 0x0c, 0x0c, 0x0c, 0xcc, 0xcc, 0x78, 0x00],
'K':[0xe6, 0x66, 0x6c, 0x78, 0x6c, 0x66, 0xe6, 0x00],
'L':[0xf0, 0x60, 0x60, 0x60, 0x62, 0x66, 0xfe, 0x00],
'M':[0xc6, 0xee, 0xfe, 0xfe, 0xd6, 0xc6, 0xc6, 0x00],
'N':[0xc6, 0xe6, 0xf6, 0xde, 0xce, 0xc6, 0xc6, 0x00],
'O':[0x7c, 0xc6, 0xc6, 0xc6, 0xc6, 0xc6, 0x7c, 0x00],
'P':[0xfc, 0x66, 0x66, 0x7c, 0x60, 0x60, 0xf0, 0x00],
'Q':[0x7c, 0xc6, 0xc6, 0xc6, 0xc6, 0xce, 0x7c, 0x0e],
'R':[0xfc, 0x66, 0x66, 0x7c, 0x6c, 0x66, 0xe6, 0x00],
'S':[0x7c, 0xc6, 0x60, 0x38, 0x0c, 0xc6, 0x7c, 0x00],
'T':[0x7e, 0x7e, 0x5a, 0x18, 0x18, 0x18, 0x3c, 0x00],
'U':[0xc6, 0xc6, 0xc6, 0xc6, 0xc6, 0xc6, 0x7c, 0x00],
'V':[0xc6, 0xc6, 0xc6, 0xc6, 0xc6, 0x6c, 0x38, 0x00],
'W':[0xc6, 0xc6, 0xc6, 0xd6, 0xd6, 0xfe, 0x6c, 0x00],
'X':[0xc6, 0xc6, 0x6c, 0x38, 0x6c, 0xc6, 0xc6, 0x00],
'Y':[0x66, 0x66, 0x66, 0x3c, 0x18, 0x18, 0x3c, 0x00],

322

www.keyestudio.com

'Z':[0xfe, 0xc6, 0x8c, 0x18, 0x32, 0x66, 0xfe, 0x00],
'[':[0x3c, 0x30, 0x30, 0x30, 0x30, 0x30, 0x3c, 0x00],
'\\':[0xc0, 0x60, 0x30, 0x18, 0x0c, 0x06, 0x02, 0x00],
']':[0x3c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x3c, 0x00],
'^':[0x10, 0x38, 0x6c, 0xc6, 0x00, 0x00, 0x00, 0x00],
'_':[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff],
'`':[0x30, 0x18, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00],
'a':[0x00, 0x00, 0x78, 0x0c, 0x7c, 0xcc, 0x76, 0x00],
'b':[0xe0, 0x60, 0x7c, 0x66, 0x66, 0x66, 0xdc, 0x00],
'c':[0x00, 0x00, 0x7c, 0xc6, 0xc0, 0xc6, 0x7c, 0x00],
'd':[0x1c, 0x0c, 0x7c, 0xcc, 0xcc, 0xcc, 0x76, 0x00],
'e':[0x00, 0x00, 0x7c, 0xc6, 0xfe, 0xc0, 0x7c, 0x00],
'f':[0x3c, 0x66, 0x60, 0xf8, 0x60, 0x60, 0xf0, 0x00],
'g':[0x00, 0x00, 0x76, 0xcc, 0xcc, 0x7c, 0x0c, 0xf8],
'h':[0xe0, 0x60, 0x6c, 0x76, 0x66, 0x66, 0xe6, 0x00],
'i':[0x18, 0x00, 0x38, 0x18, 0x18, 0x18, 0x3c, 0x00],
'j':[0x06, 0x00, 0x06, 0x06, 0x06, 0x66, 0x66, 0x3c],
'k':[0xe0, 0x60, 0x66, 0x6c, 0x78, 0x6c, 0xe6, 0x00],
'l':[0x38, 0x18, 0x18, 0x18, 0x18, 0x18, 0x3c, 0x00],
'm':[0x00, 0x00, 0xec, 0xfe, 0xd6, 0xd6, 0xd6, 0x00],
'n':[0x00, 0x00, 0xdc, 0x66, 0x66, 0x66, 0x66, 0x00],
'o':[0x00, 0x00, 0x7c, 0xc6, 0xc6, 0xc6, 0x7c, 0x00],
'p':[0x00, 0x00, 0xdc, 0x66, 0x66, 0x7c, 0x60, 0xf0],
'q':[0x00, 0x00, 0x76, 0xcc, 0xcc, 0x7c, 0x0c, 0x1e],
'r':[0x00, 0x00, 0xdc, 0x76, 0x60, 0x60, 0xf0, 0x00],
's':[0x00, 0x00, 0x7e, 0xc0, 0x7c, 0x06, 0xfc, 0x00],
't':[0x30, 0x30, 0xfc, 0x30, 0x30, 0x36, 0x1c, 0x00],
'u':[0x00, 0x00, 0xcc, 0xcc, 0xcc, 0xcc, 0x76, 0x00],
'v':[0x00, 0x00, 0xc6, 0xc6, 0xc6, 0x6c, 0x38, 0x00],
'w':[0x00, 0x00, 0xc6, 0xd6, 0xd6, 0xfe, 0x6c, 0x00],
'x':[0x00, 0x00, 0xc6, 0x6c, 0x38, 0x6c, 0xc6, 0x00],
'y':[0x00, 0x00, 0xc6, 0xc6, 0xc6, 0x7e, 0x06, 0xfc],
'z':[0x00, 0x00, 0x7e, 0x4c, 0x18, 0x32, 0x7e, 0x00],
'{':[0x0e, 0x18, 0x18, 0x70, 0x18, 0x18, 0x0e, 0x00],
'|':[0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x00],
'}':[0x70, 0x18, 0x18, 0x0e, 0x18, 0x18, 0x70, 0x00],
'~':[0x76, 0xdc, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],

}

eyes={
'straight':[0x3c,0x7e,0xff,0xe7,0xe7,0xff,0x7e,0x3c],
'straightX2':[0x3c,0x7e,0xe7,0xc3,0xc3,0xe7,0x7e,0x3c],
'straightX3':[0x3c,0x66,0xc3,0x81,0x81,0xc3,0x66,0x3c],
'straightX4':[0x3c,0x42,0x81,0x81,0x81,0x81,0x42,0x3c],

323

www.keyestudio.com

'straightX2Left1':[0x3c,0x7e,0xcf,0x87,0x87,0xcf,0x7e,0x3c],
'straightX2Left2':[0x3c,0x7e,0x9f,0x0f,0x0f,0x9f,0x7e,0x3c],
'straightX2Left3':[0x3c,0x7e,0x3f,0x1f,0x1f,0x3f,0x7e,0x3c],
'straightX2Left4':[0x3c,0x7e,0x7f,0x3f,0x3f,0x7f,0x7e,0x3c],
'straightX2Left5':[0x3c,0x7e,0xff,0x7f,0x7f,0xff,0x7e,0x3c],
'straightR2':[0x3c,0x7e,0xe7,0xdb,0xdb,0xe7,0x7e,0x3c],
'noEyeball':[0x3c,0x7e,0xff,0xff,0xff,0xff,0x7e,0x3c],
'straightBlink1':[0x00,0x7e,0xff,0xe7,0xe7,0xff,0x7e,0x00],
'straightBlink2':[0x00,0x00,0xff,0xe7,0xe7,0xff,0x00,0x00],
'straightBlink3':[0x00,0x00,0x00,0xe7,0xe7,0x00,0x00,0x00],
'straightBlinkLine':[0x00,0x00,0x00,0xff,0xff,0x00,0x00,0x00],
'all_off':[0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00],
'up1':[0x3c,0x7e,0xe7,0xe7,0xff,0xff,0x7e,0x3c],
'up2':[0x3c,0x66,0xe7,0xff,0xff,0xff,0x7e,0x3c],
'up3':[0x24,0x66,0xff,0xff,0xff,0xff,0x7e,0x3c],
'up4':[0x24,0x7e,0xff,0xff,0xff,0xff,0x7e,0x3c],
'upLeft':[0x3c,0x4e,0xcf,0xff,0xff,0xff,0x7e,0x3c],
'upLeft1':[0x3c,0x7e,0x9f,0x9f,0xff,0xff,0x7e,0x3c],
'upLeft2':[0x3c,0x1e,0x9f,0xff,0xff,0xff,0x7e,0x3c],
'upRight1':[0x3c,0x7e,0xf9,0xf9,0xff,0xff,0x7e,0x3c],
'upRight':[0x3c,0x72,0xf3,0xff,0xff,0xff,0x7e,0x3c],
'down1':[0x3c,0x7e,0xff,0xff,0xe7,0xe7,0x7e,0x3c],
'down2':[0x3c,0x7e,0xff,0xff,0xff,0xe7,0x66,0x3c],
'down3':[0x3c,0x7e,0xff,0xff,0xff,0xe7,0x66,0x3c],
'down4':[0x3c,0x7e,0xff,0xff,0xff,0xff,0x7e,0x24],
'downRight':[0x3c,0x7e,0xff,0xff,0xf9,0xf9,0x7e,0x3c],
'downRight1':[0x3c,0x7e,0xff,0xff,0xff,0xf3,0x72,0x3c],
'downRight2':[0x3c,0x7e,0xff,0xff,0xff,0xf9,0x78,0x3c],
'downLeft':[0x3c,0x7e,0xff,0xff,0xff,0xcf,0x4e,0x3c],
'downLeftB':[0x3c,0x7e,0xff,0xff,0x9f,0x9f,0x7e,0x3c],
'downLeft1':[0x3c,0x7e,0xff,0xff,0xcf,0xcf,0x7e,0x3c],
'downLeft1Blink1':[0x00,0x7e,0xff,0xff,0xcf,0xcf,0x7e,0x00],
'downLeft1Blink2':[0x00,0x00,0xff,0xff,0xcf,0xcf,0x00,0x00],
'downLeft1Blink3':[0x00,0x00,0x00,0xff,0xcf,0x00,0x00,0x00],
'downLeft2':[0x3c,0x7e,0xff,0xff,0xff,0x9f,0x1e,0x3c],
'left1':[0x3c,0x7e,0xff,0xcf,0xcf,0xff,0x7e,0x3c],
'left2':[0x3c,0x7e,0xff,0x9f,0x9f,0xff,0x7e,0x3c],
'left3':[0x3c,0x7e,0xff,0x3f,0x3f,0xff,0x7e,0x3c],
'left4':[0x3c,0x7e,0xff,0x7f,0x7f,0xff,0x7e,0x3c],
'right1':[0x3c,0x7e,0xff,0xf3,0xf3,0xff,0x7e,0x3c],
'right2':[0x3c,0x7e,0xff,0xf9,0xf9,0xff,0x7e,0x3c],
'right3':[0x3c,0x7e,0xff,0xfc,0xfc,0xff,0x7e,0x3c],
'right4':[0x3c,0x7e,0xff,0xfe,0xfe,0xff,0x7e,0x3c],
'ghost1':[0x3c,0x56,0x93,0xdb,0xff,0xff,0xdd,0x89],

324

www.keyestudio.com

'ghost2':[0x38,0x7c,0x92,0x92,0xfe,0xfe,0xfe,0xaa],

}

shapes={
'smile':[0x3c, 0x42, 0xa5, 0x81, 0xa5, 0x99, 0x42, 0x3c],
'smileL':[0x3c, 0x42, 0xa9, 0xa9, 0x85, 0xb9, 0x42, 0x3c],
'empty':[0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00],
'all_on':[0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff],
'arrow':[0x18,0x24,0x42,0xff,0x18,0x18,0x18,0x18],
'invader1':[0x18,0x3c,0x7e,0xdb,0xff,0x24,0x5a,0xa5],
'invader2':[0x18,0x3c,0x7e,0xdb,0xff,0x24,0x5a,0x42],
'tree1':[0x18, 0x18, 0x3c, 0x3c, 0x7e, 0xff, 0x18, 0x18],
'tree1lit1':[0x18, 0x18, 0x3c, 0x3c, 0x7e, 0xff, 0x18, 0x18],
'tree1lit2':[0x5a,0x99,0x3c,0xbd,0x7e,0xff,0x18,0x18],
'tree2':[0x18, 0x18, 0x3c, 0x3c, 0x7e, 0x7e, 0xff, 0x18],
'bunny1':[0x66, 0x66, 0x66, 0xff, 0x81, 0xa5, 0x99, 0x7e],
'bunny2':[0x66, 0xe7, 0x66, 0xff, 0x81, 0xa5, 0x99, 0x7e],
'bunny3':[0x66, 0x66, 0xff, 0x81, 0xa5, 0x81, 0x99, 0x7e],
'danbo':[0x00, 0xff, 0x81, 0xa5, 0x81, 0x81, 0xff, 0x00],
'clock1':[0x3c, 0x42, 0x91, 0x91, 0x9d, 0x81, 0x42, 0x3c],
'heart1F':[0x00, 0x66, 0xff, 0xff, 0x7e, 0x3c, 0x18, 0x00],
'heart1':[0x00, 0x66, 0x99, 0x81, 0x42, 0x24, 0x18, 0x00],
'heart2':[0x00, 0x66, 0x99, 0x81, 0x81, 0x42, 0x24, 0x18],
'heart2F':[0x00, 0x66, 0xff, 0xff, 0xff, 0x7e, 0x3c, 0x18],
'santaHat':[0x00, 0x3c, 0x7e, 0x4f, 0xef, 0xef, 0xef, 0x0f],
'santaHat2':[0x00,0x00,0x3c,0x7e,0x4f,0xef,0xef,0xef],
'star1':[0x00,0x00,0x00,0x18,0x18,0x00,0x00,0x00],
'star2':[0x00,0x00,0x24,0x18,0x18,0x24,0x00,0x00],
'star3':[0x00,0x42,0x24,0x18,0x18,0x24,0x42,0x00],
'star4':[0x81,0x42,0x24,0x18,0x18,0x24,0x42,0x81],
'star5':[0x02,0x84,0x48,0x38,0x1c,0x12,0x21,0x40],
'star6':[0x06,0x8c,0xd8,0x7c,0x3e,0x1b,0x31,0x60],
'star7':[0x04,0x08,0x90,0x5c,0x3a,0x09,0x10,0x20],
'star8':[0x08,0x10,0x10,0x9e,0x79,0x08,0x08,0x10],
'star9':[0x10,0x10,0x10,0x1f,0xf8,0x08,0x08,0x08],
'star10':[0x20,0x10,0x11,0x1e,0x78,0x88,0x08,0x04],
'star11':[0x40,0x21,0x12,0x1c,0x38,0x48,0x84,0x02],

}

325

www.keyestudio.com

Then we find matrix dot.py in the code path we saved, then

double-click to open the code, and then click to run the code

326

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 36

* HT16K33 8*8 dot matrix

* http://www.keyestudio.com

'''

import machine

import time

import json

import matrix_fonts

from ht16k33_matrix import ht16k33_matrix

327

www.keyestudio.com

Tool To Make Sprites https://gurgleapps.com/tools/matrix

#i2c config

clock_pin = 21

data_pin = 20

bus = 0

i2c_addr_left = 0x70

use_i2c = True

def scan_for_devices():

i2c =

machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_

pin))

devices = i2c.scan()

if devices:

for d in devices:

print(hex(d))

else:

print('no i2c devices')

if use_i2c:

scan_for_devices()

left_eye = ht16k33_matrix(data_pin, clock_pin, bus,

328

www.keyestudio.com

i2c_addr_left)

def show_char(left):

if use_i2c:

left_eye.show_char(left)

def scroll_message(font,message='hello',delay=0.05):

left_message = ' ' + message

right_message = message + ' '

length=len(right_message)

char_range=range(length-1)

for char_pos in char_range:

right_left_char=font[right_message[char_pos]]

right_right_char=font[right_message[char_pos+1]]

left_left_char=font[left_message[char_pos]]

left_right_char=font[left_message[char_pos+1]]

for shift in range(8):

left_bytes=[0,0,0,0,0,0,0,0]

right_bytes=[0,0,0,0,0,0,0,0]

for col in range(8):

left_bytes[col]=left_bytes[col]|left_left_char[col]<<shift

329

www.keyestudio.com

left_bytes[col]=left_bytes[col]|left_right_char[col]>>8-shift;

right_bytes[col]=right_bytes[col]|right_left_char[col]<<shift

right_bytes[col]=right_bytes[col]|right_right_char[col]>>8-shift;

if use_i2c:

left_eye.show_char(left_bytes)

time.sleep(delay)

while True:

show_char(matrix_fonts.textFont1['A'])

time.sleep(1)

show_char(matrix_fonts.textFont1['B'])

time.sleep(1)

show_char(matrix_fonts.textFont1['C'])

time.sleep(1)

scroll_message(matrix_fonts.textFont1, ' Hello World ')

Code Explanation

330

www.keyestudio.com

show_char(): displayed characters, for instance

show_char(matrix_fonts.textFont1['A']) shows A

scroll_message(font,message='hello',delay=0.05): scroll to display, 0.05

is the speed of the scroll, massage is character string and font is module

file.

Test Result

Wire up and run the test code. The dot matrix displays "A" for one second,

"B" for one second, "C" for one second, and then scroll to display the "Hello

World" pattern.

331

www.keyestudio.com

Project 41: LCD_128X32_DOT Module

This is a 128*32 pixel LCD module, which uses IIC communication mode and

ST7567A driver chip . At the same time, the code contains all the English letters

and common symbols of the library that can be directly called. When used, we

can also set English letters and symbols to display different text sizes in our

code. To make it easy to set up the pattern display, we also provide a mold

capture software that can convert a specific pattern into control code and then

copy it directly into the test code for use.

In the experiment, we will set up the display screen to display various English

words, common symbols and numbers.

332

www.keyestudio.com

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

LCD_128X32_DO

T Module*1

4P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

333

www.keyestudio.com

1. Run the test code：

We need to save the following code in the pico and name lcd128_32.py

"""
Micropython (Raspberry Pi Pico)
2022/1/12 DENGFEI
lcd.Display() Can only display 94 limited characters in fonts
"""

import machine
import time
import lcd128_32_fonts
cursor = [0, 0]
class lcd128_32:

def __init__(self,dt,clk,bus,addr):
self.addr = addr
self.i2c = machine.I2C(bus,sda=machine.Pin(dt),scl=machine.Pin(clk))
self.Init()

def WriteByte_command(self, cmd):
self.reg_write(0x00, cmd)

334

www.keyestudio.com

def WriteByte_dat(self, dat):
self.reg_write(0x40, dat)

def reg_write(self, reg, data):
msg = bytearray()
msg.append(data)
self.i2c.writeto_mem(self.addr, reg, msg)

def Init(self):
#self.i2c.start()
time.sleep(0.01)
self.WriteByte_command(0xe2)
time.sleep(0.01)
self.WriteByte_command(0xa3)
self.WriteByte_command(0xa0)
self.WriteByte_command(0xc8)
self.WriteByte_command(0x22)
self.WriteByte_command(0x81)
self.WriteByte_command(0x30)
self.WriteByte_command(0x2c)
self.WriteByte_command(0x2e)
self.WriteByte_command(0x2f)
self.Clear()
self.WriteByte_command(0xff)
self.WriteByte_command(0x72)
self.WriteByte_command(0xfe)
self.WriteByte_command(0xd6)
self.WriteByte_command(0x90)
self.WriteByte_command(0x9d)
self.WriteByte_command(0xaf)
self.WriteByte_command(0x40)

def Clear(self):
for i in range(4):

self.WriteByte_command(0xb0 + i)
self.WriteByte_command(0x10)
self.WriteByte_command(0x00)
for j in range(128):

self.WriteByte_dat(0x00)

def Cursor(self, y, x):
if x > 17:

x = 17

335

www.keyestudio.com

if y > 3:
x = 3

cursor[0] = y
cursor[1] = x

def WriteFont(self, num):
for item in lcd128_32_fonts.textFont[num]:

self.WriteByte_dat(item)

def Display(self, str):
self.WriteByte_command(0xb0 + cursor[0])
self.WriteByte_command(0x10 + cursor[1] * 7 // 16)
self.WriteByte_command(0x00 + cursor[1] * 7 % 16)
for num in range(len(str)):

if str[num] == '0':
self.WriteFont(0)

elif str[num] == '1':
self.WriteFont(1)

elif str[num] == '2':
self.WriteFont(2)

elif str[num] == '3':
self.WriteFont(3)

elif str[num] == '4':
self.WriteFont(4)

elif str[num] == '5':
self.WriteFont(5)

elif str[num] == '6':
self.WriteFont(6)

elif str[num] == '7':
self.WriteFont(7)

elif str[num] == '8':
self.WriteFont(8)

elif str[num] == '9':
self.WriteFont(9)

elif str[num] == 'a':
self.WriteFont(10)

elif str[num] == 'b':
self.WriteFont(11)

elif str[num] == 'c':
self.WriteFont(12)

elif str[num] == 'd':
self.WriteFont(13)

elif str[num] == 'e':
self.WriteFont(14)

336

www.keyestudio.com

elif str[num] == 'f':
self.WriteFont(15)

elif str[num] == 'g':
self.WriteFont(16)

elif str[num] == 'h':
self.WriteFont(17)

elif str[num] == 'i':
self.WriteFont(18)

elif str[num] == 'j':
self.WriteFont(19)

elif str[num] == 'k':
self.WriteFont(20)

elif str[num] == 'l':
self.WriteFont(21)

elif str[num] == 'm':
self.WriteFont(22)

elif str[num] == 'n':
self.WriteFont(23)

elif str[num] == 'o':
self.WriteFont(24)

elif str[num] == 'p':
self.WriteFont(25)

elif str[num] == 'q':
self.WriteFont(26)

elif str[num] == 'r':
self.WriteFont(27)

elif str[num] == 's':
self.WriteFont(28)

elif str[num] == 't':
self.WriteFont(29)

elif str[num] == 'u':
self.WriteFont(30)

elif str[num] == 'v':
self.WriteFont(31)

elif str[num] == 'w':
self.WriteFont(32)

elif str[num] == 'x':
self.WriteFont(33)

elif str[num] == 'y':
self.WriteFont(34)

elif str[num] == 'z':
self.WriteFont(35)

elif str[num] == 'A':
self.WriteFont(36)

337

www.keyestudio.com

elif str[num] == 'B':
self.WriteFont(37)

elif str[num] == 'C':
self.WriteFont(38)

elif str[num] == 'D':
self.WriteFont(39)

elif str[num] == 'E':
self.WriteFont(40)

elif str[num] == 'F':
self.WriteFont(41)

elif str[num] == 'G':
self.WriteFont(42)

elif str[num] == 'H':
self.WriteFont(43)

elif str[num] == 'I':
self.WriteFont(44)

elif str[num] == 'J':
self.WriteFont(45)

elif str[num] == 'K':
self.WriteFont(46)

elif str[num] == 'L':
self.WriteFont(47)

elif str[num] == 'M':
self.WriteFont(48)

elif str[num] == 'N':
self.WriteFont(49)

elif str[num] == 'O':
self.WriteFont(50)

elif str[num] == 'P':
self.WriteFont(51)

elif str[num] == 'Q':
self.WriteFont(52)

elif str[num] == 'R':
self.WriteFont(53)

elif str[num] == 'S':
self.WriteFont(54)

elif str[num] == 'T':
self.WriteFont(55)

elif str[num] == 'U':
self.WriteFont(56)

elif str[num] == 'V':
self.WriteFont(57)

elif str[num] == 'W':
self.WriteFont(58)

338

www.keyestudio.com

elif str[num] == 'X':
self.WriteFont(59)

elif str[num] == 'Y':
self.WriteFont(60)

elif str[num] == 'Z':
self.WriteFont(61)

elif str[num] == '!':
self.WriteFont(62)

elif str[num] == '"':
self.WriteFont(63)

elif str[num] == '#':
self.WriteFont(64)

elif str[num] == '$':
self.WriteFont(65)

elif str[num] == '%':
self.WriteFont(66)

elif str[num] == '&':
self.WriteFont(67)

elif str[num] == '\'':
self.WriteFont(68)

elif str[num] == '(':
self.WriteFont(69)

elif str[num] == ')':
self.WriteFont(70)

elif str[num] == '*':
self.WriteFont(71)

elif str[num] == '+':
self.WriteFont(72)

elif str[num] == ',':
self.WriteFont(73)

elif str[num] == '-':
self.WriteFont(74)

elif str[num] == '/':
self.WriteFont(75)

elif str[num] == ':':
self.WriteFont(76)

elif str[num] == ';':
self.WriteFont(77)

elif str[num] == '<':
self.WriteFont(78)

elif str[num] == '=':
self.WriteFont(79)

elif str[num] == '>':
self.WriteFont(80)

339

www.keyestudio.com

elif str[num] == '?':
self.WriteFont(81)

elif str[num] == '@':
self.WriteFont(82)

elif str[num] == '{':
self.WriteFont(83)

elif str[num] == '|':
self.WriteFont(84)

elif str[num] == '}':
self.WriteFont(85)

elif str[num] == '~':
self.WriteFont(86)

elif str[num] == ' ':
self.WriteFont(87)

elif str[num] == '.':
self.WriteFont(88)

elif str[num] == '^':
self.WriteFont(89)

elif str[num] == '_':
self.WriteFont(90)

elif str[num] == '`':
self.WriteFont(91)

elif str[num] == '[':
self.WriteFont(92)

elif str[num] == '\\':
self.WriteFont(93)

elif str[num] == ']':
self.WriteFont(94)

Then save the following code to pico and name it lcd128_32_fonts.py

"""
Micropython (Raspberry Pi Pico)
Include 94 characters
"""
textFont={

0:[0x00, 0x3E, 0x51, 0x49, 0x45, 0x3E, 0x00],
1:[0x00, 0x00, 0x42, 0x7F, 0x40, 0x00, 0x00],
2:[0x00, 0x62, 0x51, 0x49, 0x49, 0x46, 0x00],
3:[0x00, 0x21, 0x41, 0x49, 0x4D, 0x33, 0x00],
4:[0x00, 0x18, 0x14, 0x12, 0x7F, 0x10, 0x00],
5:[0x00, 0x27, 0x45, 0x45, 0x45, 0x39, 0x00],
6:[0x00, 0x3C, 0x4A, 0x49, 0x49, 0x31, 0x00],
7:[0x00, 0x01, 0x71, 0x09, 0x05, 0x03, 0x00],

340

www.keyestudio.com

8:[0x00, 0x36, 0x49, 0x49, 0x49, 0x36, 0x00],
9:[0x00, 0x46, 0x49, 0x49, 0x29, 0x1E, 0x00],
10:[0x00, 0x24, 0x54, 0x54, 0x38, 0x40, 0x00],
11:[0x00, 0x7F, 0x28, 0x44, 0x44, 0x38, 0x00],
12:[0x00, 0x38, 0x44, 0x44, 0x44, 0x08, 0x00],
13:[0x00, 0x38, 0x44, 0x44, 0x28, 0x7F, 0x00],
14:[0x00, 0x38, 0x54, 0x54, 0x54, 0x08, 0x00],
15:[0x00, 0x08, 0x7E, 0x09, 0x09, 0x02, 0x00],
16:[0x00, 0x98, 0xA4, 0xA4, 0xA4, 0x78, 0x00],
17:[0x00, 0x7F, 0x08, 0x04, 0x04, 0x78, 0x00],
18:[0x00, 0x00, 0x00, 0x79, 0x00, 0x00, 0x00],
19:[0x00, 0x00, 0x80, 0x88, 0x79, 0x00, 0x00],
20:[0x00, 0x7F, 0x10, 0x28, 0x44, 0x40, 0x00],
21:[0x00, 0x00, 0x41, 0x7F, 0x40, 0x00, 0x00],
22:[0x00, 0x78, 0x04, 0x78, 0x04, 0x78, 0x00],
23:[0x00, 0x04, 0x78, 0x04, 0x04, 0x78, 0x00],
24:[0x00, 0x38, 0x44, 0x44, 0x44, 0x38, 0x00],
25:[0x00, 0xFC, 0x24, 0x24, 0x24, 0x18, 0x00],
26:[0x00, 0x18, 0x24, 0x24, 0x24, 0xFC, 0x00],
27:[0x00, 0x04, 0x78, 0x04, 0x04, 0x08, 0x00],
28:[0x00, 0x48, 0x54, 0x54, 0x54, 0x24, 0x00],
29:[0x00, 0x04, 0x3F, 0x44, 0x44, 0x24, 0x00],
30:[0x00, 0x3C, 0x40, 0x40, 0x3C, 0x40, 0x00],
31:[0x00, 0x1C, 0x20, 0x40, 0x20, 0x1C, 0x00],
32:[0x00, 0x3C, 0x40, 0x3C, 0x40, 0x3C, 0x00],
33:[0x00, 0x44, 0x28, 0x10, 0x28, 0x44, 0x00],
34:[0x00, 0x9C, 0xA0, 0xA0, 0x90, 0x7C, 0x00],
35:[0x00, 0x44, 0x64, 0x54, 0x4C, 0x44, 0x00],
36:[0x00, 0x7C, 0x12, 0x11, 0x12, 0x7C, 0x00],
37:[0x00, 0x7F, 0x49, 0x49, 0x49, 0x36, 0x00],
38:[0x00, 0x3E, 0x41, 0x41, 0x41, 0x22, 0x00],
39:[0x00, 0x7F, 0x41, 0x41, 0x41, 0x3E, 0x00],
40:[0x00, 0x7F, 0x49, 0x49, 0x49, 0x41, 0x00],
41:[0x00, 0x7F, 0x09, 0x09, 0x09, 0x01, 0x00],
42:[0x00, 0x3E, 0x41, 0x51, 0x51, 0x72, 0x00],
43:[0x00, 0x7F, 0x08, 0x08, 0x08, 0x7F, 0x00],
44:[0x00, 0x00, 0x41, 0x7F, 0x41, 0x00, 0x00],
45:[0x00, 0x20, 0x40, 0x41, 0x3F, 0x01, 0x00],
46:[0x00, 0x7F, 0x08, 0x14, 0x22, 0x41, 0x00],
47:[0x00, 0x7F, 0x40, 0x40, 0x40, 0x40, 0x00],
48:[0x00, 0x7F, 0x02, 0x0C, 0x02, 0x7F, 0x00],
49:[0x00, 0x7F, 0x04, 0x08, 0x10, 0x7F, 0x00],
50:[0x00, 0x3E, 0x41, 0x41, 0x41, 0x3E, 0x00],
51:[0x00, 0x7F, 0x09, 0x09, 0x09, 0x06, 0x00],

341

www.keyestudio.com

52:[0x00, 0x3E, 0x41, 0x51, 0x21, 0x5E, 0x00],
53:[0x00, 0x7F, 0x09, 0x19, 0x29, 0x46, 0x00],
54:[0x00, 0x26, 0x49, 0x49, 0x49, 0x32, 0x00],
55:[0x00, 0x01, 0x01, 0x7F, 0x01, 0x01, 0x00],
56:[0x00, 0x3F, 0x40, 0x40, 0x40, 0x3F, 0x00],
57:[0x00, 0x1F, 0x20, 0x40, 0x20, 0x1F, 0x00],
58:[0x00, 0x7F, 0x20, 0x18, 0x20, 0x7F, 0x00],
59:[0x00, 0x63, 0x14, 0x08, 0x14, 0x63, 0x00],
60:[0x00, 0x03, 0x04, 0x78, 0x04, 0x03, 0x00],
61:[0x00, 0x61, 0x51, 0x49, 0x45, 0x43, 0x00],
62:[0x00, 0x00, 0x00, 0x5F, 0x00, 0x00, 0x00],
63:[0x00, 0x00, 0x07, 0x00, 0x07, 0x00, 0x00],
64:[0x00, 0x14, 0x7F, 0x14, 0x7F, 0x14, 0x00],
65:[0x00, 0x24, 0x2E, 0x7B, 0x2A, 0x12, 0x00],
66:[0x00, 0x23, 0x13, 0x08, 0x64, 0x62, 0x00],
67:[0x00, 0x36, 0x49, 0x56, 0x20, 0x50, 0x00],
68:[0x00, 0x00, 0x04, 0x03, 0x01, 0x00, 0x00],
69:[0x00, 0x00, 0x1C, 0x22, 0x41, 0x00, 0x00],
70:[0x00, 0x00, 0x41, 0x22, 0x1C, 0x00, 0x00],
71:[0x00, 0x22, 0x14, 0x7F, 0x14, 0x22, 0x00],
72:[0x00, 0x08, 0x08, 0x7F, 0x08, 0x08, 0x00],
73:[0x00, 0x40, 0x30, 0x10, 0x00, 0x00, 0x00],
74:[0x00, 0x08, 0x08, 0x08, 0x08, 0x08, 0x00],
75:[0x00, 0x20, 0x10, 0x08, 0x04, 0x02, 0x00],
76:[0x00, 0x00, 0x36, 0x36, 0x00, 0x00, 0x00],
77:[0x00, 0x40, 0x36, 0x36, 0x00, 0x00, 0x00],
78:[0x00, 0x08, 0x14, 0x22, 0x41, 0x00, 0x00],
79:[0x00, 0x14, 0x14, 0x14, 0x14, 0x14, 0x00],
80:[0x00, 0x00, 0x41, 0x22, 0x14, 0x08, 0x00],
81:[0x00, 0x02, 0x01, 0x59, 0x05, 0x02, 0x00],
82:[0x00, 0x3E, 0x41, 0x5D, 0x55, 0x5E, 0x00],
83:[0x00, 0x08, 0x36, 0x41, 0x00, 0x00, 0x00],
84:[0x00, 0x00, 0x00, 0x77, 0x00, 0x00, 0x00],
85:[0x00, 0x00, 0x00, 0x41, 0x36, 0x08, 0x00],
86:[0x00, 0x08, 0x04, 0x08, 0x10, 0x08, 0x00],
87:[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
88:[0x00, 0x00, 0x60, 0x60, 0x00, 0x00, 0x00],
89:[0x00, 0x04, 0x02, 0x7F, 0x02, 0x04, 0x00],
90:[0x00, 0x08, 0x1C, 0x2A, 0x08, 0x08, 0x00],
91:[0x00, 0x00, 0x00, 0x01, 0x02, 0x04, 0x00],
92:[0x00, 0x7F, 0x7F, 0x41, 0x41, 0x00, 0x00],
93:[0x00, 0x02, 0x04, 0x08, 0x10, 0x20, 0x00],
94:[0x00, 0x00, 0x41, 0x41, 0x7F, 0x7F, 0x00],

}

342

www.keyestudio.com

Then we find LCD 128*32.py in the code path we saved, then double-click

to open the code, and then click to run the code

343

www.keyestudio.com

Test Code

'''

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 41

* LCD 128*32

* http://www.keyestudio.com

'''

import machine

import time

import lcd128_32_fonts

from lcd128_32 import lcd128_32

#i2c config

clock_pin = 21

data_pin = 20

bus = 0

i2c_addr = 0x3f

use_i2c = True

def scan_for_devices():

i2c =

machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_

344

www.keyestudio.com

pin))

devices = i2c.scan()

if devices:

for d in devices:

print(hex(d))

else:

print('no i2c devices')

if use_i2c:

scan_for_devices()

lcd = lcd128_32(data_pin, clock_pin, bus, i2c_addr)

lcd.Clear()

lcd.Cursor(0, 7)

lcd.Display("KEYES")

lcd.Cursor(1, 0)

lcd.Display("ABCDEFGHIJKLMNOPQR")

lcd.Cursor(2, 0)

lcd.Display("123456789+-*/<>=$@")

lcd.Cursor(3, 0)

345

www.keyestudio.com

lcd.Display("%^&(){}:;'|?,.~\\[]")

while True:

scan_for_devices()

time.sleep(0.5)

Code Explanation

First, import the library

scan_for_devices(): This function is an IIC addressing function; if an IIC

device is identified, the IIC address of the device is printed, as shown in the

figure:

If the device is not recognized, no i2c devices will be printed out and then

report an error, as shown in the figure:

346

www.keyestudio.com

1. lcd.Cursor(0, 7): The function to set cursor , that is, set the position where

the character is displayed on the lcd, the first parameter is the parameter of

the row, the second is the parameter of the column

2. lcd.Display("KEYES"): Display character content, here "KEYES" is

displayed

Test Result

Wire up and upload the test code，the 128X32LCD module will show KEYES on the

first line, ABCDEFGHIJKLMNOPQR on the second line, 123456789+-*/<>=$@ on

the third line and“%^&(){}:;'|?,.~\\[]”on the fourth line，as shown below;

347

www.keyestudio.com

Project 42: RFID Module

Description

348

www.keyestudio.com

RFIDRFID-RC522 radio frequency module adopts a Philips MFRC522

original chip to design card reading circuit, easy to use and low cost,

suitable for equipment development and card reader development and so

on.

RFID or Radio Frequency Identification system consists of two main

components, a transponder/tag attached to an object to be identified, and

a Transceiver also known as interrogator/Reader.

In the experiment, the data read by the card swipe module is 4

hexadecimal numbers, and we print these four hexadecimal numbers as

strings. For example, we read the data of the IC card below: 0x8d, 0xfe,

0x6c, 0x4d, and the information string displayed in the shell is 8dfe6c4d;

the data read from the keychain is: 0xbc, 0x33, 0x76, 0x6e, and the

information is displayed in the shell The string is bc33766e.

Working Principle

RFID (Radio Frequency Identification)

Radio frequency identification, the card reader is composed of a radio

frequency module and a high-level magnetic field. The Tag transponder is

a sensing device, and this device does not contain a battery. It only

contains tiny integrated circuit chips and media for storing data and

349

www.keyestudio.com

antennas for receiving and transmitting signals. To read the data in the tag,

first put it into the reading range of the card reader. The reader will

generate a magnetic field, and because the magnetic energy generates

electricity according to Lenz's law, the RFID tag will supply power, thereby

activating the device.

Required Components

Raspberry Pi Pico

Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

RFID Module*1
4P Dupont Wire*1

Micro USB Cable*1 Key*1 IC Card*1

350

www.keyestudio.com

Connection Diagram

Run the test code

Find and double-click mfrc522.py and click

Before running the code, we save the following code to pico, import the

351

www.keyestudio.com

module, and name it mfrc522_config.py: (also in the library file folder we

provide)
class Uid:

size = 0 # Number of bytes in the UID. 4, 7 or 10.
uidByte = [0,0,0,0,0,0,0,0,0,0]
sak = 0 # The SAK (Select acknowledge) byte returned from the PICC

after successful selection.

class mfrc522Config(Uid):
MFRC522 registers. Described in chapter 9 of the datasheet.
PCD_Register
Page 0: Command and status
0x00 #reserved for future use
CommandReg = 0x01 #starts and stops command execution
ComIEnReg = 0x02 #enable and disable interrupt request control bits
DivIEnReg = 0x03 #enable and disable interrupt request control bits
ComIrqReg = 0x04 #interrupt request bits
DivIrqReg = 0x05 #interrupt request bits
ErrorReg = 0x06 #error bits showing the error status of the last command executed
Status1Reg = 0x07 #communication status bits
Status2Reg = 0x08 #receiver and transmitter status bits
FIFODataReg = 0x09 #input and output of 64 byte FIFO buffer
FIFOLevelReg = 0x0A #number of bytes stored in the FIFO buffer
WaterLevelReg = 0x0B #level for FIFO underflow and overflow warning
ControlReg = 0x0C #miscellaneous control registers
BitFramingReg = 0x0D #adjustments for bit-oriented frames
CollReg = 0x0E #bit position of the first bit-collision detected on the RF

interface
0x0F #reserved for future use

Page 1: Command
0x10 #reserved for future use
ModeReg = 0x11 #defines general modes for transmitting and receiving
TxModeReg = 0x12 #defines transmission data rate and framing
RxModeReg = 0x13 #defines reception data rate and framing
TxControlReg = 0x14 #controls the logical behavior of the antenna driver pins TX1

and TX2
TxASKReg = 0x15 #controls the setting of the transmission modulation
TxSelReg = 0x16 #elects the internal sources for the antenna driver
RxSelReg = 0x17 #selects internal receiver settings
RxThresholdReg = 0x18 #selects thresholds for the bit decoder

352

www.keyestudio.com

DemodReg = 0x19 #defines demodulator settings
0x1A #reserved for future use
0x1B #eserved for future use
MfTxReg = 0x1C #controls some MIFARE communication transmit parameters
MfRxReg = 0x1D #controls some MIFARE communication receive parameters
0x1E #reserved for future use
SerialSpeedReg = 0x1F #selects the speed of the serial UART interface

Page 2: Configuration
0x20 reserved for future use
CRCResultRegH = 0x21 #shows the MSB and LSB values of the CRC calculation
CRCResultRegL = 0x22 #
0x23 #reserved for future use
ModWidthReg = 0x24 #controls the ModWidth setting?
0x25 #reserved for future use
RFCfgReg = 0x26 #onfigures the receiver gain
GsNReg = 0x27 #selects the conductance of the antenna driver pins TX1 and TX2

for modulation
CWGsPReg = 0x28 #defines the conductance of the p-driver output during periods

of no modulation
ModGsPReg = 0x29 #defines the conductance of the p-driver output during periods

of modulation
TModeReg = 0x2A #defines settings for the internal timer
TPrescalerReg = 0x2B #the lower 8 bits of the TPrescaler value. The 4 high bits are

in TModeReg.
TReloadRegH = 0x2C #efines the 16-bit timer reload value
TReloadRegL = 0x2D #
TCounterValueRegH = 0x2E #shows the 16-bit timer value
TCounterValueRegL = 0x2F #

Page 3: Test Registers
0x30 #reserved for future use
TestSel1Reg = 0x31 #general test signal configuration
TestSel2Reg = 0x32 #eneral test signal configuration
TestPinEnReg = 0x33 #enables pin output driver on pins D1 to D7
TestPinValueReg = 0x34 #defines the values for D1 to D7 when it is used as an I/O bus
TestBusReg = 0x35 #shows the status of the internal test bus
AutoTestReg = 0x36 #controls the digital self test
VersionReg = 0x37 #shows the software version
AnalogTestReg = 0x38 #controls the pins AUX1 and AUX2
TestDAC1Reg = 0x39 #defines the test value for TestDAC1
TestDAC2Reg = 0x3A #defines the test value for TestDAC2
TestADCReg = 0x3B #shows the value of ADC I and Q channels
0x3C #reserved for production tests

353

www.keyestudio.com

0x3D #reserved for production tests
0x3E #reserved for production tests
0x3F #reserved for production tests

MFRC522 commands. Described in chapter 10 of the datasheet.
PCD_Command
PCD_Idle = 0x00 #no action, cancels current command execution
PCD_Mem = 0x01 #stores 25 bytes into the internal buffer
PCD_GenerateRandomID = 0x02 #generates a 10-byte random ID number
PCD_CalcCRC = 0x03 #activates the CRC coprocessor or performs a self test
PCD_Transmit = 0x04 #transmits data from the FIFO buffer
PCD_NoCmdChange = 0x07 #no command change, can be used to modify the CommandReg

register bits without affecting the command, for example, the PowerDown bit
PCD_Receive = 0x08 #activates the receiver circuits
PCD_Transceive = 0x0C #transmits data from FIFO buffer to antenna and

automatically activates the receiver after transmission
PCD_MFAuthent = 0x0E #performs the MIFARE standard authentication as a reader
PCD_SoftReset = 0x0F #resets the MFRC522

MFRC522 RxGain[2:0] masks, defines the receiver's signal voltage gain factor (on the
PCD).

Described in 9.3.3.6 / table 98 of the datasheet at
http://www.nxp.com/documents/data_sheet/MFRC522.pdf

PCD_RxGain
RxGain_18dB = 0x00 << 4 #000b - 18 dB, minimum
RxGain_23dB = 0x01 << 4 #001b - 23 dB
RxGain_18dB_2 = 0x02 << 4 #010b - 18 dB, it seems 010b is a duplicate for 000b
RxGain_23dB_2 = 0x03 << 4 #011b - 23 dB, it seems 011b is a duplicate for 001b
RxGain_33dB = 0x04 << 4 #100b - 33 dB, average, and typical default
RxGain_38dB = 0x05 << 4 #101b - 38 dB
RxGain_43dB = 0x06 << 4 #110b - 43 dB
RxGain_48dB = 0x07 << 4 #111b - 48 dB, maximum
RxGain_min = 0x00 << 4 #000b - 18 dB, minimum, convenience for RxGain_18dB
RxGain_avg = 0x04 << 4 #100b - 33 dB, average, convenience for RxGain_33dB
RxGain_max = 0x07 << 4 #111b - 48 dB, maximum, convenience for RxGain_48dB

Commands sent to the PICC.
The commands used by the PCD to manage communication with several PICCs (ISO 14443-3,

Type A, section 6.4)
PICC_CMD_REQA = 0x26 #REQuest command, Type A. Invites PICCs in state IDLE

to go to READY and prepare for anticollision or selection. 7 bit frame.
PICC_CMD_WUPA = 0x52 #Wake-UP command, Type A. Invites PICCs in state IDLE

and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame.
PICC_CMD_CT = 0x88 #Cascade Tag. Not really a command, but used during anti

354

www.keyestudio.com

collision.
PICC_CMD_SEL_CL1 = 0x93 #Anti collision/Select, Cascade Level 1
PICC_CMD_SEL_CL2 = 0x95 #Anti collision/Select, Cascade Level 2
PICC_CMD_SEL_CL3 = 0x97 #Anti collision/Select, Cascade Level 3
PICC_CMD_HLTA = 0x50 #HaLT command, Type A. Instructs an ACTIVE PICC to go

to state HALT.
The commands used for MIFARE Classic (from

http://www.nxp.com/documents/data_sheet/MF1S503x.pdf, Section 9)
Use PCD_MFAuthent to authenticate access to a sector, then use these commands to

read/write/modify the blocks on the sector.
The read/write commands can also be used for MIFARE Ultralight.
PICC_CMD_MF_AUTH_KEY_A = 0x60 #Perform authentication with Key A
PICC_CMD_MF_AUTH_KEY_B = 0x61 #Perform authentication with Key B
PICC_CMD_MF_READ = 0x30 #Reads one 16 byte block from the authenticated sector

of the PICC. Also used for MIFARE Ultralight.
PICC_CMD_MF_WRITE = 0xA0 #Writes one 16 byte block to the authenticated sector

of the PICC. Called "COMPATIBILITY WRITE" for MIFARE Ultralight.
PICC_CMD_MF_DECREMENT = 0xC0 #Decrements the contents of a block and stores the result

in the internal data register.
PICC_CMD_MF_INCREMENT = 0xC1 #Increments the contents of a block and stores the result

in the internal data register.
PICC_CMD_MF_RESTORE = 0xC2 #Reads the contents of a block into the internal data

register.
PICC_CMD_MF_TRANSFER = 0xB0 #Writes the contents of the internal data register to

a block.
The commands used for MIFARE Ultralight (from

http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf, Section 8.6)
The PICC_CMD_MF_READ and PICC_CMD_MF_WRITE can also be used for MIFARE Ultralight.
PICC_CMD_UL_WRITE = 0xA2 #Writes one 4 byte page to the PICC.

MIFARE constants that does not fit anywhere else
MIFARE_Misc
MF_ACK = 0xA #The MIFARE Classic uses a 4 bit ACK/NAK. Any other value

than 0xA is NAK.
MF_KEY_SIZE = 6 #A Mifare Crypto1 key is 6 bytes.

PICC types we can detect. Remember to update PICC_GetTypeName() if you add more.
PICC_Type
PICC_TYPE_UNKNOWN = 0
PICC_TYPE_ISO_14443_4 = 1 #PICC compliant with ISO/IEC 14443-4
PICC_TYPE_ISO_18092 = 2 #PICC compliant with ISO/IEC 18092 (NFC)
PICC_TYPE_MIFARE_MINI = 3 #MIFARE Classic protocol, 320 bytes
PICC_TYPE_MIFARE_1K = 4 #MIFARE Classic protocol, 1KB
PICC_TYPE_MIFARE_4K = 5 #MIFARE Classic protocol, 4KB

355

www.keyestudio.com

PICC_TYPE_MIFARE_UL = 6 #MIFARE Ultralight or Ultralight C
PICC_TYPE_MIFARE_PLUS = 7 #MIFARE Plus
PICC_TYPE_TNP3XXX = 8 #Only mentioned in NXP AN 10833 MIFARE Type Identification

Procedure
ICC_TYPE_NOT_COMPLETE = 255 #SAK indicates UID is not complete.

Return codes from the functions in this class. Remember to update GetStatusCodeName()
if you add more.

StatusCode
STATUS_OK = 1 #Success
STATUS_ERROR = 2 #Error in communication
STATUS_COLLISION = 3 #Collission detected
STATUS_TIMEOUT = 4 #Timeout in communication.
STATUS_NO_ROOM = 5 #A buffer is not big enough.
STATUS_INTERNAL_ERROR = 6 #Internal error in the code. Should not happen ;-)
STATUS_INVALID = 7 #Invalid argument.
STATUS_CRC_WRONG = 8 #The CRC_A does not match
STATUS_MIFARE_NACK = 9 #A MIFARE PICC responded with NAK.

Size of the MFRC522 FIFO
FIFO_SIZE = 64 #The FIFO is 64 bytes.

uid = Uid

Then save the following code to pico and name it soft_iic.py

from machine import Pin
import time

class softIIC:

def __init__(self, scl_, sda_, addr_):
self.addr = addr_
self.scl = scl_
self.sda = sda_

def IIC_start(self):
Pin_scl = Pin(self.scl, Pin.OUT, value=1) # create output pin
Pin_sda = Pin(self.sda, Pin.OUT, value=1) # create output pin
#Pin_sda.value(1)
#Pin_scl.value(1)

356

www.keyestudio.com

time.sleep_us(5)
#time.sleep(1)
Pin_sda.value(0)
time.sleep_us(5)
Pin_scl.value(0)
#time.sleep(1)

def IIC_stop(self):
Pin_scl = Pin(self.scl, Pin.OUT, value=0) # create output pin
Pin_sda = Pin(self.sda, Pin.OUT, value=0) # create output pin
#Pin_scl.value(0)
#Pin_sda.value(0)
time.sleep_us(5)
Pin_scl.value(1)
Pin_sda.value(1)
time.sleep_us(5)

def IIC_master_ack(self):
Pin_scl = Pin(self.scl, Pin.OUT, value=0) # create output pin
Pin_sda = Pin(self.sda, Pin.OUT, value=0) # create output pin
#Pin_scl.value(0)
#Pin_sda.value(0)
time.sleep_us(5)

Pin_scl.value(1)
time.sleep_us(5)
Pin_scl.value(0)
#Pin_sda.value(1)

def IIC_master_notack(self):
Pin_scl = Pin(self.scl, Pin.OUT, value=0) # create output pin
Pin_sda = Pin(self.sda, Pin.OUT, value=1) # create output pin
#Pin_scl.value(0)
#Pin_sda.value(1)
time.sleep_us(5)
Pin_scl.value(1)
time.sleep_us(5)
Pin_scl.value(0)

def IIC_slave_ack(self):

357

www.keyestudio.com

i=0
Pin_scl = Pin(self.scl, Pin.OUT, value=0) # create output pin
Pin_sda = Pin(self.sda, Pin.IN, Pin.PULL_UP) # create input pin
Pin_scl.value(1)
time.sleep_us(5)
while Pin_sda.value() == 1:

time.sleep_us(1)
i = i+1
if i>20:

while 1 :
print("IIC slave device not ack")
time.sleep(1)

#return

def IIC_read_byte(self):
dat = 0
Pin_scl = Pin(self.scl, Pin.OUT, value=0) # create input pin
Pin_sda = Pin(self.sda, Pin.IN, Pin.PULL_UP) # create input pin
for i in range(8):

Pin_scl.value(0)
time.sleep_us(3)
Pin_scl.value(1)
time.sleep_us(2)
#print(Pin_sda.value())
if Pin_sda.value() == 1:

dat = dat<<1 | 1
else:

dat = dat<<1
time.sleep_us(5)

return dat

def IIC_write_byte(self, dat):
Pin_scl = Pin(self.scl, Pin.OUT, value=0) # create output pin
Pin_sda = Pin(self.sda, Pin.OUT, value=0) # create output pin
for i in range(8):

if 0x80 & dat == 0x80:
Pin_sda.value(1)
#print(1)

else:
Pin_sda.value(0)
#print(0)

Pin_scl.value(1)

358

www.keyestudio.com

time.sleep_us(5)
Pin_scl.value(0)
time.sleep_us(5)
dat = dat<<1

#print("--------------------")

def Read(self, _adr, _reg):
self.IIC_start()
self.IIC_write_byte(_adr<<1)
self.IIC_slave_ack()
#print("--------------1")
self.IIC_write_byte(_reg)
self.IIC_slave_ack()
self.IIC_stop()
#print("--------------2")
self.IIC_start()
self.IIC_write_byte((_adr<<1)|1)
self.IIC_slave_ack()
#print("--------------3")
dat = self.IIC_read_byte()
self.IIC_master_notack()
self.IIC_stop()
return dat

def Write(self, _adr, _reg, _dat):
self.IIC_start()
self.IIC_write_byte(_adr<<1)
self.IIC_slave_ack()

self.IIC_write_byte(_reg)
self.IIC_slave_ack()

self.IIC_write_byte(_dat)
self.IIC_slave_ack()
self.IIC_stop()

Then save the following code to pico and name it mfrc522_i2c.py

from machine import Pin
import time
from mfrc522_config import mfrc522Config

359

www.keyestudio.com

from soft_iic import softIIC

class mfrc522(mfrc522Config,softIIC):

def __init__(self, scl_, sda_, addr_):
Invoke the parent class's constructor
softIIC.__init__(self, scl_, sda_, addr_)

Writes a byte to the specified register in the MFRC522 chip.
The interface is described in the datasheet section 8.1.2.
def PCD_WriteRegister(self,

_reg, #The register to write to. One of the PCD_Register enums.
_dat #The value to write.
):

self.Write(self.addr, _reg, _dat)

Writes a number of bytes to the specified register in the MFRC522 chip.
The interface is described in the datasheet section 8.1.2.
def PCD_WriteRegister_(self,

reg, #The register to write to. One of the PCD_Register enums.
count, #The number of bytes to write to the register
lst #The values to write. Byte array.
):

self.IIC_start()
self.IIC_write_byte(self.addr<<1)
self.IIC_slave_ack()

self.IIC_write_byte(reg)
self.IIC_slave_ack()

for i in range(count):
self.IIC_write_byte(lst[i])
self.IIC_slave_ack()

self.IIC_stop()

Reads a byte from the specified register in the MFRC522 chip.
The interface is described in the datasheet section 8.1.2.
def PCD_ReadRegister(self, _reg): # The register to read from. One of the

PCD_Register enums.
return self.Read(self.addr,_reg)
End PCD_ReadRegister()

360

www.keyestudio.com

Reads a number of bytes from the specified register in the MFRC522 chip.
The interface is described in the datasheet section 8.1.2.
self.PCD_ReadRegister_(self.FIFODataReg, n, backData, rxAlign)
def PCD_ReadRegister_(self,

reg, # The register to read from. One of the PCD_Register
enums.

count, # The number of bytes to read
values, # Byte array to store the values in.
rxAlign = 0 # Only bit positions rxAlign..7 in values[0] are

updated.
):

if count == 0:
return

self.IIC_start()
self.IIC_write_byte(self.addr<<1)
self.IIC_slave_ack()
#print("--------------1")
self.IIC_write_byte(reg)
self.IIC_slave_ack()
self.IIC_stop()
#print("--------------2")
self.IIC_start()
self.IIC_write_byte((self.addr<<1)|1)
self.IIC_slave_ack()
#print("--------------3")

for i in range(count):
if i == 0 and rxAlign != 0: # Only update bit positions rxAlign..7 in

values[0]
Create bit mask for bit positions rxAlign..7
mask = 0
for i in range(rxAlign, 8):

mask |= (1<<i)
Read value and tell that we want to read the same address again.
value = self.IIC_read_byte()
Apply mask to both current value of values[0] and the new data in value.
values[0] = (values[i] & ~mask) | (value & mask)

else: # Normal case
values[i] = self.IIC_read_byte()

if i < count - 1:
self.IIC_master_ack()

else:

361

www.keyestudio.com

self.IIC_master_notack()
self.IIC_stop()

#print(values)
End PCD_ReadRegister()

def PCD_Init(self):
self.PCD_Reset()

When communicating with a PICC we need a timeout if something goes wrong.
f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler =

[TPrescaler_Hi:TPrescaler_Lo].
TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg.
self.PCD_WriteRegister(self.TModeReg, 0x80) # TAuto=1; timer starts

automatically at the end of the transmission in all communication modes at all speeds
self.PCD_WriteRegister(self.TPrescalerReg, 0xA9) # TPreScaler =

TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25�s.
self.PCD_WriteRegister(self.TReloadRegH, 0x03) # Reload timer with 0x3E8 = 1000,

ie 25ms before timeout.
self.PCD_WriteRegister(self.TReloadRegL, 0xE8)

self.PCD_WriteRegister(self.TxASKReg, 0x40) # Default 0x00. Force a 100 % ASK
modulation independent of the ModGsPReg register setting

self.PCD_WriteRegister(self.ModeReg, 0x3D) # Default 0x3F. Set the preset
value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4)

self.PCD_AntennaOn() # Enable the antenna driver pins TX1 and
TX2 (they were disabled by the reset)

End PCD_Init()

Performs a soft reset on the MFRC522 chip and waits for it to be ready again.
def PCD_Reset(self):

Issue the SoftReset command.
self.PCD_WriteRegister(self.CommandReg, self.PCD_SoftReset)
time.sleep(1)

if self.PCD_ReadRegister(self.CommandReg) & (1<<4):
print("Reset error!")

Turns the antenna on by enabling pins TX1 and TX2.
After a reset these pins are disabled.
def PCD_AntennaOn(self):

value = self.PCD_ReadRegister(self.TxControlReg)

362

www.keyestudio.com

#print("AntennaOn data:" + str(value))
if value & 0x03 != 0x03:

self.PCD_WriteRegister(self.TxControlReg, value | 0x03)
#End PCD_AntennaOn()

Turns the antenna off by disabling pins TX1 and TX2.
def PCD_AntennaOff(self):

self.PCD_ClearRegisterBitMask(self.TxControlReg, 0x03)

Sets the bits given in mask in register reg.
def PCD_SetRegisterBitMask(self,

reg, # The register to update. One of the
PCD_Register enums.

mask # The bits to set.
):

tmp = self.PCD_ReadRegister(reg)
self.PCD_WriteRegister(reg, tmp | mask) # set bit mask
End PCD_SetRegisterBitMask()

Clears the bits given in mask from register reg.
def PCD_ClearRegisterBitMask(self,

reg, # The register to update. One of the PCD_Register
enums.

mask # The bits to clear.
):

tmp = self.PCD_ReadRegister(reg)
self.PCD_WriteRegister(reg, tmp & (~mask)) #clear bit mask
End PCD_ClearRegisterBitMask()

Use the CRC coprocessor in the MFRC522 to calculate a CRC_A.
#
@return STATUS_OK on success, STATUS_??? otherwise.
def PCD_CalculateCRC(self,

data, #In: Pointer to the data to transfer to the FIFO for CRC
calculation.

length, #In: The number of bytes to transfer.
result #Out: Pointer to result buffer. Result is written to

result[0..1], low byte first.
):

self.PCD_WriteRegister(self.CommandReg, self.PCD_Idle) # Stop any active

363

www.keyestudio.com

command.
self.PCD_WriteRegister(self.DivIrqReg, 0x04) # Clear the CRCIRq

interrupt request bit
self.PCD_SetRegisterBitMask(self.FIFOLevelReg, 0x80) # FlushBuffer = 1,

FIFO initialization
self.PCD_WriteRegister_(self.FIFODataReg, length, data) # Write data to the

FIFO
self.PCD_WriteRegister(self.CommandReg, self.PCD_CalcCRC) # Start the

calculation
Wait for the CRC calculation to complete. Each iteration of the while-loop takes

17.73�s.
while True:

n = self.PCD_ReadRegister(self.DivIrqReg) # DivIrqReg[7..0] bits are: Set2
reserved reserved MfinActIRq reserved CRCIRq reserved reserved

if (n & 0x04): # CRCIRq bit set - calculation done
break

if (--i == 0): # The emergency break. We will
eventually terminate on this one after 89ms. Communication with the MFRC522 might be down.

return self.STATUS_TIMEOUT
self.PCD_WriteRegister(self.CommandReg, self.PCD_Idle) # Stop calculating CRC

for new content in the FIFO.

Transfer the result from the registers to the result buffer
result[0] = self.PCD_ReadRegister(self.CRCResultRegL)
result[1] = self.PCD_ReadRegister(self.CRCResultRegH)
return self.STATUS_OK
End PCD_CalculateCRC()

Executes the Transceive command.
CRC validation can only be done if backData and backLen are specified.
#
@return STATUS_OK on success, STATUS_??? otherwise.
def PCD_TransceiveData(self,

sendData, # Pointer to the data to transfer to the FIFO.
sendLen, # Number of bytes to transfer to the FIFO.
backData, # NULL or pointer to buffer if data should be read back

after executing the command.
backLen, # In: Max number of bytes to write to *backData. Out:

The number of bytes returned.
validBits, # In/Out: The number of valid bits in the last byte.

0 for 8 valid bits. Default NULL.
rxAlign, # In: Defines the bit position in backData[0] for the

first bit received. Default 0.

364

www.keyestudio.com

checkCRC # In: True => The last two bytes of the response is
assumed to be a CRC_A that must be validated.

):
waitIRq = 0x30
return self.PCD_CommunicateWithPICC(self.PCD_Transceive, waitIRq, sendData,

sendLen, backData, backLen, validBits, rxAlign, checkCRC)
End PCD_TransceiveData()

Transfers data to the MFRC522 FIFO, executes a command, waits for completion and
transfers data back from the FIFO.

CRC validation can only be done if backData and backLen are specified.
#
@return STATUS_OK on success, STATUS_??? otherwise.
result = self.PCD_TransceiveData(buffer, bufferUsed, responseBuffer,

responseLength, tLB, rxAlign, 0)
def PCD_CommunicateWithPICC(self,

command, # The command to execute. One of the
PCD_Command enums.

waitIRq, # The bits in the ComIrqReg register that
signals successful completion of the command.

sendData, # Pointer to the data to transfer to the FIFO.
sendLen, # Number of bytes to transfer to the FIFO.
backData, # NULL or pointer to buffer if data should

be read back after executing the command.
backLen, # In: Max number of bytes to write to

*backData. Out: The number of bytes returned.
validBits, # In/Out: The number of valid bits in the last

byte. 0 for 8 valid bits.
rxAlign, # In: Defines the bit position in backData[0]

for the first bit received. Default 0.
checkCRC # In: True => The last two bytes of the

response is assumed to be a CRC_A that must be validated.
):

txLastBits = validBits[0] if validBits != None else 0
bitFraming = (rxAlign << 4) + txLastBits # RxAlign = BitFramingReg[6..4].

TxLastBits = BitFramingReg[2..0]

self.PCD_WriteRegister(self.CommandReg, self.PCD_Idle) # Stop any active
command.

self.PCD_WriteRegister(self.ComIrqReg, 0x7F) # Clear all seven
interrupt request bits

self.PCD_SetRegisterBitMask(self.FIFOLevelReg, 0x80) # FlushBuffer = 1,
FIFO initialization

365

www.keyestudio.com

self.PCD_WriteRegister_(self.FIFODataReg, sendLen, sendData) # Write sendData to
the FIFO

self.PCD_WriteRegister(self.BitFramingReg, bitFraming) # Bit adjustments
self.PCD_WriteRegister(self.CommandReg, command) # Execute the

command
if command == self.PCD_Transceive:

self.PCD_SetRegisterBitMask(self.BitFramingReg, 0x80) # StartSend=1,
transmission of data starts

Wait for the command to complete.
In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically

starts when the PCD stops transmitting.
Each iteration of the do-while-loop takes 17.86�s.
i = 2000
while True:

n = self.PCD_ReadRegister(self.ComIrqReg) #ComIrqReg[7..0] bits are: Set1
TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq

if n & waitIRq:
break

if n & 0x01:
return self.STATUS_TIMEOUT

if --i == 0:
return self.STATUS_TIMEOUT

Stop now if any errors except collisions were detected.
errorRegValue = self.PCD_ReadRegister(self.ErrorReg) # ErrorReg[7..0] bits are:

WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr
if errorRegValue & 0x13: # BufferOvfl ParityErr

ProtocolErr
return self.STATUS_ERROR

If the caller wants data back, get it from the MFRC522.
if backData != None and backLen != None :

n = self.PCD_ReadRegister(self.FIFOLevelReg) # Number of bytes in the FIFO
if n> backLen[0]:

return self.STATUS_NO_ROOM
backLen[0] = n # Number of bytes returned
Note: Use list mutable types in Python
self.PCD_ReadRegister_(self.FIFODataReg, n, backData, rxAlign) # Get received

data from FIFO
#print("backData:")
#print(backData)
_validBits = self.PCD_ReadRegister(self.ControlReg) & 0x07 # RxLastBits[2:0]

indicates the number of valid bits in the last received byte. If this value is 000b, the

366

www.keyestudio.com

whole byte is valid.
if validBits != None:

validBits[0] = _validBits

Tell about collisions
if errorRegValue & 0x08: # collErr

return self.STATUS_COLLISION

Perform CRC_A validation if requested.
if backData != None and backLen != None and checkCRC != 0:

In this case a MIFARE Classic NAK is not OK.
if backLen[0] == 1 and _validBits[0] == 4:

return self.STATUS_MIFARE_NACK
We need at least the CRC_A value and all 8 bits of the last byte must be received.
if backLen[0] < 2 or _validBits != 0:

return self.STATUS_CRC_WRONG
Verify CRC_A - do our own calculation and store the control in controlBuffer.
controlBuffer = [0, 0]
n = self.PCD_CalculateCRC(backData[0], backLen[0] - 2, controlBuffer[0])
if n != self.STATUS_OK:

return n
if (backData[backLen[0] - 2] != controlBuffer[0]) or (backData[backLen[0] -

1] != controlBuffer[1]):
return self.STATUS_CRC_WRONG

return self.STATUS_OK;
End PCD_CommunicateWithPICC()

Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and
prepare for anticollision or selection. 7 bit frame.

Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT
- probably due do bad antenna design.

#
@return STATUS_OK on success, STATUS_??? otherwise.
def PICC_RequestA(self,

bufferATQA, # The buffer to store the ATQA (Answer to request) in
bufferSize # Buffer size, at least two bytes. Also number of bytes

returned if STATUS_OK.
):

cmd = [self.PICC_CMD_REQA]
return self.PICC_REQA_or_WUPA(cmd, bufferATQA, bufferSize)
End PICC_RequestA()

367

www.keyestudio.com

Transmits REQA or WUPA commands.
Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT

- probably due do bad antenna design.
#
@return STATUS_OK on success, STATUS_??? otherwise.
def PICC_REQA_or_WUPA(self,

command, # The command to send - PICC_CMD_REQA or PICC_CMD_WUPA
bufferATQA, # The buffer to store the ATQA (Answer to request)

in
bufferSize # Buffer size, at least two bytes. Also number of bytes

returned if STATUS_OK.
):

if bufferATQA == None or bufferSize[0] < 2: # The ATQA response is 2 bytes long.
return self.STATUS_NO_ROOM

self.PCD_ClearRegisterBitMask(self.CollReg, 0x80) # ValuesAfterColl=1 => Bits
received after collision are cleared.

validBits = [7] # For REQA and WUPA we need the short frame format - transmit only
7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0]

status = self.PCD_TransceiveData(command, 1, bufferATQA, bufferSize, validBits, 0,
0)

if status != self.STATUS_OK:
return status

if bufferSize[0] != 2 or validBits[0] != 0:
return self.STATUS_ERROR

return self.STATUS_OK
End PICC_REQA_or_WUPA()

Transmits SELECT/ANTICOLLISION commands to select a single PICC.
Before calling this function the PICCs must be placed in the READY(*) state by calling

PICC_RequestA() or PICC_WakeupA().
On success:
- The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to

state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.)
- The UID size and value of the chosen PICC is returned in *uid along with the

SAK.
#
A PICC UID consists of 4, 7 or 10 bytes.
Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three

iterations are used:
UID size Number of UID bytes Cascade levels Example of PICC
======== =================== ============== ===============
single 4 1 MIFARE Classic
double 7 2 MIFARE Ultralight

368

www.keyestudio.com

triple 10 3 Not currently in use?
#
@return STATUS_OK on success, STATUS_??? otherwise.
def PICC_Select(self,

uid, # Pointer to Uid struct. Normally output, but can also be
used to supply a known UID.

validBits # The number of known UID bits supplied in *uid. Normally
0. If set you must also supply uid->size.

):
uidComplete = False
selectDone = False
useCascadeTag = False
cascadeLevel = 1
result = 0
count = 0
index = 0
uidIndex = 0 # The first index in uid->uidByte[] that is used

in the current Cascade Level.
currentLevelKnownBits = 0 # The number of known UID bits in the current Cascade

Level.
buffer = [0,0,0,0,0,0,0,0,0] # The SELECT/ANTICOLLISION commands uses a 7 byte

standard frame + 2 bytes CRC_A
bufferUsed = 0 # The number of bytes used in the buffer, ie the

number of bytes to transfer to the FIFO.
rxAlign = 0 # Used in BitFramingReg. Defines the bit position

for the first bit received.
txLastBits = 0 # Used in BitFramingReg. The number of valid bits

in the last transmitted byte.
responseBuffer = [0]
responseLength = [0]
Description of buffer structure:
Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1,

PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3
Byte 1: NVB Number of Valid Bits (in complete command, not

just the UID): High nibble: complete bytes, Low nibble: Extra bits.
Byte 2: UID-data or CT See explanation below. CT means Cascade Tag.
Byte 3: UID-data
Byte 4: UID-data
Byte 5: UID-data
Byte 6: BCC Block Check Character - XOR of bytes 2-5
Byte 7: CRC_A
Byte 8: CRC_A
The BCC and CRC_A is only transmitted if we know all the UID bits of the current

Cascade Level.

369

www.keyestudio.com

#
Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID

contents and cascade levels)
UID size Cascade level Byte2 Byte3 Byte4 Byte5
======== ============= ===== ===== ===== =====
4 bytes 1 uid0 uid1 uid2 uid3
7 bytes 1 CT uid0 uid1 uid2
2 uid3 uid4 uid5 uid6
10 bytes 1 CT uid0 uid1 uid2
2 CT uid3 uid4 uid5
3 uid6 uid7 uid8 uid9

Sanity checks
if validBits > 80:

return self.STATUS_INVALID

Prepare MFRC522
self.PCD_ClearRegisterBitMask(self.CollReg, 0x80) # ValuesAfterColl=1 => Bits

received after collision are cleared.

Repeat Cascade Level loop until we have a complete UID.
uidComplete = False
while uidComplete == False:

Set the Cascade Level in the SEL byte, find out if we need to use the Cascade
Tag in byte 2.

if cascadeLevel == 1:
buffer[0] = self.PICC_CMD_SEL_CL1
uidIndex = 0
useCascadeTag = validBits and uid.size > 4 # When we know that the UID

has more than 4 bytes
elif cascadeLevel == 2:

buffer[0] = self.PICC_CMD_SEL_CL2
uidIndex = 3
useCascadeTag = validBits and uid.size > 7 # When we know that the UID

has more than 7 bytes
elif cascadeLevel == 3:

buffer[0] = self.PICC_CMD_SEL_CL3
uidIndex = 6
useCascadeTag = False # Never used in CL3.

else:
return self.STATUS_INTERNAL_ERROR

How many UID bits are known in this Cascade Level?
currentLevelKnownBits = validBits - (8 * uidIndex)

370

www.keyestudio.com

if currentLevelKnownBits < 0:
currentLevelKnownBits = 0

Copy the known bits from uid->uidByte[] to buffer[]
index = 2 # destination index in buffer[]
#print(useCascadeTag);
if useCascadeTag:

index = index+1
buffer[index] = self.PICC_CMD_CT

The number of bytes needed to represent the known bits for this level.
bytesToCopy = 1 if currentLevelKnownBits % 8 > 0 else 0 #

(currentLevelKnownBits % 8 ? 1 : 0)
bytesToCopy = currentLevelKnownBits // 8 + bytesToCopy
if bytesToCopy:

maxBytes = 3 if useCascadeTag else 4 # maxBytes = useCascadeTag ? 3 : 4
if bytesToCopy > maxBytes:

bytesToCopy = maxBytes
for i in range(bytesToCopy):

index = index+1
buffer[index] = uid.uidByte[uidIndex + i]

Now that the data has been copied we need to include the 8 bits in CT in
currentLevelKnownBits

if useCascadeTag:
currentLevelKnownBits = currentLevelKnownBits + 8

Repeat anti collision loop until we can transmit all UID bits + BCC and receive
a SAK - max 32 iterations.

selectDone = False
while selectDone == False:

Find out how many bits and bytes to send and receive.
if currentLevelKnownBits >= 32: # All UID bits in this Cascade Level are

known. This is a SELECT.
Serial.print(F("SELECT: currentLevelKnownBits="));

Serial.println(currentLevelKnownBits, DEC);
buffer[1] = 0x70 # NVB - Number of Valid Bits: Seven whole bytes
Calculate BCC - Block Check Character
buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5]
Calculate CRC_A
tmpBuffer = [buffer[7], buffer[8]]
result = self.PCD_CalculateCRC(buffer, 7, tmpBuffer)
buffer[7] = tmpBuffer[0]
buffer[8] = tmpBuffer[1]

if result != self.STATUS_OK:

371

www.keyestudio.com

return result
txLastBits = 0 # 0 => All 8 bits are valid.
bufferUsed = 9
Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed

after tx)
responseBuffer = [0].copy()
responseBuffer[0] = buffer[6]
responseBuffer = responseBuffer + buffer[7:]
responseLength[0] = 3
bufferFlag = 6

else: # This is an ANTICOLLISION.
Serial.print(F("ANTICOLLISION: currentLevelKnownBits="));

Serial.println(currentLevelKnownBits, DEC);
txLastBits = currentLevelKnownBits % 8
count = currentLevelKnownBits // 8 # Number of whole bytes

in the UID part.
index = 2 + count # Number of whole

bytes: SEL + NVB + UIDs
buffer[1] = (index << 4) + txLastBits # NVB - Number of

Valid Bits

bufferUsed = 1 if txLastBits else 0
bufferUsed = index + bufferUsed

responseBuffer = [0].copy()
Store response in the unused part of buffer
responseBuffer[0] = buffer[index]
responseBuffer = responseBuffer + buffer[index+1:]
responseLength[0] = len(buffer) - index
bufferFlag = index

Set bit adjustments
rxAlign = txLastBits # Having a seperate variable is overkill.

But it makes the next line easier to read.
self.PCD_WriteRegister(self.BitFramingReg, (rxAlign << 4) + txLastBits)

RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]

#Transmit the buffer and receive the response.
tLB = [txLastBits]
result = self.PCD_TransceiveData(buffer, bufferUsed, responseBuffer,

responseLength, tLB, rxAlign, 0)
for i in range(bufferFlag, bufferFlag+responseLength[0]):

buffer[i] = responseBuffer[i-bufferFlag]

372

www.keyestudio.com

if result == self.STATUS_COLLISION: # More than one PICC in the field =>
collision.

result = self.PCD_ReadRegister(CollReg) # CollReg[7..0] bits are:
ValuesAfterColl reserved CollPosNotValid CollPos[4:0]

if result & 0x20:
return self.STATUS_COLLISION # Without a valid collision position

we cannot continue
collisionPos = result & 0x1F # Values 0-31, 0 means bit 32.
if collisionPos == 0:

collisionPos = 32
if collisionPos <= currentLevelKnownBits: # No progress - should not

happen
return self.STATUS_INTERNAL_ERROR

Choose the PICC with the bit set.
currentLevelKnownBits = collisionPos
count = (currentLevelKnownBits - 1) % 8 # The bit to modify
index = 1 if count else 0
index = 1 + (currentLevelKnownBits / 8) + index # First byte is index

0.
buffer[index] = buffer[index] | (1 << count)

elif result != self.STATUS_OK:
return result

else: # STATUS_OK
if currentLevelKnownBits >= 32: # This was a SELECT.

selectDone = True # No more anticollision
We continue below outside the while.

else: # This was an ANTICOLLISION.
We now have all 32 bits of the UID in this Cascade Level
currentLevelKnownBits = 32
Run loop again to do the SELECT.

End of while (!selectDone)

We do not check the CBB - it was constructed by us above.
Copy the found UID bytes from buffer[] to uid->uidByte[]
index = 3 if buffer[2] == self.PICC_CMD_CT else 2 # source index in buffer[]
bytesToCopy = 3 if buffer[2] == self.PICC_CMD_CT else 4
for i in range(bytesToCopy):

uid.uidByte[uidIndex + i] = buffer[index]
index = index+1

Check response SAK (Select Acknowledge)
if responseLength[0] != 3 or txLastBits != 0: # SAK must be exactly 24 bits (1

byte + CRC_A).

373

www.keyestudio.com

return self.STATUS_ERROR
Verify CRC_A - do our own calculation and store the control in buffer[2..3]

- those bytes are not needed anymore.
CRCbuffer = [buffer[2]]
CRCbuffer = CRCbuffer + buffer[3:]
result = self.PCD_CalculateCRC(responseBuffer, 1, CRCbuffer)
buffer[2] = CRCbuffer[0]
buffer[3] = CRCbuffer[1]

if result != self.STATUS_OK:
return result

if (buffer[2] != responseBuffer[1]) or (buffer[3] != responseBuffer[2]):
return self.STATUS_CRC_WRONG

if responseBuffer[0] & 0x04: # Cascade bit set - UID not complete yes
cascadeLevel = cascadeLevel+1

else:
uidComplete = True
uid.sak = responseBuffer[0]

End of while (!uidComplete)

Set correct uid->size
uid.size = 3 * cascadeLevel + 1
return self.STATUS_OK
End PICC_Select()

Returns true if a PICC responds to PICC_CMD_REQA.
Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored.
#
@return bool
def PICC_IsNewCardPresent(self):

bufferATQA = [0, 0]
bufferSize = [len(bufferATQA)]
result = self.PICC_RequestA(bufferATQA, bufferSize)
return result == self.STATUS_OK or result == self.STATUS_COLLISION
End PICC_IsNewCardPresent()

Simple wrapper around PICC_Select.
Returns true if a UID could be read.
Remember to call PICC_IsNewCardPresent(), PICC_RequestA() or PICC_WakeupA() first.
The read UID is available in the class variable uid.
#

374

www.keyestudio.com

@return bool
def PICC_ReadCardSerial(self):

result = self.PICC_Select(self.uid, 0)
return (result == self.STATUS_OK)
End PICC_ReadCardSerial()

Show details of PCD - MFRC522 Card Reader details.
def ShowReaderDetails(self):

v = self.PCD_ReadRegister(self.VersionReg)
version = str(v)
if v == 0x91:

version = version + " = v1.0"
elif v == 0x92:

version = version + " = v2.0"
else:

version = version + "unknown"
print("MFRC522 Software Version:" + version)

We can see the modules we saved under mycropython device, that is, in

pico

375

www.keyestudio.com

Test Code

'''

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 42

* rfid rc522 test

* http://www.keyestudio.com

'''

import machine

import time

from mfrc522_i2c import mfrc522

#i2c config

addr = 0x28

scl = 5

sda = 4

rc522 = mfrc522(scl, sda, addr)

rc522.PCD_Init()

rc522.ShowReaderDetails() # Show details of PCD -

MFRC522 Card Reader details

376

www.keyestudio.com

while True:

if rc522.PICC_IsNewCardPresent():

#print("Is new card present!")

if rc522.PICC_ReadCardSerial() == True:

print("Card UID:")

print(rc522.uid.uidByte[0 : rc522.uid.size])

#time.sleep(1)

Code Explanation

First import the module of RFID522,

mfrc522_config.py; this is a configuration file that defines some

parameters and commands

mfrc522_i2c.py; Initialization and read and write functions

Soft_iic.py; It is the bottom-level read and write function of software I2C.

We use the io port to simulate I2C here.

Test Result

377

www.keyestudio.com

When we make the IC card close to the RFID module, the information will

be printed out, as shown in the figure below.

5. Comprehensive Experiments

The previous projects are related to single sensor or module. In the

following part, we will combine various sensors and modules to create

some comprehensive experiments to perform special functions.

378

www.keyestudio.com

Project 43: Breathing LED

Overview

A“breathing LED”is a phenomenon where an LED's brightness smoothly

changes from dark to bright and back to dark, continuing to do so and

giving the illusion of an LED“breathing. This phenomenon is similar to a

lung breathing in and out. So how to control LED’s brightness? We need

to take advantage of PWM.

379

www.keyestudio.com

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

White LED

Module*1

3P Dupont

Wire*1
Micro USB Cable*1

Connection Diagram

Run the test code：

Double-click Breath.py，and click to run the code

380

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 38

* Breath

* http://www.keyestudio.com

'''

import machine

import time

pwm = machine.PWM(machine.Pin(15))

pwm.freq(1000)

381

www.keyestudio.com

duty = 0

direction = 1

while True:

duty += direction

if duty > 255:

duty = 255

direction = -1

elif duty < 0:

duty = 0

direction = 1

pwm.duty_u16(duty * duty)

time.sleep(0.01)

Code Explanation

The larger the set duty cycle, the brighter the LED will be, with a maximum of

65535. The duty increases from 0 to 255 at the beginning, with an increase of 1,

and delay in 10 milliseconds for each time, the LED on the module will gradually

become brighter.

After PWM is 255*255, i starts to decrease from 255 to 0, decreasing by 1 each

382

www.keyestudio.com

time, and delaying 10 milliseconds each time, the LED on the module gradually

gets dark. Then it gradually becomes brighter, cycle alternately, just like the

human breathes.

We can change the delayed time in the code. There are two ways:

Change the step length or reduce the delayed time.

The step length is supposed to divided by 255, for instance direction = -2 or

direction = 2.

Test Result

Run the test code, the LED on the module gradually gets dimmer then

brighter, cyclically, like human breathe

383

www.keyestudio.com

Project 44: Button-controlled LED

Overview

In this lesson, we will make an extension experiment with a button and an

LED. When the button is pressed and low levels are output, the LED will

light up; when the button is released, the LED will go off. Then we can

control a module with another module.

384

www.keyestudio.com

Components

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Expansion

Board*1

Keyestudio

Purple LED

Module*1

Keyestudio

DIY Button

Module*1

3P Dupont

Wire*2

Micro USB

Cable*1

Connection Diagram

Run the test code：

Double-click button control LED.py and click to run the test code.

385

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 39

* button control LED

* http://www.keyestudio.com

'''

from machine import Pin

import time

button = Pin(16, Pin.IN)

386

www.keyestudio.com

LED = Pin(15, Pin.OUT)

touch = False

def toggle_handle(pin):

global touch

touch = not touch

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle_handle)

while True:

LED.value(touch)

time.sleep(0.01)

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle_handle):

trigger mode is when high levels change into low levels, the trigger interrupts

toggle_handle: when entering the interrupt mode, the on and off of the LED

can be controlled.

Test Result

387

www.keyestudio.com

Run the test code and press the button, LED will light up; if the button is

pressed again, the LED will go out.

Code Explanation

Set IO ports according to connection diagram and configure pins mode

attachInterrupt(digitalPinToInterrupt(button), toggle_handle,

FALLING)

The trigger mode is when a high level becomes a low level. When the trigger

interrupts, the interrupt function will be activated.

toggle_handle: when entering the interrupt mode, the on and off of the LED

can be controlled.

Test Result

Upload the code wire up and power up with a USB cable. When the button

is pressed, the LED will light up; when pressed again, the LED will go off

388

www.keyestudio.com

Project 45: Alarm Experiment

Overview

In the previous experiment, we control an output module though an input

module. In this lesson, we will make an experiment that the active buzzer

will emit sounds once an obstacle appears.

Components

389

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Expansion

Board*1

Keyestudio

Obstacle

Avoidance

Sensor*1

Keyestudio

Active

Buzzer*1

3P

Dupont

Wire*2

Micro USB

Cable*1

Connection Diagram

Run the test code

Click Avoiding alarm.py and double-click the code，and click to run the test

code

390

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 45

* Avoiding alarm

* http://www.keyestudio.com

'''

from machine import Pin

import time

buzzer = Pin(16, Pin.OUT)

sensor = Pin(15, Pin.IN)

391

www.keyestudio.com

while True:

buzzer.value(not(sensor.value()))

time.sleep(0.01)

Code Explanation

When an obstacle is detected, sensor.value() will return a low level signal.

So when an obstacle is detected, the GP16 connected to the buzzer pin will

output a high level signal, the buzzer will emit sounds.

Test Result

Run the test code. The active buzzer will emit sound if detecting obstacles;

otherwise, it won’t emit sound

Code Explanation

Set IO ports according to connection diagram then configure pins mode

The value is 0 when pressing the button, So, we can determine the key

value(0）through if (item == 0) and make the buzzer beep.

Test Result

392

www.keyestudio.com

Upload the test code, if the obstacle is detected, the active buzzer will

chime; if not, it won’t beep

Project 46: Ultraviolet Alarm

Description

We can use a UV sensor to control the buzzer to achieve the effect of UV

alarm.

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

ultraviolet

Sensor*1

Keyestudio

Active

Buzzer*1

3P Dupont

Wire*2

Micro USB

Cable*1

393

www.keyestudio.com

Connection Diagram

Run the test code

Find and double-click UV_alarm.py and click

394

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 41

* UV_alarm

* http://www.keyestudio.com

'''

from machine import Pin

import time

buzzer = Pin(3, Pin.OUT)

sensor = machine.ADC(26)

while True:

analogVal = sensor.read_u16()

print(analogVal)

if analogVal > 1000:

buzzer.value(1)

else:

buzzer.value(0)

time.sleep(0.5)

395

www.keyestudio.com

Code Explanation

The code settings in the experiment are similar to the previous

experiments. This time, the module we input is used as an analog sensor.

By setting a threshold, the alarm exceeds the threshold.

Test Result

Wire up and run the test code. When detecting ultraviolet rays through he

ultraviolet sensor and reaching the strength we set, the active buzzer will

emit sound

396

www.keyestudio.com

Project 47: Intrusion Detection

Description

In this experiment, we use a PIR motion sensor to control an active buzzer

to emit sounds and the onboard LED to flash rapidly.

Required Components

397

www.keyestudio.com

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico

Expansion

Board*1

Keyestudi

o DIY PIR

Motion

Sensor*1

Keyestud

io DIY

Active

Sensor*1

3P Dupont

Wire*2

Micro

USB

Cable*1

Connection Diagram

Run the test code

Find and double-click PIR alarm.py and click

398

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 42

* PIR alarm

* http://www.keyestudio.com

'''

import machine

import utime

sensor_pir = machine.Pin(15, machine.Pin.IN,

399

www.keyestudio.com

machine.Pin.PULL_DOWN)

led = machine.Pin(25, machine.Pin.OUT)

buzzer = machine.Pin(16, machine.Pin.OUT)

def pir_handler(pin):

utime.sleep_ms(100)

if pin.value():

print("Warning! Intrusion detected！")

buzzer.value(1)

for i in range(20):

led.toggle()

utime.sleep_ms(100)

sensor_pir.irq(trigger=machine.Pin.IRQ_RISING,

handler=pir_handler)

while True:

led.toggle()

buzzer.value(0)

utime.sleep(2)

400

www.keyestudio.com

Code Explanation

sensor_pir.irq(trigger=machine.Pin.IRQ_RISING,

handler=pir_handler): low levels change into high levels. pir_handler is the

interrupt function which can make the buzzer emit and LED flash

Test Result

After programming, the LED flashes slowly, the detector starts to work, and

the interrupt trigger mode is IRQ_RISING. When there is an intrusion, the

output level of the PIR changes from 0 to 1, the pir_handler() function will

be called, the buzzer will emit sound, and the LED will flash quickly.

401

www.keyestudio.com

Project 48: Speaker Module

Introduction

We learned about controlling the speaker module to make sounds, play

beats and adjust its volume. In fact, each song is a combination of specific

beats and tones (frequencies). In this experiment, we use this speaker

module to play a song.

The frequency of each tone is shown below.

Bass:

Key

Note

1# 2# 3# 4# 5# 6# 7#

402

www.keyestudio.com

A 221 248 278 294 330 371 416

B 248 278 294 330 371 416 467

C 131 147 165 175 196 221 248

D 147 165 175 196 221 248 278

E 165 175 196 221 248 278 312

F 175 196 221 234 262 294 330

G 196 221 234 262 294 330 371

Midrange :

Key

Note

1 2 3 4 5 6 7

A 441 495 556 589 661 724 833

B 495 556 624 661 724 833 935

C 262 294 330 350 393 441 495

403

www.keyestudio.com

D 294 330 350 393 441 495 556

E 330 350 393 441 495 556 624

F 350 393 441 495 556 624 661

G 393 441 495 556 624 661 724

Treble:

Key

Note

1# 2# 3# 4# 5# 6# 7#

A 882 990 1112 1178 1322 1484 1665

B 990 1112 1178 1322 1484 1665 1869

C 525 589 661 700 786 882 990

D 589 661 700 786 882 990 1112

E 661 700 786 882 990 1112 1248

404

www.keyestudio.com

F 700 786 882 935 1049 1178 1322

G 786 882 990 1049 1178 1322 1484

Beats are the time delay for each note. The larger the number, the longer

the delay time. A note without a line in the spectrum is a beat, with a delay

of 1s. while a beat with an underline is 1/2 of a beat without a line, with a

delay of 0.5s, and a beat with two underlines is 1/4 of a beat without a line,

with a delay of 0.25s. The 1/8 of a beat is with a delay of 0.125s.

We will take Happy Birthday Song as an example.

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio 8002b

Audio Power

Amplifie*1

3P Dupont Wire*1 Micro USB Cable*1

Connection Diagram

405

www.keyestudio.com

Run the test code

Find and double-click play music.py and click

406

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 43

* play music

* http://www.keyestudio.com

'''

from machine import Pin, PWM

from utime import sleep

buzzer = PWM(Pin(15))

tones = {

"D1": 262,

"D2": 293,

"D3": 329,

"D4": 349,

"D5": 392,

"D6": 440,

"D7": 494,

"M1": 523,

"M2": 586,

"M3": 658,

407

www.keyestudio.com

"M4": 697,

"M5": 783,

"M6": 879,

"M7": 987,

"H1": 1045,

"H2": 1171,

"H3": 1316,

"H4": 1393,

"H5": 1563,

"H6": 1755,

"H7": 1971

}

song = ["D5","D5","D6","D5","M1","D7",

"D5","D5","D6","D5","M2","M1",

"D5","D5","M5","M3","M1","D7","D6",

"M4","M4","M3","M1","M2","M1"

]

durt = [0.25, 0.25, 0.5, 0.5, 0.5, 1,

0.25, 0.25, 0.5, 0.5, 0.5, 1,

0.25, 0.25, 0.5, 0.5, 0.5, 0.5, 0.5,

408

www.keyestudio.com

0.25, 0.25, 0.5, 0.5, 0.5, 1

]

def playtone(frequency):

buzzer.duty_u16(1000)

buzzer.freq(frequency)

def bequiet():

buzzer.duty_u16(0)

def playsong(mysong):

for i in range(len(mysong)):

playtone(tones[mysong[i]])

sleep(durt[i])

bequiet()

playsong(song)

Code Explanation

We list frequencies of all D keys. Then list the frequencies and beats

according to the musical notation. The beat we use is 500ms and can be

adjusted. The corresponding beat are looped to become a song.

409

www.keyestudio.com

Test Result

Connect the components according to the connection diagram and run the

test code, the audio power amplifier module will play a birthday song.

410

www.keyestudio.com

Project 49: Extinguishing Robot

Description

Today we will use Arduino simulation to build an extinguishing robot that

will automatically sense the fire and start the fan. In this project we will

learn how to build a very simple robot using pico, (detecting flames with a

flame sensor, blowing out candles with a fan) can teach us basic concepts

about robotics. Once you understand the basics below, you can build more

complex robots.

Components Required

411

www.keyestudio.com

Connection Diagram

Run the test code：

Double-click Self-extinguishing.py，and click to run the test code.

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

130

Motor*1

Flame

Sensor*1

4P Dupont

Wire*2

Micro USB

Cable*1

412

www.keyestudio.com

Test Code

'''

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 49

* Self-extinguishing

* http://www.keyestudio.com

'''

from machine import Pin

import time

#two pins of motors

INA = Pin(20, Pin.OUT)

413

www.keyestudio.com

INB = Pin(21, Pin.OUT)

flame_A = machine.ADC(26)

while True:

value = flame_A.read_u16()

print(value)

if value < 30000:

#start

INA.value(0)

INB.value(1)

else:

#stop

INA.value(0)

INB.value(0)

time.sleep(0.1)

Code Explanation

In the code, we set the threshold value to 30000. When the analog value detected

by the flame sensor is lower than the threshold value, the fan will be

automatically turned on; otherwise, it will be turned off. For the driving method of

the fan, please refer to the 130 Motor.

414

www.keyestudio.com

Test Result

Wire up and upload the test code，the shell shows the flame value. When this

value is less than 30000, the fan will works to blow out the fire. Basically, the

flame value can be set by yourself.

415

www.keyestudio.com

Project 50: Rotary Encoder

Introduction

In this lesson, we will control the LED on the RGB module to show different

colors through a rotary encoder.

When designing the code, we need to divide the obtained values by 3 to

get the remainders. The remainder is 0 and the LED will become red. The

remainder is 1, the LED will become green. The remainder is 2, the LED will

turn blue.

Components

416

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion

Board*1

Keyestudio

Common

Cathode RGB

Module*1

Keyestudio

Rotary Encoder

Module*1

5P Dupont

Wire*1
4P Dupont Wire*1

Micro USB

Cable*1

Connection Diagram

417

www.keyestudio.com

Run the test code：

Double-click Encoder control RGB.py，and click to run the test code.

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 44

* Encoder control RGB

* http://www.keyestudio.com

'''

418

www.keyestudio.com

import time

from rotary_irq_rp2 import RotaryIRQ

from machine import Pin, PWM

pwm_r = PWM(Pin(9))

pwm_g = PWM(Pin(10))

pwm_b = PWM(Pin(11))

pwm_r.freq(1000)

pwm_g.freq(1000)

pwm_b.freq(1000)

def light(red, green, blue):

pwm_r.duty_u16(red)

pwm_g.duty_u16(green)

pwm_b.duty_u16(blue)

SW=Pin(20,Pin.IN,Pin.PULL_UP)

r = RotaryIRQ(pin_num_clk=18,

pin_num_dt=19,

min_val=0,

reverse=False,

419

www.keyestudio.com

range_mode=RotaryIRQ.RANGE_UNBOUNDED)

while True:

val = r.value()

print(val%3)

if val%3 == 0:

light(65535, 0, 0)

elif val%3 == 1:

light(0, 65535, 0)

elif val%3 == 2:

light(0, 0, 65535)

time.sleep(0.1)

Code Explanation

In the experiment, we set the val to the remainder of Encoder_Count

divided by 3. Encoder_Count is the value of the encoder. Then we can set

pin 9(red), 10(green) and 11(blue) according to remainders.

Colors of LED can be controlled by remainders.

420

www.keyestudio.com

Test Result

Wire up, run the code and open the serial monitor. Rotate the knob of the

rotary encoder to display the reminders, which can control colors of LED.

Project 51: Rotary Potentiometer

421

www.keyestudio.com

Introduction

In the previous courses, we did experiments of breathing light and

controlling LED with button. In this course, we do these two experiments

by controlling the brightness of LED through an adjustable potentiometer.

The brightness of LED is controlled by PWM values, and the range of

analog values is the same as the PWM’s, from 0 to 65535.

After the code is set successfully, we can control the brightness of the LED

on the module by rotating the potentiometer.

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico

Expansion

Board*1

Keyestudio

Purple

LED*1

Keyestudio

Rotary

Potentiomete

r*1

3P Dupont

Wire*2

Micro USB

Cable*1

Connection Diagram

422

www.keyestudio.com

Run the test code：

Double-click adjust the light.py，and click to run the test code.

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

423

www.keyestudio.com

* lesson 45

* adjust the light

* http://www.keyestudio.com

'''

import machine

import utime

potentiometer = machine.ADC(26)

pwm = machine.PWM(machine.Pin(15))

pwm.freq(1000)

while True:

pot_value = potentiometer.read_u16()

pwm.duty_u16(pot_value)

utime.sleep(0.1)

Code Explanation

It is easy to control the brightness of the LED light by a potentiometer.

Here we can find that MicroPython unifies the value range of the ADC

424

www.keyestudio.com

between 0 and 65535, and assigns values directly, which is simple and

convenient.

Test Result

Run the test code and turn the potentiometer on the module to adjust the

brightness of the LED on the LED module.

425

www.keyestudio.com

Project 52: Smart Windows

Description

In life, we can see all kinds of smart products, such as smart home. Smart

homes include smart curtains, smart windows, smart TVs, smart lights, and

more. In this experiment, we use a steam sensor to detect rainwater, and

then achieve the effect of closing and opening the window by a servo.

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

Steam

Sensor*1

Servo*1
3P Dupont

Wire*1

Micro USB

Cable*1

426

www.keyestudio.com

Connection Diagram

Run the test code

Find and double-click button control LED.py and click

427

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 46

* Smart_window

* http://www.keyestudio.com

'''

import utime

from machine import Pin

from machine import PWM

428

www.keyestudio.com

pwm = PWM(Pin(9))#the pin of the servo is connected to GP9

pwm.freq(50)#20ms，frequency is 50Hz

sensor = machine.ADC(26)#ADC0

'''

The duty cycle corresponding to the angle

0°----2.5%----1638

45°----5%----3276

90°----7.5%----4915

135°----10%----6553

180°----12.5%----8192

Take consideration into errors ， set duty cycle in the range of

1000~9000，then rotate 0~180°

'''

angle_0 = 1638

angle_90 = 4915

angle_180 = 8192

while True:

value = sensor.read_u16()

print(value)

if value > 2000:

pwm.duty_u16(angle_0)

429

www.keyestudio.com

utime.sleep(0.5)

else:

pwm.duty_u16(angle_180)

utime.sleep(0.5)

Code Explanation

We can control a servo to rotate by a threshold

Test Result

Wire up and run the test code. When the sensor detects a certain amount

of water, the servo rotates to achieve the effect of closing or opening

windows.

430

www.keyestudio.com

Project 53: Sound Activated Light

Introduction

In this lesson, we will make a smart sound activated light using a sound

sensor and an LED module. When we make a sound, the light will

automatically turn on; when there is no sound, the lights will automatically

turn off. How it works? Because the sound-controlled light is equipped with

a sound sensor, and this sensor converts the intensity of external sound

into a corresponding value. Then set a threshold, when the threshold is

exceeded, the light will turn on, and when it is not exceeded, the light will

431

www.keyestudio.com

go out.

Components

Raspberry

Pi Pico

Board*1

Raspberry

Pi Pico

Shield*1

Keyestudio

Sound

Sensor*1

Keyestudio

White LED

Module*1

3P Dupont

Wire*2

MicroUSB

Cable*1

Connection Diagram

432

www.keyestudio.com

Run the Test Code：

Double-click sound-controlled lights.py and clock to run the test code.

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 47

* sound-controlled lights

* http://www.keyestudio.com

'''

433

www.keyestudio.com

import machine

import time

MicroPhone = machine.ADC(26)

led = machine.Pin(15,machine.Pin.OUT)

while True:

value = MicroPhone.read_u16()

print(value)

if value > 5000:

led.value(1)

time.sleep(3)

else:

led.value(0)

time.sleep(0.1)

Code Explanation

We set the analog threshold value to 5000. If more than 5000, LED will be

on 3s; on the contrary, it will be off.

Test Result

434

www.keyestudio.com

Run the test code, the shell monitor displays the corresponding volume

value. When the analog value of sound is greater than 5000, the LED on the

LED module will light up, otherwise it will go off.

Project 54: Fire Alarm

Description

In this experiment, we will make a fire alarm system. Just use a flame sensor

to control an active buzzer to emit sounds.

435

www.keyestudio.com

Required Components

Connection Diagram

Run the test code

Find and double-click Flame_alarm.py and click

Raspberry Pi Pico

Board*1

Raspberry Pi Pico Expansion

Board*1

Keyestudio DIY 电

Active Buzzer*1

keyestudio DIY

Flame Sensor*1

Micro USB Cable*1 3P Dupont Wire*1 4P Dupont Wire*1

436

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 48

* Flame_alarm

* http://www.keyestudio.com

'''

from machine import Pin

import time

buzzer = Pin(3, Pin.OUT)

437

www.keyestudio.com

sensor = Pin(22, Pin.IN)

while True:

analogVal = sensor.value()

print(analogVal)

if analogVal == 0:

buzzer.value(1)

else:

buzzer.value(0)

time.sleep(0.5)

Code Explanation

This flame sensor uses an analog pin and a digital pin. When a flame is

detected, the digital pin outputs a low level. In this experiment we will use

the digital port.

Test Result

Wire up, run the test code and power on. The sensor detects the flame, and

the external active buzzer will emit sounds, otherwise the active buzzer will

not emit sounds.

438

www.keyestudio.com

Project 55: Smoke Alarm

439

www.keyestudio.com

Description

In this experiment, we will make a smoke alarm by a TM16504-Digit segment

module, a gas sensor and an active buzzer.

Required Components

Raspberry Pi Pico

Board*1

Raspberry Pi Pico Expansion

Board*1

Keyestudio Active

Buzzer*1

Keyestudio

TM16504-Digit

Segment Module*1

keyestudio Analog

Gas Senso*1
3P Dupont Wire*1 4P Dupont Wire*2 Micro USB Cable*1

Connection Diagram

440

www.keyestudio.com

Run the test code

Find and double-click smoke_alarm.py and click

441

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 49

* smoke_alarm

* http://www.keyestudio.com

'''

from machine import Pin

import time

mq2 = machine.ADC(26)

buzzer = Pin(3, Pin.OUT)

definitions for TM1650

ADDR_DIS = 0x48 #mode command

ADDR_KEY = 0x49 #read key value command

definitions for brightness

BRIGHT_DARKEST = 0

BRIGHT_TYPICAL = 2

BRIGHTEST = 7

on = 1

442

www.keyestudio.com

off = 0

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]

DIG = [0x68,0x6a,0x6c,0x6e]

DIG = [0x6e,0x6c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15

dioPin = 14

clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):

global clk,dio

for i in range(8):

if(wr_data & 0x80 == 0x80):

dio.value(1)

else:

dio.value(0)

443

www.keyestudio.com

clk.value(0)

time.sleep(0.0001)

clk.value(1)

time.sleep(0.0001)

clk.value(0)

wr_data <<= 1

return

def start():

global clk,dio

dio.value(1)

clk.value(1)

time.sleep(0.0001)

dio.value(0)

return

def ack():

global clk,dio

dy = 0

clk.value(0)

time.sleep(0.0001)

dio = Pin(dioPin, machine.Pin.IN)

444

www.keyestudio.com

while(dio.value() == 1):

time.sleep(0.0001)

dy += 1

if(dy>5000):

break

clk.value(1)

time.sleep(0.0001)

clk.value(0)

dio = Pin(dioPin, machine.Pin.OUT)

return

def stop():

global clk,dio

dio.value(0)

clk.value(1)

time.sleep(0.0001)

dio.value(1)

return

def displayBit(bit, num):

global ADDR_DIS

if(num > 9 and bit > 4):

445

www.keyestudio.com

return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

if(DOT[bit-1] == 1):

writeByte(NUM[num] | 0x80)

else:

writeByte(NUM[num])

ack()

stop()

return

def clearBit(bit):

if(bit > 4):

return

start()

446

www.keyestudio.com

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

writeByte(0x00)

ack()

stop()

return

def setBrightness(b = BRIGHT_TYPICAL):

global DisplayCommand,brightness

DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

return

def setMode(segment = 0):

global DisplayCommand

DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

447

www.keyestudio.com

return

def displayOnOFF(OnOff = 1):

global DisplayCommand

DisplayCommand = (DisplayCommand & 0xfe)+OnOff

return

def displayDot(bit, OnOff):

if(bit > 4):

return

if(OnOff == 1):

DOT[bit-1] = 1;

else:

DOT[bit-1] = 0;

return

def InitDigitalTube():

setBrightness(2)

setMode(0)

displayOnOFF(1)

for _ in range(4):

clearBit(_)

448

www.keyestudio.com

return

def ShowNum(num): #0~9999

displayBit(1,num%10)

if(num < 10):

clearBit(2)

clearBit(3)

clearBit(4)

if(num > 9 and num < 100):

displayBit(2,num//10%10)

clearBit(3)

clearBit(4)

if(num > 99 and num < 1000):

displayBit(2,num//10%10)

displayBit(3,num//100%10)

clearBit(4)

if(num > 999 and num < 10000):

displayBit(2,num//10%10)

displayBit(3,num//100%10)

displayBit(4,num//1000)

InitDigitalTube()

449

www.keyestudio.com

while True:

value = mq2.read_u16()//16

print(value)

ShowNum(value)

if value > 1000:

buzzer.value(1)

else:

buzzer.value(0)

time.sleep(0.1)

Code Explanation

Define an integer variable val to store the analog value of the smoke sensor, and

then we display the analog value in the four-digit digital tube, and then set a

threshold, and when the threshold is reached, the buzzer will sound.

Test Result

Run the test code, wire up and power on. When the concentration of

combustible gas exceeds the standard, the active buzzer module will give

450

www.keyestudio.com

an alarm, and the four-digit digital tube will display the concentration

value.

Project 56: Alcohol Sensor

Description

In the last experiment, we made a smoke alarm. In this experiment, we

combine the active buzzer, the MQ-3 alcohol sensor, and a four-digit

digital tube to test the alcohol concentration through the alcohol sensor.

451

www.keyestudio.com

Then, the concentration to control the active buzzer alarm and the

four-digit digital tube to display the concentration. So as to achieve the

simulation effect of alcohol detector.

Components Required

Connection Diagram

Raspberry Pi Pico

Board*1

Raspberry Pi Pico Expansion

Board*1
Active Buzzer

Keyestudio TM1650

4-Digit Module*1

keyestudio Alcohol

Sensor*1
3P Dupont Wire*1 4P Dupont Wire*2 Micro USB Cable*1

452

www.keyestudio.com

Run the test code

Find the breathalyzer.py and double-click the code and click

Code Explanation

Define an integer variable val to store the analog value of the alcohol

sensor, then we display the analog value in the four-digit display module

and set a threshold.

Test Result

Wire up according to the wiring diagram and run the test code. When

different alcohol concentrations are detected, the active buzzer module

will alarm, and the four-digit digital display will show the concentration

453

www.keyestudio.com

value.

Test Code

'''

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 56

* breathalyzer

* http://www.keyestudio.com

'''

from machine import Pin

import time

mq3 = machine.ADC(26)

buzzer = Pin(3, Pin.OUT)

definitions for TM1650

ADDR_DIS = 0x48 #mode command

454

www.keyestudio.com

ADDR_KEY = 0x49 #read key value command

definitions for brightness

BRIGHT_DARKEST = 0

BRIGHT_TYPICAL = 2

BRIGHTEST = 7

on = 1

off = 0

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]

DIG = [0x68,0x6a,0x6c,0x6e]

DIG = [0x6e,0x6c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15

dioPin = 14

clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

455

www.keyestudio.com

def writeByte(wr_data):

global clk,dio

for i in range(8):

if(wr_data & 0x80 == 0x80):

dio.value(1)

else:

dio.value(0)

clk.value(0)

time.sleep(0.0001)

clk.value(1)

time.sleep(0.0001)

clk.value(0)

wr_data <<= 1

return

def start():

global clk,dio

dio.value(1)

clk.value(1)

time.sleep(0.0001)

dio.value(0)

456

www.keyestudio.com

return

def ack():

global clk,dio

dy = 0

clk.value(0)

time.sleep(0.0001)

dio = Pin(dioPin, machine.Pin.IN)

while(dio.value() == 1):

time.sleep(0.0001)

dy += 1

if(dy>5000):

break

clk.value(1)

time.sleep(0.0001)

clk.value(0)

dio = Pin(dioPin, machine.Pin.OUT)

return

def stop():

global clk,dio

dio.value(0)

457

www.keyestudio.com

clk.value(1)

time.sleep(0.0001)

dio.value(1)

return

def displayBit(bit, num):

global ADDR_DIS

if(num > 9 and bit > 4):

return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

if(DOT[bit-1] == 1):

writeByte(NUM[num] | 0x80)

else:

writeByte(NUM[num])

458

www.keyestudio.com

ack()

stop()

return

def clearBit(bit):

if(bit > 4):

return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

writeByte(0x00)

ack()

stop()

return

459

www.keyestudio.com

def setBrightness(b = BRIGHT_TYPICAL):

global DisplayCommand,brightness

DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

return

def setMode(segment = 0):

global DisplayCommand

DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

def displayOnOFF(OnOff = 1):

global DisplayCommand

DisplayCommand = (DisplayCommand & 0xfe)+OnOff

return

def displayDot(bit, OnOff):

if(bit > 4):

return

if(OnOff == 1):

DOT[bit-1] = 1;

else:

DOT[bit-1] = 0;

460

www.keyestudio.com

return

def InitDigitalTube():

setBrightness(2)

setMode(0)

displayOnOFF(1)

for _ in range(4):

clearBit(_)

return

def ShowNum(num): #0~9999

displayBit(1,num%10)

if(num < 10):

clearBit(2)

clearBit(3)

clearBit(4)

if(num > 9 and num < 100):

displayBit(2,num//10%10)

clearBit(3)

clearBit(4)

if(num > 99 and num < 1000):

displayBit(2,num//10%10)

461

www.keyestudio.com

displayBit(3,num//100%10)

clearBit(4)

if(num > 999 and num < 10000):

displayBit(2,num//10%10)

displayBit(3,num//100%10)

displayBit(4,num//1000)

InitDigitalTube()

while True:

value = mq3.read_u16()//16

print(value)

ShowNum(value)

if value > 3000:

buzzer.value(1)

else:

buzzer.value(0)

time.sleep(0.1)

462

www.keyestudio.com

Project 57: 6812 Colorful LED

Description

We learned how to use the 6812 RGB module, we knew that this module

can light up each LED through a pin. In this experiment, we will control the

RGB module to display different colors. (Note: do not look directly at the

LEDs for a long time to avoid damage to our eyes.)

Required Components

463

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

6812 RGB

Module*1

3P Dupont

Wire*1

MicroUSB

Cable*1

Connection Diagram

Run the test code：

Double-click 6812.py and click to run the test code

464

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 50

* SK6812 RGB

* http://www.keyestudio.com

'''

Example using PIO to drive a set of WS2812 LEDs.

import array, time

from machine import Pin

465

www.keyestudio.com

import rp2

Configure the number of WS2812 LEDs.

NUM_LEDS = 4

PIN_NUM = 15

brightness = 0.2

@rp2.asm_pio(sideset_init=rp2.PIO.OUT_LOW,

out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=24)

def ws2812():

T1 = 2

T2 = 5

T3 = 3

wrap_target()

label("bitloop")

out(x, 1) .side(0) [T3 - 1]

jmp(not_x, "do_zero") .side(1) [T1 - 1]

jmp("bitloop") .side(1) [T2 - 1]

label("do_zero")

nop() .side(0) [T2 - 1]

wrap()

466

www.keyestudio.com

Create the StateMachine with the ws2812 program, outputting on

pin

sm = rp2.StateMachine(0, ws2812, freq=8_000_000,

sideset_base=Pin(PIN_NUM))

Start the StateMachine, it will wait for data on its FIFO.

sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.

ar = array.array("I", [0 for _ in range(NUM_LEDS)])

###

###############################

def pixels_show():

dimmer_ar = array.array("I", [0 for _ in range(NUM_LEDS)])

for i,c in enumerate(ar):

r = int(((c >> 8) & 0xFF) * brightness)

g = int(((c >> 16) & 0xFF) * brightness)

b = int((c & 0xFF) * brightness)

dimmer_ar[i] = (g<<16) + (r<<8) + b

sm.put(dimmer_ar, 8)

467

www.keyestudio.com

time.sleep_ms(10)

def pixels_set(i, color):

ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]

def color_chase(color, wait):

for i in range(NUM_LEDS):

pixels_set(i, color)

time.sleep(wait)

pixels_show()

time.sleep(0.2)

def wheel(pos):

Input a value 0 to 255 to get a color value.

The colours are a transition r - g - b - back to r.

if pos < 0 or pos > 255:

return (0, 0, 0)

if pos < 85:

return (255 - pos * 3, pos * 3, 0)

if pos < 170:

pos -= 85

return (0, 255 - pos * 3, pos * 3)

468

www.keyestudio.com

pos -= 170

return (pos * 3, 0, 255 - pos * 3)

def rainbow_cycle(wait):

for j in range(255):

for i in range(NUM_LEDS):

rc_index = (i * 256 // NUM_LEDS) + j

pixels_set(i, wheel(rc_index & 255))

pixels_show()

time.sleep(wait)

BLACK = (0, 0, 0)

RED = (255, 0, 0)

YELLOW = (255, 150, 0)

GREEN = (0, 255, 0)

CYAN = (0, 255, 255)

BLUE = (0, 0, 255)

PURPLE = (180, 0, 255)

WHITE = (255, 255, 255)

COLORS = (BLACK, RED, YELLOW, GREEN, CYAN, BLUE, PURPLE,

WHITE)

469

www.keyestudio.com

print("chases")

for color in COLORS:

color_chase(color, 0.05)

print("rainbow")

rainbow_cycle(0)

Code Explanation

color_chase(color, wait): show color

rainbow_cycle(0)：show the rainbow effect

Test Result

Wire up, run the test code. Then the four lamp beads will display flowing

lights, showing black, red, yellow, green, blue, blue, purple and white and

a rainbow light effect.

470

www.keyestudio.com

Project 58: Ultrasonic Radar

Description

471

www.keyestudio.com

We know that bats use echoes to determine the direction and the location

of their preys. In real life, sonar is used to detect sounds in the water. Since

the attenuation rate of electromagnetic waves in water is very high, it

cannot be used to detect signals, however, the attenuation rate of sound

waves in the water is much smaller, so sound waves are most commonly

used underwater for observation and measurement.In this experiment, we

will use a speaker module, an RGB module and a 4-digit tube display to

make a device for detection through ultrasonic.

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Expansion

Board*1

Keyes brick

HC-SR04

Ultrasonic

Sensor*1

Keyestudio Audio

Power

Amplifier*1

Keyestudio DIY

Common Cathode

RGB Module *1

472

www.keyestudio.com

Keyestudio DIY

TM1650 4-Digit

Segment

Display*1

4P Dupont Wire*3 3P Dupont Wire*1
Micro USB

Cable*1

Connection Diagram

Run the test code：

Double-click Ultrasonic radar.py，and click to run the test code.

473

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 51

* Ultrasonic radar

* http://www.keyestudio.com

'''

from machine import Pin, PWM

import utime

definitions for TM1650

474

www.keyestudio.com

ADDR_DIS = 0x48 #mode command

ADDR_KEY = 0x49 #read key value command

definitions for brightness

BRIGHT_DARKEST = 0

BRIGHT_TYPICAL = 2

BRIGHTEST = 7

on = 1

off = 0

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]

DIG = [0x68,0x6a,0x6c,0x6e]

DIG = [0x6e,0x6c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15

dioPin = 14

clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

475

www.keyestudio.com

DisplayCommand = 0

def writeByte(wr_data):

global clk,dio

for i in range(8):

if(wr_data & 0x80 == 0x80):

dio.value(1)

else:

dio.value(0)

clk.value(0)

utime.sleep(0.0001)

clk.value(1)

utime.sleep(0.0001)

clk.value(0)

wr_data <<= 1

return

def start():

global clk,dio

dio.value(1)

clk.value(1)

utime.sleep(0.0001)

476

www.keyestudio.com

dio.value(0)

return

def ack():

global clk,dio

dy = 0

clk.value(0)

utime.sleep(0.0001)

dio = Pin(dioPin, machine.Pin.IN)

while(dio.value() == 1):

utime.sleep(0.0001)

dy += 1

if(dy>5000):

break

clk.value(1)

utime.sleep(0.0001)

clk.value(0)

dio = Pin(dioPin, machine.Pin.OUT)

return

def stop():

global clk,dio

477

www.keyestudio.com

dio.value(0)

clk.value(1)

utime.sleep(0.0001)

dio.value(1)

return

def displayBit(bit, num):

global ADDR_DIS

if(num > 9 and bit > 4):

return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

if(DOT[bit-1] == 1):

writeByte(NUM[num] | 0x80)

else:

478

www.keyestudio.com

writeByte(NUM[num])

ack()

stop()

return

def clearBit(bit):

if(bit > 4):

return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

writeByte(0x00)

ack()

stop()

return

479

www.keyestudio.com

def setBrightness(b = BRIGHT_TYPICAL):

global DisplayCommand,brightness

DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

return

def setMode(segment = 0):

global DisplayCommand

DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

def displayOnOFF(OnOff = 1):

global DisplayCommand

DisplayCommand = (DisplayCommand & 0xfe)+OnOff

return

def displayDot(bit, OnOff):

if(bit > 4):

return

if(OnOff == 1):

DOT[bit-1] = 1;

else:

480

www.keyestudio.com

DOT[bit-1] = 0;

return

def InitDigitalTube():

setBrightness(2)

setMode(0)

displayOnOFF(1)

for _ in range(4):

clearBit(_)

return

def ShowNum(num): #0~9999

displayBit(1,num%10)

if(num < 10):

clearBit(2)

clearBit(3)

clearBit(4)

if(num > 9 and num < 100):

displayBit(2,num//10%10)

clearBit(3)

clearBit(4)

if(num > 99 and num < 1000):

481

www.keyestudio.com

displayBit(2,num//10%10)

displayBit(3,num//100%10)

clearBit(4)

if(num > 999 and num < 10000):

displayBit(2,num//10%10)

displayBit(3,num//100%10)

displayBit(4,num//1000)

pwm_r = PWM(Pin(9))

pwm_g = PWM(Pin(10))

pwm_b = PWM(Pin(11))

pwm_r.freq(1000)

pwm_g.freq(1000)

pwm_b.freq(1000)

def light(red, green, blue):

pwm_r.duty_u16(red)

pwm_g.duty_u16(green)

pwm_b.duty_u16(blue)

ultrasonic ranging，unit: cm

482

www.keyestudio.com

def getDistance(trigger, echo):

produce 10us square waves

trigger.low() #preserve a short a low level to secure a high level:

utime.sleep_us(2)

trigger.high()

utime.sleep_us(10)#pull up high levels, wait for 10ms and set low

levels

trigger.low()

while echo.value() == 0: #build a while loop to detect pins are 0 or

not, record the current time

start = utime.ticks_us()

while echo.value() == 1: #build a while loop to detect pins are 1 or

not, record the current time

end = utime.ticks_us()

d = (end - start) * 0.0343 / 2 #travelling time x sound speed(343.2

m/s，0.0343cm for each ms)，double distance is divided by 2

return d

set pins

trigger = Pin(20, Pin.OUT)

echo = Pin(19, Pin.IN)

483

www.keyestudio.com

buzzer = PWM(Pin(16))

def playtone(frequency):

buzzer.duty_u16(1000)

buzzer.freq(frequency)

def bequiet():

buzzer.duty_u16(0)

main program

InitDigitalTube()

while True:

distance = int(getDistance(trigger, echo))

ShowNum(distance)

if distance <= 10:

playtone(880)

utime.sleep(0.1)

bequiet()

light(65535, 0, 0)

elif distance <= 20:

playtone(532)

484

www.keyestudio.com

utime.sleep(0.2)

bequiet()

light(0, 0, 65535)

else:

light(0, 65535, 0)

Code Explanation

We set sound frequency and light color by adjusting different distance

range.

We can adjust the distance range in the code.

Test Result

Wire up according to the connection diagram upload the run the code and

power up. When the ultrasonic sensor detects different distances, the

buzzer will produce different frequencies of sound, the RGB will show

different colors, and the measured distances are displayed on the 4-digit

tube display.

485

www.keyestudio.com

Project 59: IR Remote Control

Introduction

In the previous experiments, we learned to turn on or turn off the LED,

486

www.keyestudio.com

adjust the brightness of a light through PWM, and how to use the infrared

receiver module. So in this experiment, we use an infrared remote control

to control an LED module.

When we receive a value, we set the PWM value by the corresponding

button value, thus you can adjust the brightness. Control the LED to turn

on or turn off is in the same way. If we want to use the same button to

control the LED to turn on or turn off, we can achieve it through the code.

Components

Raspberry Pi Pico

Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Purple LED Module*1

Keyestudio DIY IR

Receiver*1

Micro USB Cable*1 IR Remote Control*1 3P Dupont Wire*2

Connection Diagram

487

www.keyestudio.com

Run the test code：

Double-click IR control LED.py，and click to run the code

488

www.keyestudio.com

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 52

* IR control LED

* http://www.keyestudio.com

'''

import time

from machine import Pin

led = Pin(14, Pin.OUT)

ird = Pin(16,Pin.IN)

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2":

"LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":

"LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5":

"LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":

"LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8":

"LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":

"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

489

www.keyestudio.com

"0": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up":

"LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":

"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":

"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok":

"LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

"*": "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#":

"LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):

wait = 1

complete = 0

seq0 = []

seq1 = []

while wait == 1:

if ird.value() == 0:

wait = 0

while wait == 0 and complete == 0:

start = time.ticks_us()

while ird.value() == 0:

ms1 = time.ticks_us()

490

www.keyestudio.com

diff = time.ticks_diff(ms1,start)

seq0.append(diff)

while ird.value() == 1 and complete == 0:

ms2 = time.ticks_us()

diff = time.ticks_diff(ms2,ms1)

if diff > 10000:

complete = 1

seq1.append(diff)

code = ""

for val in seq1:

if val < 2000:

if val < 700:

code += "L"

else:

code += "H"

print(code)

command = ""

for k,v in act.items():

if code == v:

command = k

if command == "":

491

www.keyestudio.com

command = code

return command

flag = False

while True:

global flag

command = read_ircode(ird)

print(command, end = " ")

print(flag, end = " ")

if command == "Ok":

if flag == True:

led.value(1)

flag = False

print("led on")

else:

led.value(0)

flag = True

print("led off")

time.sleep(0.1)

492

www.keyestudio.com

Code Explanation

We define a boolean variable. There are two boolean variables. true (true)

or false (false), boolean flag = true.

2. When we press the OK button, the value of infrared reception is 64. At

this time, we need to set a boolean variable flag. When the flag is true

(true), the LED is turned on, and when it is false (false), the LED is turned off

and turned on. After the LED is on and set it to false. We press the OK key,

the LED will be off.

Test Result

Wire up, upload the test code and open the Shell monitor. Press the OK

button of the remote, the LED will be on; press it again, the LED will be off.

493

www.keyestudio.com

Project 60: Heat Dissipation Device

Description

We will use a temperature sensor and some modules to make a smart

cooling device in this experiment. When the ambient temperature is higher

than a certain value, the motor is turned on, thereby reducing the ambient

temperature and achieving the heat dissipation effect. Then display the

temperature value in the four-digit segment display.

Required Components

494

www.keyestudio.com

Connection Diagram

Raspberry Pi Pico

Board*1

Raspberry Pi Pico Expansion

Board*1

keyestudio 130

Motor*1

Keyestudio

TM1650 4-Digit

Segment Display*1

Keyestudio 18B20

Temperature Sensor*1
3P Dupont Wire*1 4P Dupont Wire*2 Micro USB Cable*1

495

www.keyestudio.com

Run the test code

Find and double-click heat_abstractor.py and click

Test Code

'''

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 53

* heat_abstractor

* http://www.keyestudio.com

'''

import machine, onewire, ds18x20, time

496

www.keyestudio.com

ds_pin = machine.Pin(3)

ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin))

roms = ds_sensor.scan()

#two pins of the motor

INA = machine.Pin(20, machine.Pin.OUT)

INB = machine.Pin(21, machine.Pin.OUT)

definitions for TM1650

ADDR_DIS = 0x48 #mode command

ADDR_KEY = 0x49 #read key value command

definitions for brightness

BRIGHT_DARKEST = 0

BRIGHT_TYPICAL = 2

BRIGHTEST = 7

on = 1

off = 0

number:0~9

497

www.keyestudio.com

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]

DIG = [0x68,0x6a,0x6c,0x6e]

DIG = [0x6e,0x6c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15

dioPin = 14

clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):

global clk,dio

for i in range(8):

if(wr_data & 0x80 == 0x80):

dio.value(1)

else:

dio.value(0)

clk.value(0)

time.sleep(0.0001)

clk.value(1)

498

www.keyestudio.com

time.sleep(0.0001)

clk.value(0)

wr_data <<= 1

return

def start():

global clk,dio

dio.value(1)

clk.value(1)

time.sleep(0.0001)

dio.value(0)

return

def ack():

global clk,dio

dy = 0

clk.value(0)

time.sleep(0.0001)

dio = machine.Pin(dioPin, machine.Pin.IN)

while(dio.value() == 1):

time.sleep(0.0001)

dy += 1

499

www.keyestudio.com

if(dy>5000):

break

clk.value(1)

time.sleep(0.0001)

clk.value(0)

dio = machine.Pin(dioPin, machine.Pin.OUT)

return

def stop():

global clk,dio

dio.value(0)

clk.value(1)

time.sleep(0.0001)

dio.value(1)

return

def displayBit(bit, num):

global ADDR_DIS

if(num > 9 and bit > 4):

return

start()

writeByte(ADDR_DIS)

500

www.keyestudio.com

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

if(DOT[bit-1] == 1):

writeByte(NUM[num] | 0x80)

else:

writeByte(NUM[num])

ack()

stop()

return

def clearBit(bit):

if(bit > 4):

return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

501

www.keyestudio.com

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

writeByte(0x00)

ack()

stop()

return

def setBrightness(b = BRIGHT_TYPICAL):

global DisplayCommand,brightness

DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

return

def setMode(segment = 0):

global DisplayCommand

DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

def displayOnOFF(OnOff = 1):

502

www.keyestudio.com

global DisplayCommand

DisplayCommand = (DisplayCommand & 0xfe)+OnOff

return

def displayDot(bit, OnOff):

if(bit > 4):

return

if(OnOff == 1):

DOT[bit-1] = 1;

else:

DOT[bit-1] = 0;

return

def InitDigitalTube():

setBrightness(2)

setMode(0)

displayOnOFF(1)

for _ in range(4):

clearBit(_)

return

def ShowNum(num): #0~9999

503

www.keyestudio.com

displayBit(1,num%10)

if(num < 10):

clearBit(2)

clearBit(3)

clearBit(4)

if(num > 9 and num < 100):

displayBit(2,num//10%10)

clearBit(3)

clearBit(4)

if(num > 99 and num < 1000):

displayBit(2,num//10%10)

displayBit(3,num//100%10)

clearBit(4)

if(num > 999 and num < 10000):

displayBit(2,num//10%10)

displayBit(3,num//100%10)

displayBit(4,num//1000)

InitDigitalTube()

print('Found DS devices: ', roms)

while True:

504

www.keyestudio.com

ds_sensor.convert_temp()

time.sleep_ms(750)

for rom in roms:

value = ds_sensor.read_temp(rom)

print(value)

ShowNum(int(value))

if value > 28:

INA.value(0)

INB.value(1)

else:

INA.value(0)

INB.value(0)

Code Explanation

The setting of variables and the storage of detection values are the same as

what we learned earlier. We also set a temperature threshold and control

the rotation of the motor when the threshold is exceeded, and then we use

the digital tube to display the temperature value.

Test Result

Wire up and run the test code. We can see the temperature of the current

505

www.keyestudio.com

environment (unit is Celsius) on the four-digit segment display, as shown

in the figure below. If this value exceeds the value we set, the fan will rotate

to dissipate heat.

Project 61: Intelligent Entrance Guard System

Description

In this project, we use the RFID522 card swiping module and the servo to

set up an intelligent access control system. The principle is very simple.We

use RFID522 swipe card module, an IC card or key card to unlock

506

www.keyestudio.com

Required Components

Connection Diagram

Run the code:

Find Intelligent access control.py and double-click it and click to run the

Raspberry Pi Pico

Board*1

Raspberry Pi Pico Expansion

Board*1
Key*1 IC Card*1

Keyestudio RFID

Module*1
Servo*1 4P Dupont Wire*1 Micro USB Cable*1

507

www.keyestudio.com

code

Test Code

/*

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 54

* Intelligent access control

* http://www.keyestudio.com

508

www.keyestudio.com

*/

#include <Servo.h>

#include <Wire.h>

#include <MFRC522_I2C.h>

MFRC522 mfrc522(0x28);

Servo myservo;

String rfid_str = "";

void setup() {

Serial.begin(9600);

Wire.begin();

mfrc522.PCD_Init();

myservo.attach(10);//the digital port 10 of the servo

myservo.write(0);//initial angle is 0 degree

delay(500);

}

void loop() {

if (! mfrc522.PICC_IsNewCardPresent() || !

mfrc522.PICC_ReadCardSerial()) {

delay(50);

return;

509

www.keyestudio.com

}

rfid_str = "";//characters string clear up

Serial.print(F("Card UID:"));

for (byte i = 0; i < mfrc522.uid.size; i++) {// save UID

rfid_str = rfid_str + String(mfrc522.uid.uidByte[i], HEX); //save

characters string

// Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");

// Serial.print(mfrc522.uid.uidByte[i], HEX);

}

Serial.println(rfid_str);

if (rfid_str == "8dfe6c4d" || rfid_str == "bc33766e") {

myservo.write(180);

delay(500);

Serial.println(" open the door!");

}

}

Code Explanation

In the previous experiment, our card swipe module has tested the

information of IC card and key. Then we use this corresponding

information to control the door.

510

www.keyestudio.com

Test Result

Upload the test code, wire up and power up with a USB cable, open the

shell and set the baud rate to 9600; the shell displays information.

When we use the IC card or blue key to swipe the card, the shell displays

the card information and "open the door", as shown in the figure below,

the servo rotates to the corresponding angle to simulate opening the door.

511

www.keyestudio.com

Project 62: Comprehensive Experiment

Introduction

We did a lot of experiments, and for each one we needed to re-upload the

code, so can we achieve different functions through an experiment? In this

experiment, we will use an external button module to achieve different

functions.

Components Required

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Expansion

Board*1

Keyestudio DIY

Purple LED

Module*1

Keyestudio

Button Module*1

Keyestudio

Rotary

Encoder*1

Keyestudio

Obstacle

Avoidance

Sensor*1

512

www.keyestudio.com

Connection Diagram

Keyestudio IR

Receiver*1

Keyestudio DIY

Joystick

Module*1

keyes brick

HC-SR04

Ultrasonic

sensor *1

Keyestudio

DIYCommon

Cathode RGB

Module *1

Keyestudio

XHT11

Temperatur

e and

Humidity

Sensor

*1

Keyestudio

ADXL345

Acceleration

Sensor*1

Micro USB

Cable*1
3PDupont Wire*6 4PDupont Wire*3 5PDupont Wire*1

Remote

Control*1

513

www.keyestudio.com

Run the test code

Find the Comprehensive experiment.py, double-click the code and click

514

www.keyestudio.com

Test Code'''

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 62

* Comprehensive experiment

* http://www.keyestudio.com

'''

from machine import Pin, PWM

import time

import random

import dht

from ADXL345 import adxl345

515

www.keyestudio.com

scl = Pin(21)

sda = Pin(20)

bus = 0

snsr = adxl345(bus, scl, sda)

pwm_r = PWM(Pin(2))

pwm_g = PWM(Pin(3))

pwm_b = PWM(Pin(4))

pwm_r.freq(1000)

pwm_g.freq(1000)

pwm_b.freq(1000)

pin = machine.Pin(19, machine.Pin.OUT, machine.Pin.PULL_DOWN)

xht = dht.DHT11(pin)

potentiometer = machine.ADC(28)

button = Pin(16, Pin.IN)

led = PWM(Pin(14))

led.freq(1000)

ird = Pin(11,Pin.IN)

516

www.keyestudio.com

B = machine.Pin(22, machine.Pin.IN)

X = machine.ADC(26)

Y = machine.ADC(27)

avoid = Pin(0, Pin.IN)

Set Ultrasonic Pins

trigger = Pin(6, Pin.OUT)

echo = Pin(7, Pin.IN)

def light(red, green, blue):

pwm_r.duty_u16(red)

pwm_g.duty_u16(green)

pwm_b.duty_u16(blue)

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2":

"LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":

"LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5":

"LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":

"LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8":

"LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":

"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

517

www.keyestudio.com

"0": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up":

"LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":

"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":

"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok":

"LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

"*": "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#":

"LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):

wait = 1

complete = 0

seq0 = []

seq1 = []

while wait == 1:

if ird.value() == 0:

wait = 0

while wait == 0 and complete == 0:

start = time.ticks_us()

while ird.value() == 0:

ms1 = time.ticks_us()

518

www.keyestudio.com

diff = time.ticks_diff(ms1,start)

seq0.append(diff)

while ird.value() == 1 and complete == 0:

ms2 = time.ticks_us()

diff = time.ticks_diff(ms2,ms1)

if diff > 10000:

complete = 1

seq1.append(diff)

code = ""

for val in seq1:

if val < 2000:

if val < 700:

code += "L"

else:

code += "H"

print(code)

command = ""

for k,v in act.items():

if code == v:

command = k

if command == "":

519

www.keyestudio.com

command = code

return command

ultrasonic ranging，unit: cm

def getDistance(trigger, echo):

produce 10us square waves

trigger.low() #preserve a short a low level to secure a high level:

time.sleep_us(2)

trigger.high()

time.sleep_us(10)#pull up high levels, wait for 10ms and set low

levels

trigger.low()

while echo.value() == 0: #Create a while loop to detect whether

the echo pin is 0, and record the current time

start = time.ticks_us()

while echo.value() == 1: #build a while loop to detect pins are 0 or

not, record the current time

end = time.ticks_us()

d = (end - start) * 0.0343 / 2 #travelling time x sound speed(343.2

m/s，0.0343cm for each ms)，double distance is divided by 2

520

www.keyestudio.com

return d

keys = 0

nums = 0

print(keys % 8)

def toggle_handle(pin):

global keys

keys += 1

print(keys % 7)

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle_handle)

def showRGB():

R = random.randint(0,65535)

G = random.randint(0,65535)

B = random.randint(0,65535)

light(R, G, B)

time.sleep(0.3)

def showxht11():

print("temperature ： {} ℃ humidity ：

521

www.keyestudio.com

{} %".format(xht.temperature, xht.humidity))

time.sleep(1)

def IRreceive():

command = read_ircode(ird)

print(command)

def showJoystick():

B_value = B.value()

X_value = X.read_u16()

Y_value = Y.read_u16()

print("button:", end = " ")

print(B_value, end = " ")

print("X:", end = " ")

print(X_value, end = " ")

print("Y:", end = " ")

print(Y_value)

time.sleep(0.1)

def adjustLight():

pot_value = potentiometer.read_u16()

print(pot_value)

522

www.keyestudio.com

led.duty_u16(pot_value)

time.sleep(0.1)

def showAvoid():

if avoid.value() == 0:

print("There are obstacles")

else:

print("All going well")

time.sleep(0.1)

def showDistance():

distance = getDistance(trigger, echo)

print("The distance is ：{:.2f} cm".format(distance))

time.sleep(0.1)

def showADXL345():

x,y,z = snsr.readXYZ()

print('x:',x,'y:',y,'z:',z,'uint:mg')

time.sleep(0.1)

while True:

nums = keys % 8 #remainder is 0 1 2 3 4 5 6 and 7

523

www.keyestudio.com

if nums == 0: #Display RGB

showRGB()

elif nums == 1: #Displays the value of infrared reception

IRreceive()

elif nums == 2: #Display temperature and humidity

showxht11()

elif nums == 3: #Display joystick value

showJoystick()

elif nums == 4: #potentiometer to adjust led

adjustLight()

elif nums == 5: #Display obstacle information

showAvoid()

elif nums == 6: #Display ultrasonic ranging value

showDistance()

elif nums == 7: #Display ultrasonic ranging value

showADXL345()

Code Explanation

1. Calculate how many times the button is pressed, divide it by 8, and get

the remainder which is 0, 1 2, 3, 4, 5 , 6 and 7. According to different

remainders, construct five unique functions to control the experiment and

524

www.keyestudio.com

realize different functions.

2. We add dht and adxl345 library files in this project.

Test Result

Connect the wires according to the wiring diagram, use the USB to power

on, and run the test code. At the beginning, the number of keys is 0, the

remainder is 0, and the four lamp beads on the RGB module flash with

random colors.

525

www.keyestudio.com

Press the button, the RGB stops flashing, press once, the remainder is 1. If we

point at IR receiver with the infrared remote control and press the button,the

serial monitor will display as follows.

Press a key twice, the time of pressing buttons is 2 and the remainder is 2.

Read temperature and humidity values. As shown below;

Note: we need to press any a key, because the IR reception function waits

for signals

526

www.keyestudio.com

Press a key again, the time of pressing buttons is 3 and the remainder is 3.

Read digital values at x, y and z axis of the joystick module. As shown

below;

Press the key for the fourth time, the remainder is 4. Then the

potentiometer can adjust the PWM value at the GP14 port to control LED

brightness of the purple LED

Press the key for the fifth time, the remainder is 5. Then the obstacle

avoidance sensor can detect obstacles, as shown below;

527

www.keyestudio.com

Press the key for the sixth time, the remainder is 6. Then the ultrasonic

sensor can detect distance away from obstacles, as shown below;

Press the key for seventh time and the remainder is 7. The shell will print

out the acceleration value

Press the key for eighth time and the remainder is 0. Then the RGB will flash.

If you press keys incessantly, remainders will change in loop way. So does

528

www.keyestudio.com

functions.

6. Resources

https://fs.keyestudio.com/KS3024

https://fs.keyestudio.com/KS0470

	1.Description
	2.Kit
	3. Preparations
	3.1 Tools needed for the Raspberry Pi system
	3.1.1 Install Software Tools
	3.1.2 Raspberry Pi Imager

	3.2 Install Raspberry Pi OS on Raspberry Pi
	3.3 Raspberry Pi Pico
	3.4 Using MicroPython
	Download and burn firmware
	Go to the official website to download the UF2 fil
	Install Thonny
	Add Modules

	3.5 Keyestudio Raspberry Pico IO Shield

	4. Projects
	Project 1: Lighting up LED
	Project 2: Traffic Lights Module
	Project 3: Laser Sensor
	Project 4: Button Sensor
	Project 5: Capacitive Sensor
	Project 6: Obstacle Avoidance Sensor
	Project 7: Line Tracking Sensor
	Project 8: Photo Interrupter
	Project 9: Tilt Module
	Project 10: Collision Sensor
	Project 11: Hall Sensor
	Project 12: Reed Switch Module
	Project 13: PIR Motion Sensor
	Project 14: Active Buzzer
	Project 15: 8002b Audio Power Amplifier
	Project 16: 130 Motor
	Project 17: RGB Module
	Project 18: Potentiometer
	Project 19: Steam Sensor
	Project 20: Sound Sensor
	Project 21: Photoresistor
	Project 22: NTC-MF52AT Thermistor
	Project 23: Thin-film Pressure Sensor
	Project 24: Flame Sensor
	Project 25: MQ-2 Gas Sensor
	Project 26: MQ-3 Alcohol Sensor
	Project 27: Five-key AD Button Module
	Project 28: Joystick Module
	Project 29: Ultraviolet Sensor
	Project 30: SK6812 RGB Module
	Project 31: Rotary Encoder
	Project 32: Servo Control
	Project 33: Ultrasonic Sensor
	Project 34: IR Receiver Module
	Project 35: DS18B20 Temperature Sensor
	Project 36: XHT11 Temperature and Humidity Sensor
	Project 37: DS1307 Clock Module
	Project 38: ADXL345 Acceleration Sensor
	Project 39: TM1650 4-Digit Tube Display
	Project 40: HT16K33_8X8 Dot Matrix Module
	Project 41: LCD_128X32_DOT Module
	Project 42: RFID Module

	5. Comprehensive Experiments
	Project 43: Breathing LED
	Project 44: Button-controlled LED
	Project 45: Alarm Experiment
	Project 46: Ultraviolet Alarm
	Project 47: Intrusion Detection
	Project 48: Speaker Module
	Project 49: Extinguishing Robot
	Project 50: Rotary Encoder
	Project 51: Rotary Potentiometer
	Project 52: Smart Windows
	Project 53: Sound Activated Light
	Project 54: Fire Alarm
	Project 55: Smoke Alarm
	Project 56: Alcohol Sensor
	Project 57: 6812 Colorful LED
	Project 58: Ultrasonic Radar
	Project 59: IR Remote Control
	Project 60: Heat Dissipation Device
	Project 61: Intelligent Entrance Guard System
	Project 62: Comprehensive Experiment

	6. Resources

