Ml
o

www.keyestudio.com

Keyestudio Raspberry Pi Pico 42 in 1 Sensor Kit

1. Description

The Keyestudio Raspberry Pi Pico 42 in 1 sensor kit mainly contains 37
commonly used sensors/modules, a Raspberry Pi Pico board, a Raspberry
Pi Pico expansion board and Dupont wires.

The 42 sensors and modules are fully compatible with the Raspberry Pi

Ml
o

www.keyestudio.com

Pico shield. You only need to stack the Raspberry Pi Pico board onto the
Raspberry Pi Pico shield, and hook up them with Dupont wires, which is
simple and convenient.

To make you master the electronic knowledge, detailed tutorials
(Micropython), schematic diagrams, wiring methods and test code are
included. Through these projects, you will have a better understanding

about programming, logic and electronics.

2. Kit

Picture Name QTY

Keyestudio Purple LED
Module

Keyestudio Common

Cathode RGB Module

Keyestudio Traffic

Lights Module

£

www.keyestudio.com

ONIHSYM

d314v
LEE
3AOW3H

Keyestudio Active

Buzzer

Keyestudio 8002b

Audio Power Amplifier

Keyestudio Button
Module

Keyestudio Tilt Sensor

Keyestudio PIR Motion

Sensor

Keyestudio Obstacle

Avoidance Sensor

10

Keyestudio 6812 RGB
Module

Ml
o

www.keyestudio.com

11

Keyestudio
NTC-MF52AT

Thermistor

12

Keyestudio

Photoresistor

13

Keyestudio Sound

Sensor

14

Keyestudio

Rotary Potentiometer

15

Keyestudio IR Receiver

16

Keyestudio Reed

Switch Sensor

17

Keyestudio Rotary

Encoder Module

18

Keyestudio Joystick
Module

Ml
o

www.keyestudio.com

SEEEEREE Keyestudio HT16K33
19 Gl Gl G) Gl Gl Gl E
e e 8X8 Dot Matrix Module
Keyestudio TM1650
20
4-Digit Tube Display
Keyestudio Thin-film
21
Pressure Sensor
Keyestudio DS1307
22
Clock Sensor
Keyestudio SRO1
23
Ultrasonic Sensor
24 9G 90° Servo
Keyestudio Capacitive
25
Sensor
Keyestudio Photo
26
Interrupter

Ml
o

www.keyestudio.com

27 Keyestudio Hall Sensor
Keyestudio Flame
28
Sensor
Keyestudio line
29
Tracking Sensor
Keyestudio Analog Gas
30
Sensor
Keyestudio XHT11
31 Temperature and
Humidity Sensor
Keyestudio 18B20
32
Temperature Sensor
33 keyestudio 130 Motor

Ml
o

www.keyestudio.com

34) Fan
Keyestudio Laser
35
Module
Keyestudio Steam
36
Sensor
Keyestudio Ultraviolet
37
Sensor
Keyestudio RFID
38
Module
Keyestudio Collision
39
Sensor
Keyestudio Alcohol
40
Sensor

Ml
o

www.keyestudio.com

Kyestudio
41 LCD_128X32 DOT
Module
42 5—Channel AD Button Module
43 DXL345 Acceleration Module
44 Raspberry Pi Pico Board
Keyestudio Raspberry
45 Pico 10 Expansion
Board
Keyestudio JMFP-4
17-Key Remote
46
Control(without
batteries)
A7 USB Cable

£

www.keyestudio.com

48 F-F Dupont Wire

49 White Card

50 ABS RFID Key

3. Preparations

3.1 Tools needed for the Raspberry Pi system

Hardware Tool:

® Raspberry Pi 4B/3B/2B

® Above 16G TFT Memory Card
® Card Reader

® Computer and other parts
3.1.1 Install Software Tools

Windows System:

(1) Putty

£

www.keyestudio.com

Download link: https://www.chiark.greenend.org.uk/~sqgtatham/putty/

‘@ PuTTY: a free 55H and Telnet ¢ b4 +
e e 8 chiark.greenend.org.uk/~sgtatham/putty/ W e
PuTTY: a free SSH and Telnet client

Home | FAQ | Feedback | Licence | Updates | Murrors | Keys | Links | Team
Download: Stable - Snapshot | Docs | Changes | Wishlist

PuTTY is a free implementation of SSH and Telnet for Windows and Unix platforms, along with an
xterm terminal emulator. It 13 written and maintained primarily by Simon Tatham_

The latest version 15 0.74] Download it here.

LEGAL WARNING: Use of PuTTY, PSCP. PSFTP and Plink 1s illegal in countries where
encryption is outlawed. We believe it 15 legal to use PuTTY, PSCP, PSFTP and Plink in England and
Wales and in many other countries, but we are not lawyers, and so if in doubt you should zeek legal
advice before downloading it. You mav find useful information at cryptolaw.org, which collects
information on cryptography laws 1n many countries, but we can't vouch for its correctness.

Use of the Telnet-only binary (PuTT Ytel) is unrestricted by any cryptography laws.

Latest news

2020-11-22 Primary git branch renamed

The primary branch in the PuTTY git repository 1s now called main, instead of git's default of

master. For now, both branch names continue to exist, and are kept automatically in sync by a
symbolic-ref on the server. In a few months' time_ the alias master will be withdravwn.

10

https://www.chiark.greenend.org.uk/~sgtatham/putty/

£

www.keyestudio.com

‘@ Download PuTTY: latest release . X -+
e C & chiarkgreenend.org.uk/~sgtatham/putty/latest.html a « 6

Download PuTTY: latest release (0.74)

Home | FAQ | Feedback | Licence | Updates | Mirrors | Eeys | Links | Team
Download: Stable - Snapshot | Docs | Changes | Wishlist

This page contains download links for the latest released version of PuTTY. Currently this is 0.74, released on 2020-
06-27.

When new releases come out, this page will update to contain the latest, so this is a good page to bookmark or link
to. Aliernatively, here 15 a permanent link to the 0.74 release.

Release versions of PuTTY are versions we think are reasonably likely to work well. However, they are often not the
most up-to-date version of the code available. If vou have a problem with this release, then it might be worth tryving
out the development snapshots. to see if the problem has already been fixed in those versions.

£~ i
Package files

You probably want one of these. Thev include versions of all the PuTTY utilifies.
(Mot sure whether vou want the 32-bit or the §4-bif version? Read the FAQ entry)

MSI (*Windows Installer®)

32-bits putfy-8.74-installer.msdi for b TP (signature)
64 -bit: putty-64bit-@.74-installer.msi {or by EFTE) (signature})

Unix source archive

dar.gz: putty-2.74.tar.gz {of by FTP) (signature)

i3 putty-64bit-0.74-installer

a. After downloading the package file , double-click it and

tap “Next”.

11

pv4
o

www.keyestudio.com

:_E PuTTY release 0.74 (4-bit) Setup

(64-bit) Setup Wizard

Cancel to exit the Setup Wizard,

Welcome to the PuTTY release 0.74

The Setup Wizard allows you to change the way PUTTY
release 0. 74 (64-bit) features are installed on your computer
or to remove it from your computer, Click Next to continue or

b. Click “Next”,

Back || Mext Cancel
;ﬁ PuTTY release 0.74 (84- bit) Setup
Destination Folder
Click Mext to install to the default folder or dick Change to choose another.

Install PUTTY release 0.74 (64-hit) to;

|E:‘|ngram Files\PUTTYY,

e |
| Back Next | Cancel

c. Choose “Install PUTTY files” and click “Install”.

12

pv4
o

www.keyestudio.com

ﬁ PuTTY release 0.74 (84-bit) Setup

Product Features
Select the way you want features to be installed.

Install PuTTY files
Add shortout to PUTTY on the Desktop

Put install directory on the PATH for command prompts
Assodate PPE files with PuTTYgen and Pageant

This feature requires 3914KEB on your hard drive,

| Back

& Install

|| | Cancel

d. After a few seconds, click "Finish".

ﬁ PuTTY release 0.74 (24-bit) Setup

View README file

Completed the PuTTY release 0.74
(64-bit) Setup Wizard

Click the Finish button to exit the Setup Wizard.

Back

Finish

Cancel

(2) SSH Remote Login software -WinSCP

Link: https://winscp.net/eng/download.php

https://winscp.net/eng/download.php

Ml
o

www.keyestudio.com

a. After downloading the package file % WinSCP-517.9-Setup.exe

% WinSCP-5.17.9-Setup.exe and ¥ Install for all users (recommended) |

Celect Set

ip Install Mode A

aé‘ Select install mode
WinSCP can be installed for all users (requires
administrative privileges), or for you only.

¥ Install for all users (recommended)

—> Install for me only

Cancel

b. Click “Accept”.

4

click

14

£

www.keyestudio.com

B, Setup - WinSCP 5.17.8 =

License Agreement
Please read the following important information before continuing.

Please read the following License Agreement. You must accept the terms of this agreement before
continuing with the installation,

|'You can also review this license and further details online at; A |
{https: {fwinscp, netfeng/docs license

A, GNU General Public License
B. License of WinSCP Icon Set
C. Privacy Policy

A, GNU GEMERAL PUBLIC LICEMNSE
Version 3, 29 June 2007

ECnpyTight (C) 2007 Free Software Foundation, Inc. <htips: (fwww.fsf.orgi=
|Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
|is not allowed. W

Help Cance

15

Ml
o

www.keyestudio.com

B Setup - WinSCP 5.17.4

ETL

Setup Type
What type of setup do you want?

(®) Typical installation {recommended)

s installs to default destination
« installs &l components
» enables most typical features

() Custom installation

s allows full selection of destination, components and features

Help < Back

Cancel

16

Ml
o

www.keyestudio.com

Initial User Settings

Please, select your preferred user interface options.

(®) Commander

Help

« two panels {left for local directory, right for remote directory)

« keyboard shortouts like in Morton Commander (and other similar programs as
Total Commander, Midnight Commander...)

« drag & drop to/from both panels

« only remote directory
« keyboard shortouts like in Windaws File Explorer
« drag & drop

17

Ml
o

www.keyestudio.com

Ready to Install

Setup is now ready to begin installing WinSCP on your computer.,

Click Install to continue with the installation, or dick Back if you want to review or change any settings,

Destination location:
C:\Proagram Files {x3a) WinsCP

Setup type:
Typical installation

Selected components;
WinSCP application
Drag & drop shell extension (allows direct downloads, may reguire restart)
Pageant {S5H authentication agent)
PuTTYaen (key generatar)
Translations

Additional tasks:
Enable automatic chedk for application updates (recommended)
Enable collecting anonymous usage statistics
Create a desktop icon
Add upload shortcut to Explorer's "Send to' context menu
Reqgister to handle URL addresses

Help < Back Install

Cancel

18

Y4
o

www.keyestudio.com

B Setup - WinSCP 5.17.9 -

Completing the WinSCP Setup Wizard

Setup has finished installing WinSCP on your computer. The application may
be launched by selecting the installed shortouts,

Click Finish to exit Setup.,

[+] Launch WinSCP

[] Open Getting started page

Flease consider donating to support WinSCP development.,
Donate §9

e .~ PayPal

Donate 49
About donations o] visa o R e e

| e |

Download link:

http://www.canadiancontent.net/tech/download/SD Card Formatter.html

19

http://www.canadiancontent.net/tech/download/SD_Card_Formatter.html

pv4
o

www.keyestudio.com

SD Card Formatter Free Formatter Download Download File
Software Downloads

9 Download SD Card
SD Card Fom'latter qqqqqq Formatter

H u 112 May 2019
& ME - Fil

Software Review:

Hard Drive Formatters

Hard Drive Software

Hardware Software

SD Card Formatter is a simple and basic || B socad Formaner % R
formatted which is designed to be used ™ ® _ o
E Select oand License: Freeware
with SD, SDHC and SDXC memory | i son i v
= 05/Platform: Windows 7, Windows 8 (64-
cards_ /’ atorm .lr‘ OWS .!ﬂ OWSs O LD
bit, 32-bit) / Vista / XP
Card infarmation
A— ; - Tree SE 3 Filesize: & MB
The application itself isn't too different | oo 1is 4
. - " F :
from the format utility included with §| osengeosns S
Windows and includes two modes: | ©2 =™ i
. . (O Quervrite format Version):
Quick format and Overwrite format. e ot sioe achikb et
CHS format size adjustment is the only Yokl o 3 Rellm:
. {JOM_26 Motes
other option.
Once the appropriate card and volume
label has been selected, the format can
begin after hitting "Format".
TrustRank ed on many fa e

WVersion 5.0.1 is a freeware program which does not have restrictions and it's free

so it doesn’t cost anything.

Register Account

Software Downloads Hardware Software Hard Drive Software Hard Crive Formatters SO Card Formatter

= Download SD Card Formatter

Download SD Card Formatter 5.0.1 (x64 & x32) Free

B <0 Card Formatter P Have you tried the SD Card Formatter before? If yes, please consider
Fie Melp recommending it by clicking the Facebook "Recommend” button!
Selactcard
F:\- SONT_16G -
its @ pownload SD Card Formatter 5.0.1 fromf Hosted by Sdcard.org
Tipe SOHC S
Capaity 14,69 GB
i SD Card Formatter has been tested for viruses and malware
(®) Quack format
O Ovirvatie forinat This download is 100% clean of viruses, It was tested with 24 different antivirus and anti-malware
F i e programs and was clean 100% of the time. View the full 5D Card Formatter homepage for virus test
i results.
[sonv_166) " . .
— } The file that was tested: SDCardFormattervs_WinEN.zip.
®\SD Card Formatter Tip: If you're experiencing trouble downloading this file, please disable any download managers to 5D
50 Loge, SDHC Logs and SDXC Loge ave trademarks of 50-3C, LLC, Card Formatter you may be using.

5D Card Formatter 5.0.1 Screenshot

If you're receiving a 404 File Not Found error, this means the publisher has taken the file offline and
has not updated their links with us for SD Card Formatter. Please do drop us a note in the event of a missing file.

20

pv4
o

www.keyestudio.com

a. Unzip the SDCardFormatterv5 WIinEN package, double-click

50 Card Formatter 5.0.1 Setup.exe to run it.
5D Card Formatter - InstallShietd Wizard

Preparing to Install...

S0 Card Formatter Setup is preparing the InstallShield Wizard,
which will guide you through the program setup process,
Flease wait,

Extracting: 5D Card Formatter Setup.msi

b. CliCk“NeXt"and Choose I accept the terms in the license agreement , then tap“NeXt".
ﬁ 50 Card Formatter - InstallShield Wizard hod

Welcome to the Installshield Wizard for SD
Card Formatter

The Installshield(R) Wizard will install S0 Card Formatter on
your computer. To continue, dick Next.

YWARNIMG: This program is protected by copyright law and
international treaties.

21

pv4
o

www.keyestudio.com

ﬁ 50 Card Formatter - InstallShield Wizard o

License Agreement

Please read the following license agreement carefully.

END USER LICENSE AGREEMENT A

MOTICE:
BY DOWRNLOADING, INSTALLING OR USING THE PRODUCT, THE ENTITY OR INDIVIDUAL

ENTERING INTO THIS AGREEMENT AGREES TO BE BOUND BY THE FOLLOWING TERMS.
IF YOU DO NOT AGREE WITH ANY OF THESE TERMS, DO NOT DOWMNLOAD, INSTALL,
OR USE THE PRODUCT; PROMPTLY RETURN (IF APPLICABLE) THE PRODUCT TO THE
S04 OR YOUR SDA DISTRIBUTOR. IF YOU REIECT THIS AGREEMENT, YOU WILL NOT
ACOUIRE ANY LICENSE TO USE THE PRODUCT.

W
(®) I accept the terms in the license agreement PTIH’E
1_J I do not accept the terms in the license agreement
Installshield
e [] o
c. Click"Next"and"Install”.

ﬁ 50 Card Formatter - InstaliShield Wizarc .

Destination Folder
Click Mext to install to this folder, or dick Change to install to a different ﬁﬁdﬂr’

|:7 Inztall SD Card Formatter to:
C:\Program Files {x88)\SDA\SD Card Formatter, Change...

Installshield

o []| e

pv4
o

www.keyestudio.com

ﬁ 50 Card Formatter - InstallShield Wizarc

Ready to Install the Program
The wizard is ready to begin installation.

If you want to review or change any of your installation settings, dick Back. Click Cancel to
exit the wizard.

Current Settings:

Setup Type:
Typical
Destination Folder:

C:\Program Files (x36)\SDASD Card Formatter),

User Information:
Mame:

Company:

InstallShield

| <oak [Qial]| conce

d. After a few seconds, click "Finish".

‘.E 50 Card Formatter - InstaliShield Wizard i

InstallShield Wizard Completed

The Installshield Wizard has successfully installed 50 Card
Formatter. Click Finish to exit the wizard,

Launch the program

e[| e |

(4) Win32Disklmager

23

£

www.keyestudio.com

Download link: https://sourceforge.net/projects/win32diskimager/

/' Win32 Disk Imager

Win32 Disk Imager

A Windows tool for writing images to USB sticks or SD/CF cards
Brought to you by: :

b 0. 0. 0. 0.1 Downloads: Last Update:

Download Get Updates Share This

Summary Files Reviews Support Wiki Feature Requests Bugs Code Mailing Lists Blog

This program is designed to write a raw disk image to a removable device or backup a removable device to a raw image file. It is very
useful for embedded development, namely Arm development projects (Android, Ubuntu on Arm, etc). Anyone is free to branch and

maodify this program. Patches are always welcome.

This release is for Windows 7/8.1/10. It will should also work on Windows Server 2008/2012/2016 (although not tested by the
developmers). For Windows XP/Vista, please use v0.9 (in the files archive).

a. After the download, double-click 2 win32diskimager-1.0.0-install.exe nd tap

n

“Run

24

https://sourceforge.net/projects/win32diskimager/

Ml
o

www.keyestudio.com

>SmartScreen can't be reached right
now

Check your Internet connection. Windows Defender SmartScreen is

Publisher: Unknown Publisher

App: win32diskimager-1.0.0-install.exe

b. Select Iaceepttheagreement gnd click “Next” .

25

£

www.keyestudio.com

License Agreement
Please read the following important information before continuing.

Please read the following License Agreement. You must accept the terms of this
agreement before continuing with the installation.

This program is licensed under the GMU GPL Version 2 License. Induded libraries

-
are licensed under GPL w2 and LGPL +2. 1 accordingly.

GMU GEMERAL PUBLIC LICEMSE
Version 2, June 1991

Copyright (C) 1939, 1991 Free Software Foundation, Inc.,

.- (R o i

- s T TR

@I accept the agreement

{1 do not accept the agreement

c. Click “Browse..."and find out the folder where the Win32DiskImager is located,
tap “Next” .

e

Select Destination Location
Where should Win32DiskImager be installed?

Setup will install Win32DiskImager into the following folder,

To continue, dick Mext. If you would like to select a different folder, dick Browse.

C:'Program Files (x36)\ImageWriter Browse. ..

At least 44, 2 MB of free disk space is required.

26

£

www.keyestudio.com

%2 Setup - Win32Diskimager —

Select Start Menu Folder
Where should Setup place the program's shortouts?

|J Setup will create the program's shortcuts in the following Start Menu folder.
[]

To continue, dick Mext. If you would like to select a different folder, dick Browse.

| Browse. ..

d. Tick Createadesktopshortcut gnd click “"Next”and“Install”.

&

Select Additional Tasks
Which additional tasks should be performed?

Select the additional tasks you would like Setup to perform while installing
Win32DiskImager, then dick Mext.

Additional shortouts:
reate a desktop shortout

< Back Cancel

27

Ml
o

www.keyestudio.com

Ready to Install
Setup is now ready to begin installing Win32DiskImager on your computer.

Click Install to continue with the installation, or dick Back if you want to review or
change any settings.

Destination location:
C:\Program Files (x88)\ImageWriter

Start Menu folder;
Image Writer

Additional tasks:
Additional shortouts:
Create a desktop shortout

< Back Install Cancel

e. Click “Finish” after the installation is complete.

i

Completing the Win32DiskImager
Setup Wizard

Setup has finished installing Win32DiskImager on your
computer. The application may be launched by selecting the
installed shortouts.

Click Finish to exit Setup.

View README. bt
Launch Win32DiskImager

e]

(5) WNetWatcher

Download: http://www.nirsoft.net/utils/wnetwatcher.zip

28

Ml
o

www.keyestudio.com

3.1.2 Raspberry Pi Imager
Download link for the latest version:

https://www.raspberrypi.org/downloads/raspberry-pi-os/

Old version;

. Raspbian: https://downloads.raspberrypi.org/raspbian/images/

« Raspbian full:

. https://downloads.raspberrypi.org/raspbian_full/images/

. Raspbian lite:

. https://downloads.raspberrypi.org/raspbian_lite/images/

We use the 2020.08.20 version in the tutorial and recommend you to use

this version

(Please download this version as shown in the picture below.)

29

https://www.raspberrypi.org/downloads/raspberry-pi-os/
https://downloads.raspberrypi.org/raspbian/images/
https://downloads.raspberrypi.org/raspbian_full/images/
https://downloads.raspberrypi.org/raspbian_lite/images/

Ml
o

www.keyestudio.com

Operating system images

Many operating systems are available for Raspberry Pi, including
Raspberry Pi OS, our official supported operating system, and
operating systems from other organisations.

Raspberry Pi Imager is the quick and easy way to install an operating
system to a microSD card ready to use with your Raspberry Pi.
Alternatively, choose from the operating systems below, available to
download and install manually.

Download:
Raspberry Pi 0S (32-bit)

Raspberry Pi Desktop
Third-Party operating systems

Raspberry Pi 0S
Compatible with: Raspberry Pi 0S with desktop and recommended software
All Raspberry Pi models Release date: December 2nd 2020

Kernel version: 5.4

Size: 2.949MB

Show SHAZSS file integrity hash:
Release notes

Release date: December 2nd 2020
Kernel version: 5.4

Size: 1177MB

Show SHA256 file integrity hash:
Release notes

Raspberry Pi 0S Lite

Release date: December 2nd 2020
Kernel version: 5.4

Size: 438MB

Show SHAZS56 file integrity hash:
Release notes

3.2 Install Raspberry Pi OS on Raspberry Pi

Raspberry Pi 0S with desktop

Download torrent

Download torrent

Download

Download torrent

Interface the TFT memory card with a card reader, then plug the card reader into

a computer’s USB port.

Use the SD Card Formatter to format a TFT memory card, as illustrated below.

30

pv4
o

www.keyestudio.com

B sD Card Formatter X

File Help

Select card

E:\ - boot v
Refresh

Card information
Type SDXC s ’-
Capacity 59.48 GB X

Formatting options
(®) Quick format
(O Overwrite format
CHS format size adjustment

Volume label
| boot

Format
SD Logo, SDHC Logo and SDXC Logo are trademarks of SD-3C, LLC.

. 50 Card Formatter X
File Help
Select card
_E:‘l,—bout V
| | Refresh |
| 5D Card Formatter

Formatting will erase all data on this card.
! Do you want to continue?

Mote: As formatting can take some time (especially when
overwrite option is selected), please make sure that your
computer is connected to a power supply and that sleep
mode is disabled.

Yes ' Mo

~[boot "

Format

S0 Logo, SOHC Logo and SDXC Logo are trademarks of SD-3C, LLC.

31

pv4
o

www.keyestudio.com

. 50 Card Formatter o
File Help
Select card
E:\ - boot |
[ey]
5D Card Formatter F
Card
Type o Formatting was successfully completed, @
S Volume information: i
File system: exFAT
Form Capacity: 59.45 GB [63,831,015,424 bytes)
@ 0 Free space: 59,45 GE [63,330,622 208 bytes)
Cluster size: 128 kilobytes
O o Volume label: boot
ci
| I
Volun e
boot = |

S0 Logo, SDHC Logo and SDXC Logo are trademarks of SD-3C, LLC.

(1) Burn system

Burn the Raspberry Pi OS to the TFT memory card using Win32Disklmager

software.

% Win32 Disk Imager - 1.0 Choose the corrett letter

40

]
|inistratnr;’]]esktnprDZD-lZ—DE—raspins—buster—armhf—full. img ﬁE: ".,] > |

Hash e‘
\Nome v | |Gemerate | Copy Click, and then find the mirror

system(".img"file)that you
download and unzipped

Image File

[] Eead Orly #llocated Fartitions

Frogress
Click Write to write the system
Cancel .. Read il Write | Varify Onlayr i | Exit
Waiting for a task.

32

Ml
o

www.keyestudio.com

Bt
g
-

Image File Tevice

iniztrator/Tesktop/2020-1202—raspioz—buster—armhf—full. img| [E:%] =

Hazh B
Home | Writing to a physical device can corrupt the device,
! (Target Device: [E\] "boot")
Are you sure you want to continue?
|:| Read {
Yes Mo

Progres:

Cancel Read Yrite Yerify Only Exit

Image File Terice

iniztrator/Desktop/2020—-1202—raspios—buster—armhf—full. img | [E:n] =

Hazh ™

i Complete o
Hone ¥ | | Generate .
o Write Successful,

|:| Read Only Allocated]

Progres=s
Cancal Read Write Yerify Only Exit
Done. 08:40,/0:8: 40

Don’ t eject card reader after burning mirror system, build a file named SSH,

then delete .txt.
The SSH login function can be activated by copying SSH file to boot

category, as shown below.

33

Ml
o

www.keyestudio.com

L v 5P I as * ThisPC » boot(E) I v | O £ Search boot...
2 MName Date mc:difi\E/d Type Size &
i [startelf 11/26/2020 5:20 P ELF File 2860 KB
I Desktop o [] start_cd.elf 11/26/2020 5:30 PM ELF File 7T KB
4 Downloads * [] start_db.elf 11/26/2020 5:30 PM ELF File 46T4KB
[] start_x.elf ELF File 3,610KE
&+ [] startd.elf ELF File 2,162 KB
[] startded.elf ELF File 771 KE
[] startddb.elf 11/26/2020 5:30 PM ELF File 3627 KE
-l 3D Objects [startax.elf 11/26/2020 5:30 PM ELF File 2,904 KB
I Desktop [] bem2708-rpi-b.dtb 11/26/2020 5:30 PM DTB File 25 KB
& Docurnents [bem2708-rpi-b-plus.dth 11/26/2020 DTB File 25 KB
& Downloads |_J bem2708-rpi-b-rev.dth 11/26/2020 DTB File 25 KB
» Music L] bem2708-rpi-cm.dth 11/26/2 DTB File 25 KB
T [] bem2708-rpi-zero.dtb 11/26/2020 5:30 PM DB File 25 KB
e [bem2708-rpi-zero-w.dtb 11/26/2020 5:30 PM DB File 26 KB
B videos [bem2709-rpi-2-b.dth 11/26/2020 5:30 PM DTB File 26 KB
‘= Windows10 1805 (C:) [7] bem2710-rpi-2-b.dtb 11/26/202 DTE File 26 KB
= i D) [] bem2710-rpi-3-b.dth 11/26/2020 5 DTE File 2B KE
S naiE) [7] bem2710-rpi-3-b-plus.dtb 11/26/2020 5: DTB File 22 KB
. USB Drive (F:) [] bem2710-rpi-cm3.dith 11/26/202 DB File 26 KB
& New folder (\Wdeskiop-eng) (Z) L] bem2711-rpi-4-b.dtb 11/26/202 DTB File 17 KB
[] bem2711-rpi-400.dth 11/26/2 DTB File 47KB
= boot (E) [7] bem2711-rpi-emd.dth 11/26/2020 DTB File 47 KB
overlays D bootcode.bin 11/26/2020 5:30 PM BIN File 52 KB
_ [7] fixup.dat 11/26/202 DAT File BKE
= USB Drive () [fixup_cd.dat 11726/ DAT File 4KB
¥ Network [7] fixup_db.dat 11/26/2 DAT File 11 KB
_@ DESKTOP-1V3102C [fixup_x.dat 11/26/2020 5:30 PM DAT File 11 KB
B i L] fixupd dat 1142642 DAT File KB
= [fixupdcd.dat 11/26/2 DAT File 4KB
[DESKTOP-BDCTIVT = i)
= [7] fixup4db.dat 11/26/2020 DAT File 9KE
£ DESKTOP-CMPIKIB [fixupd.dat 11/26/2020 DATFile 9KB
& DESKTOP-SMTIPCK [7] LICENCE.broadcom 130/20 BROADCOM File 2 KB
@ pv) [coPYING.linux LINUX File 19 KB
[FT60CSC26X0D0S overlays 124272020 12:39 PM File folder
Ej HKAKUMDYSPRYSCO I ﬂ S5H 12/8/2020 11:48 AM Text Document OKB| »
IS 4 >

Pl amasam a4 nn

Eject card reader.

(2) Log in system

(Raspberry and PC should be in the same local area network.)

Insert TFT memory card into Raspberry Pi, connect internet cable and plug
in power. If you have screen and HDMI cable of Raspberry Pi, you could

view Raspberry Pi OS activating. If not, you can enter the desktop of

34

£

www.keyestudio.com

Raspberry Pi via SSH remote login software---WinSCP and xrdp.

(3) Remote login

Enter default user name, password and host name on WinSCP to log in.

Only a Raspberry Pi is connected in same network.

B Winscp -
Local Mark Files Commands Session Options Remote Help
& 59 Queue ~ Transfer Settings Default - i
& Mew Session
[E My documents ~ (5 ~ [- BEME| % J s | B
; B Login - X
C\Users\Administrator\Documents',
Mame Size | | NewsSte Sexsn Rights Owner
File protocol:
8.
Choose the scP [o1 |
Downloads Host name: Port number:
FormatFactory . 2 raspberrypi pot
b B Host name : raspberrypi =] I |
Inventor Server for Au... User name: Password:
LEGO Creations User name : pi i | [eeeereees T]
Picosmos
save |v r Advanced... |¥
Pictoblox
Processing /
Python Scripts :
S Save Password : raspberry
SOLIDWORKS Downl... Login
SOLIDWORKSCompo...
Tencent Files \
Virtual Machines
WeChat Files Tods ¥ Manage ¥ Logn | Close Help
WPS Cloud Files [#]Show Login dislog on startup and when the last session is dosed
] Centos 5 FIHRU... TKB e e i
g' Mew Site Session
File protocal:
SCP ~
Save session as site T > Port number:
_ =1
Site name: | | —
|pi@raspberrypi | rd:
Folder: - il |
|<none> i |

Advanced... 17

/ I []5ave password (not recommended) I
[]create desktop shortcut
Save the passyord v Help

Tools b Manage - Login 1' Close Help

Show Login dialog on startup and when the last session iz dosed

(4) Check IP and mac address

35

£

www.keyestudio.com

B / - pi@raspberry - WinsCP
Local Mark Files Commands Session Options Remote Help
[B2 3 Synchrenize |8

& pi@raspberry X G New Session Click open terminal

o - & - f
5™

Ci\Users\Administrator\Desktop!,

Mame - Size Type Changed 2

. Parent directory 19/10/2020 09:2
3D85_Csharp_Control... File folder 07/08/2020
dwd_motor_test File folder 17/08/2020
TRIRRMER File falder 29/09/2020
15_ble_all File folder 15/09/2020
16and8Game File folder 16/09/2020 17:%
alienzhangyw-ElockP... File folder 11/08/2020 11:4
arduino-esp32-esp32s2 File folder 31/08/2020 15:1
Arm_car File folder 31/ 020 15:2
AutoCAD File folder 21/09/2020 18:
blueteoth_test File folder 24/08/2020 16:1
car_test File folder 04/09/2020 13:%
EBO028 [REEE File folder 15/10/2020 17:1
esp File folder 12/09/2020 10:0
esp32_test File folder 14/09/2020 10:2
espB266_arduing File folder 09/10/2020 15:¢
espB266_test File folder 09/10/2020 15:2
esp-idf File folder 03/09/2020 16:2
Grove-Beginner-Kit-f... File folder 09/10/2020 09:1
HT16K33_8x16dot_ma... File folder 28/08/2020 14:2
keyestudio-e-Paper File folder 19/06/2020 11:z
M_car File folder 28/08/2020 16:2
ottol File folder 16/10/2020 08:¢
processing_test File folder 10/10/2020
ps2_arm_car File folder 31/07/2020 15:2
RGBAAFE File folder 24/08/2020 17
T51683 CQRobot PAL... File folder 07/00/2020 17:£
751695 CQRobot BM... File folder 07/09/2020 14:
T51727 CQROBOT AD... File folder 27/09/2020 10:4

turtle rar rade File frlder UMNRIININ 115 ¥

¥ 4% 5 Queve - Transfer Settings Default - i

—]
/<ot~ (= - [~ @ & [Find Files
5 New ~ | ¥
h Size Changed Rights Owmer

20/08/2020 12:00:38 PWXF-XT-X root

20/08/2020 11:36:31 PWXT-XT-X root

01/01/1970 01:00:00 PWKF-XT-X root

20/08/2020 12:09:38 PWKF-XT-X root

20/08/2020 12:00:48 PWXF-XT-X root
home 20/08/2020 11 PAXT-XT-X root
lib 20/08/2020 11 PWKE-XT-X root
lost+found 20/08/2020 12:08:08 -~ root
media 20/08/2020 11:26:08 WX P=XT-X root
mnt 20/08/2020 11:26:08 PWKT-XT-X root
opt 20/08/2020 11:43:02 PWKF-XT-X root
proc 01/01/1970 01:00:00 XXX root
root 20/08/2020 12:09:43 Wx=-==-- root
run 20/08/2020 12: PWKF-XT-X root
shin 20/08/2020 11 PWKF-XT-X root
srv 20/08/2020 11:26:08 PWXF-XT-X root
sys 01/01/1970 01:00:01 -XI=XT-X root
tmp 20/08/2020 12:09:45 rwacrwaerwt root
usr 20/08/2020 11:38:05 PWKF-XT-X root
var 20/08/2020 12:09:38 WX P=XT-X root

The system file for the raspberry Pl system

Click to open terminal and input the password: raspberry, and press “Enter”

on keyboard.

@ pi@raspberrypi

36

£

www.keyestudio.com

@ pi@raspberrypi: ~ ES

Logging in successfully, open the terminal, input ip a and tap “Enter” to

check IP and mac address.

@ pil@raspberrypi: ~

500 gdisc mg state UP group defa

From the above figure, mac address of this Raspberry Pi is a6:32:17:61:9c,
and IP address is 192.168.1.128(use IP address to finish xrdp remote login).

Since mac address never changes, you could confirm IP via mac address

when not sure which IP it is.

37

Ml
o

www.keyestudio.com

(5) Fix IP address of Raspberry Pi
IP address is changeable, therefore, we need to make IP address fixed for

convenient use.

Follow the below steps:

Switch to root user

If without root user’ s password

@ Set root password

Input password in the terminal: sudo passwd root to set password.
@ Switch to root user

su root

® Fix the configuration file of IP address

Firstly change IP address of the following configuration file.
(#New IP address: address 192.168.1.99)

Copy the above new address to terminal and press “Enter” .

Configuration File:
echo -e'
auto eth0

iface ethO inet static

38

£

www.keyestudio.com

#Change IP address
address 192.168.1.99
netmask 255.255.255.0
gateway 192.168.1.1
network 192.168.1.0
broadcast 192.168.1.255
dns-domain 119.29.29.29
dns-nameservers 119.29.29.29
metric O

mtu 1492
'>/etc/network/interfaces.d/eth0

As shown below:

@ Reboot the system to activate the configuration file.

Input the restart command in the terminal: sudo reboot
You could log in via fixed IP afterwards.

® Check IP and insure IP address fixed well.

39

£

www.keyestudio.com

= mg state UP gre

(6) Log in desktop on Raspberry Pi wirelessly

In fact, we can log in desktop on Raspberry Pi wirelessly even without
screen and HDMI cable.

VNC and Xrdp are commonly used to log in desktop of Raspberry Pi

wirelessly. Let’ s take example of Xrdp.

Install Xrdp Service in the terminal
Installation commands:

Switch to Root User: su root
Installation: apt-get install xrdp
Enter y and press “Enter”

As shown below:

40

£

www.keyestudio.com

P pi@raspberrypi: ~ - m} X

Open the remote desktop connection on Windows
Press WIN+R on keyboard and enter mstsc.exe.

As shown below:

Type the name of a prograrn, folder, docurnent, or Internet
resource, and Windows will open it for you.

Dpen: mstsc.exe i

QK Cancel Browse...

Input IP address of Raspberry Pi, as shown below.
Click “Connect” and tap “"Connect” .

192.168.1.99 is IP address we use, you could change into your IP address.

41

Ml
o

www.keyestudio.com

*@ Rernote Desktop Connection =

| Remote Desktop
“>¢ Connection

4

Computer: | 192.168.1.99 v

Username: Mone specified

You will be asked for credentials when you connect.

{= Show Options Connect Help

! ',. Do you trust this remote connection?

This remote connection could ham your local or remote computer. Make sure that you trust the remote
computer before you connect.

| Type: Remote Desktop Connection
@ Remote computer: 192.168.1.99

[] Dont ask me again for connections to this computer

= Show Details Connect Cancel

Click "Yes"
| %} Remnote Desktop Connection S

' 'ﬂgkﬁﬁyﬁmemﬁemmbﬁveﬁlﬂd.ﬂuwuwmtn
"2 connect anyway?

This problem can occur if the remote computer is running a version of
Windows that is earier than Windows Vista, or f the remote computer is not
configured to support server authentication.

For assistance, contact your netwark. administrator or the owner of the remaote
computer.

[] Dont a=k me again for connections to this computer

Yes r;.lo

Input user name: pi, default password: raspberry, as shown below.

pv4
o

www.keyestudio.com

B 192.168.1.253 - TRSEEES = [m] b4

Login to raspberrypi

Just
connecting

Session IXm’g

username I pi I

password | |

ERIAZHS: raspberry

ok | Cancel

< >

Click "OK” or "Enter” , you will view the desktop of Raspberry Pi OS, as

shown below.

LN - |

Now, we finish the basic configuration of Raspberry Pi OS.

3.3 Raspberry Pi Pico

43

pv4
o

www.keyestudio.com

‘ ’EJ |_1L|-rr. i F|r |C|"'L FI

At the end of January 2021, the Raspberry Pi Foundation launched the
Raspberry Pi Pico, which received a lot of attention due to its
high-performance and low-cost.

The size of Pico is 2Tmm x 51mm, which is similar to Arduino Nano' s.

Raspberry Pi Pico

() Raseberry Pi Pico ©2020 ., soorse :no

Raspberry Pi Pico is a low-cost, high-performance microcontroller board
with flexible digital interfaces. It integrates RP2040 microcontroller chip
designed by Raspberry Pi, with dual-core Arm Cortex MO+ processor

running up to 133 MHz, embedded 264KB of SRAM and 2MB of on-board

44

pv4
o

www.keyestudio.com

Flash memory, as well as 26 multi-function GPIO pins. For software
development, either Raspberry Pi's C/C++ SDK, or the MicroPython is

available. In this tutorial, we will use MicroPython.

The bare board does not come with pins and you need to solder them
yourself. This is a well-made board that can also be used as an SMD

component and soldered directly to a printed circuit board.

45

£

www.keyestudio.com

<« microUsSB

pal =

On-board LED

Boot Select

BOOTSEL

RP2040

Raspberry Pl Pico ©2020

1
DEBUG
.7 e @

Debug Pins

L]
) @
®
X
; -
[]
[]
L]
=
[]
o
®
X
[)
)
) @
®
®
[]
[]

The most predominant feature on the board is the microUSB connector at
one end. This is used both for communication and to supply power to the
Pico. An on-board LED is mounted next to the microUSB connector, it is
internally connected to GPIO pin 25. It" s worthwhile to note that this is the
only LED on the entire Pico board.

The BOOTSEL pushbutton switch is mounted a bit down from the LED, it
allows you to change the boot mode of the Pico so that you can load
MicroPython onto it and perform drag-and-drop programming.

At the bottom of the board, you' Il see three connections, these are for a

serial Debug option that we won’ t be exploring here.

46

£

www.keyestudio.com

In the center of the board is the brains of the whole thing, the RP2040 MCU,
which is capable of supporting up to 16MB of off-chip Flash memory,
although in the Pico there is only 4MB.

® Dual-core 32-bit Arm Cortex MO+ processor

® Runs at 48MHz, but can be overclocked to 133MHz

® 30 GPIO pins(26 exposed)

® Can support USB Host or Device mode

® 8 Programmable I/O(PIO) state machines

VBUS
VSYS
GND
3V3-EN

m.

o
BB BB BEREBEEEBEEEBEBE B

GND

BOOTSEL

GND GND

GND GND

GND GND

=
L]
) @
) @
e
>
*
L
L
N J
L]
L]
L]
L J
L]
el
L]
L]

L
o™
o~
o
Lo B
o
o
o
-
>
—
—
[}]
o
a
%
©
o

The Pico is a 3.3V logic device, however, it can be powered with a range of
power supplies thanks to a built-in voltage converter and regulator.

GND: Ground connection. 8 grounding wires plus an additional one on the 3-pin

47

Ml
o

www.keyestudio.com

Debug connector. They are square as opposed to rounded like the other
connections.

VBUS: This is the power from the microUSB bus, 5V. If the Pico is not being
powered by the microUSB connector then there will be no output here.
VSYS: This is the input voltage, which can range from 2 to 5V. The on-board
voltage converter will change it to 3.3V for the Pico.

3V3: This is a 3.3V output from the Pico’ s internal regulator. It can be used
to power additional components, providing you keep the load under
300ma.

3V3 EN: You can use this input to disable the Pico’ s internal voltage
regulator, which will shut off the Pico and any components powered by it.
RUN: It can enable or disable the RP2040 microcontroller, it can also reset

it.

48

Ml
o

www.keyestudio.com

VBUS
VSYS
GND
3V3_EN
3V3 OUT

L]
[

BOOTSEL

GP28
GND
GP27
GP26
RUN
GP22
GND
GP21
GP20
GP19
GP18
GND
GP17
GP16

. Raspberry Pi Pico © 2020

There are 26 exposed GPIO connections on the Raspberry Pi Pico board.
They are laid out pretty-well in order, with a “"gap” between GP22 and GP26
(those “missing” pins are used internally). All these pins have multiple
functions, and you can configure up to 16 of them for PWM. There are two
12C buses, two UARTSs, and two SPI buses, these can be configured to use a

wide variety of GPIO pins.

The Pico has three Analog-to-Digital Converters, they are ADCO-GP26,
ADC1-GP27, ADC2-GP28, and plus ADC-VREF converter used internally for
an on-board temperature sensor. Note: The ADCs have a 12-bit resolution.
However, the MicroPython has scaled the 12-bit resolution into a 16-bit
resolution, which means that we will receive ADC values from 0 to 65535.

49

Ml
o

www.keyestudio.com

The microcontroller © s working voltage is 3.3V, indicating that 0

corresponds to OV and 65535 corresponds to 3.3V.

You can also provide an external precision voltage-reference on the
ADC VREF pin. One of the grounds, the ADC GND on pin 33 is used as a

ground point for that reference.

--

Raspberry Pi Pico Configuration
Dual-core Arm Cortex-M0 + @ 133MHz
2 x SPI,2 x 12C, 2 x UART
264KB of SRAM, and 2MB of on-board Flash memory
16 PWM channels
QSPI bus controller, supporting up to 16 MB of
external Flash memory
USB 1.1 with host and device support
DMA controller
8 x Programmable 1/O (PIO) state machines for
custom peripheral support
30 GPIO pins, of which 4 can optionally be used as
analog inputs

Drag-and-drop programming using mass storage over

50

pv4
o

www.keyestudio.com

Pinout Diagram:

LUARTO TX | 12C0SDA J SPIORX | GPO__ i
2
[_GND K

[12C18DA § spiosck | 6P2 i}

[i2c1scL } spioTx JGP3

6
L UART1 RX § I2coScL | sPiocsn } GRS B

(52d9) a31

@
.o

Ly vBUS |

) vsys |

L] GND |

37

4 3v3(ouT) |

35
3 I

8 3
12C1 SDA f spiosck f GP6 R - GP27 12C1 SCL
PIOTX § GP 1 ADC 1
12C1 SCL 0 cif GP26 | Apco [12C1 SDA

UART1 TX § 12cospa § spnrx | GP8 R

30

& A B A ENEEEEESEEEEEEENE S-S

L]
L
L]
L
L
L
L]
L]
[]
L]
L]
[]
L]
L]
[]
L
L

I 2 29
13 28
ST 74 27
15 (§ GP20 |
| _cPi2 BT A GP19 |
EEEN 7 24
18 bi]
ST 5 2
20 2
I B rower [Ground [l UART/UART (default) [l criopioandPwnv [l aoc [sp [l 1zc B Debugging |

Raspberry Pi did release a ton of technical documentation, plus a great
guide called Get Started with MicroPython on Raspberry Pi Pico. It' s
available in softcover, and as a PDF download as well. For more information,
please refer to:

https://www.raspberrypi.com/products/raspberry-pi-pico/
3.4 Using MicroPython

MicroPython is a lean and efficient implementation of the Python 3

programming language that includes a small subset of the Python

51

Ml
o

www.keyestudio.com

standard library and is optimised to run on microcontrollers and in
constrained environments. MicroPython is packed full of advanced features
such as an interactive prompt, arbitrary precision integers, closures, list
comprehension, generators, exception handling and more. Yet it is
compact enough to fit and run within just 256k of code space and 16k of
RAM. MicroPython aims to be as compatible with normal Python as
possible to allow you to transfer code with ease from the desktop to a
microcontroller or embedded system.

For more information, please go to the official website:

https://micropython.orqg/

Programming the Pico: You could use C/C++ or MicroPython.
MicroPython is an interpreted language that is made specifically for
microcontrollers. Many microcontroller users have familiarity with C/C++
as they are used on the Arduino and ESP32 boards. In this tutorial, we will
use Thonny recommended by Raspberry Pi. Thonny bills itself as a “Python
IDE for Beginners” , and it is available for Windows, Mac OSX and Linux. It
was also part of the Raspberry Pi operating system(formerly Raspbian).

Boot and Install MicroPython: The first thing that we need to do is to get

MicroPython installed onto the Pico.

52

https://micropython.org/

Ml
o

www.keyestudio.com

Download and burn firmware
Go to the official website to download the UF2 file:

https://www.raspberrypi.com/documentation/microcontrollers/#getting-s

tarted-with-micropython

| rp2-pico-20210902-v1.17.uf2

What | downloaded is . Once the

download is complete, we proceed to burn the firmware.

With BOOTSEL held down, then plug the Pico into Raspberry Pi or your
computer’ s USB port.

Release it after the connection was finished. You should see a drive

appearing on your computer with the name "“RPI-RP2" .

| Pictures

ﬂ Videos

e en_windows_10_ent

o FPI-RP2 (E)

o FPI-RP2 (E)

¥ Metwork

Move the UF2 file into"RPI-RP2”, and the Raspberry Pi Pico will

automatically restart. At this point, the burning is complete.

53

https://www.raspberrypi.com/documentation/microcontrollers/#getting-started-with-micropython，
https://www.raspberrypi.com/documentation/microcontrollers/#getting-started-with-micropython，

Ml
o

www.keyestudio.com

s

Mame Drate modified Type
#F Quick access
| rp2-pico-20210802-v1.17.uf2 2021/12/13 10:35 UF2 File
B Desktop | PEP I
4 Downloads

a5
=] Documents

| Pictures

B This PC
il 30 Objects
B Desktop
=] Documents
4 Downloads
Jﬁ, Music
= Pictures
ﬁ Videos
= en_wind

o RPI-RPZ _,

o RPI-RP2 (E:) |+ Copy to RPI-RP2 (E:) |

o Metwork

Connect the Pico from a Raspberry Pi over USB

The MicroPython firmware is equipped with a virtual USB serial port which
is accessed through the micro USB connector on Raspberry Pi Pico. Your
computer should notice this serial port and list it as a character device,
most likely /dev/ttyACMO.

You can run Is /dev/tty* to list your serial ports. There may be quite a few,
but MicroPython’ s USB serial will start with /dev/ttyACM. If in doubt,
unplug the micro USB connector and see which one disappears. If you don’

t see anything, you can try rebooting your Raspberry Pi.

Enter the following command to install minicom:

54

£

www.keyestudio.com

sudo apt install minicom
P pi@raspberrypi l‘:' (o=l e |

(%

open it as such:

minicom -o -D /dev/ttyACMO
£2 pi@raspberrypi [ESIEESC

S

Press Ctrl + B.

55

£

www.keyestudio.com

EP pi@raspberrypi = W= ﬂ-}

Enter print("hello world"), it will show“hello world".
‘@ pi@raspberrypi | = | B |-

5:34.

The on-board LED on Raspberry Pi Pico is connected to GPIO pin 25. The
module is used to control on-chip hardware. This is standard on

all MicroPython ports. Here we are using it to take control of a GPIO, so we

can drive it high and low. If you type this in to light up the LED.

from machine import Pin

led = Pin(25, Pin.OUT)

led.value(1)

56

£

www.keyestudio.com

@ pi@raspberrypi | i) S

You can turn the LED off with:

led.value(0)

E® pi@raspberrypi

Now we have successfully connected the Pico from a Raspberry Pi over
USB.

Install Thonny

The Raspberry Pi Imager that we downloaded comes with some commonly

used software, and Thonny is among them.

57

pv4
o

www.keyestudio.com

$© =

2 o
fﬁj Education > 3 Greenfoot Java IDE

(ASEY |nternet » @ mu

' Sound & Video > Wﬁ Thonny Python IDE
? Graphics s |
M Games >

If the Raspberry Pi Imager does not have Thonny, you need to manually
download it yourself. Enter the following command in the terminal to
download and install Thonny.

sudo apt install thonny

When opening Thonny for the first time select "Standard Mode" in the top
right of the window. Open Thonny again, the interface is shown in the figure

below.

58

Ml
o

www.keyestudio.com

Thonny - <untitled

File Edit View Run Tools Help

wrry OB !

Files <untitleds =

This computer 1
/ home / pi

) Desktop

I |} Documents
I |1 Downloads
P) Music

b)) pico

B[Pictures

I> |4 Public -

b)) Templates
f b4
I> |1, thinclient_drives sl
) Videos . N
2 minicom.log Python 3.7.3 (/usr/bin/python3) I

L= -2 o
Python 3.7.3

'

Select "MicroPython (Raspberry Pi Pico)" from the list, as shown below.

Thohny - <untitled> @

File Edit View Run Tools Help

$du OB HEE

This computer = 1
/home / pi

11 Desktop
I-|} Documents
() Downloads

1)) Music
1) pico
bl Pictures + The same interpreter which runs T
4 'p' Public Alternative Python 3 interpreter or
EI: :r::"c?il::!isdriues diei /I N‘!lcrqu’{hon (Raspb_erry i Pico)l
bW videos = CircuitPython (generic)

& minicom.log Python 3.7.3 (/usr/bin/python3)

= Configure interpreter...

Click “Tools"” and “Options”.

59

pv4
o

www.keyestudio.com

Thonny - <untitied> @ 1:1
File Edit View Run Help

e gy gy G Gorereocee

Files 3¢
Cpen Thonny program folder...

This computer Open Thonny data folder...
/ home / pi |

I}, Desktop
11 Documents
I} Downloads
1) Music

-1} pico

S>> a

-

‘ Shell =

MicroPython (Raspberry Pi Pico)

Select MicroPython(Raspberry Pi Pico) and the port as shown below.

Thonny - <untitled> @ 1:1 v oA X

File Edit View Run Tools Help

File | General | Interpreter | Editor | Theme & Font | Run & Debug | Terminal | Shell | Assistant |

Thi:
J ha Which interpreter or device should Thonny use for running your code? I
bR MicroPython (Raspberry Pi Pico) |v

b[) | |The same interpreter which runs Thonny (default)
bl) | |Alternative Python 3 interpreter or virtual environment
by | |Remote Python 3 (SSH)

bl | [MicroPython (local)

MicroPython (SSH)

MicroPython (BBC micro:hbit)

MicroPython (Raspberry Pi Pico) |
MicroPython (ESP32)

MicroPython (ESP8266)

MicroPython (generic)

—— | [CircuitPython (generic)

A special virtual environment (deprecated)

60

pv4
o

www.keyestudio.com

Thonny - <untitied> @ 1:1 v oA X

File Edit View Run Tools Help

File | General | Interpreter | Editor | Theme & Font | Run & Debug | Terminal | Shell | Assistant |

Thi:

7 hd Which interpreter or device should Thonny use for running your code?

b @ |MicroPython (Raspberry Pi Pico) |v|
PIL | Details

Pl ;

b Connect your device to the computer and select corresponding port below

b (look for your device name, "USB Serial" or "UART").
If you can't find it, you may need to install proper USB driver first.

Port

Board in FS mode - Board CDC (/dev/ttyACMO) -
[Boardin FS mode - Board CDC (/dev/tlyACMO) I
tty AMAD (/dev/ttyAMAD)

< Try to detect port automatically =

Or select MicroPython (generic):

Thonny - <untitled> @ 1:1 v oA oXx
File Edit

B

Thonny options

General | Interpreter | Editor | Theme & Font | Run & Debug | Terminal | Shell | Assistant |

iles 3
Fli'es Which interpreter or device should Thonny use for running your code? &
MicraPytl MicroPython (generic) H

:’ dDrl‘—itTI The same interpreter which runs Thonny (default)

',‘ el AEtemative Python 3 interpreter or virtual environment

o - Ct.rcthy'thon {generl_c))

= it MicroPython (BBC microthit)

& rotal | MicroPython (ESP32)

= rotal | AicroPython (ESP3266)

a: urtc. I MicroPython (generic) ;

A special virtual environment (deprecated)

This com
/home /|
[} Bool -
I} Desk
I} Docy
>} Dow 10} “
[} Musi
I Pictu
() Publ
Iy Tem 0
12 thing

ok || cancel | ———~

61

pv4
o

www.keyestudio.com

File Edit Vig Thonny options v oA X

+ TH) | General | Interpreter | Editor | Theme & Font | Run & Debug | Terminal | Shell Assistant |

Files %

MicroPytho

a

L T R W R R

dht.py
DHT22
ht16k:
main.g
matrix
rotary
rotary,
urtc.py

This compu
/ home / pi

b

T YT YT TS

FfAEESeEEEEsEs

Books|
Desktc
Docurm
Downl
Music

Picture
Public

Templ:
thinclie

Which interpreter or device should Thonny use for running your code?
MicroPython (generic) -
Details

Connect your device to the computer and select coresponding port below

(look for your device name, "USB Serial” or "UART").
If you can't find it, you may need to install proper USB driver first.

i :

Port
Board in FS mode - Board CDC (/dev/ttyACMO)

Board in FS mode - Board CDC (/dev/ttyACMO) |
Y v/ Ty AMAD]
< Try to detect port automatically >

Click “Ok”.

Thonny User Interface

Now we will introduce Thonny user interface. At the top is the main menu,

there are "File” , "Edit” , “View” , "Run” , “Tools” and “Help” .

62

pv4
o

www.keyestudio.com

Thonny - <untitled> @ 1:1

File Edit View Run Tools Help

-|-_@ g OB EEEOC O

Files % ‘

<untitled> %

/ home / pi

I Music
-1 pico

I} Desktop
1) Documents
> Downloads

This computer

Raspberry Pi Pico

»
¥

1

Shell 3
MicroPython v1.17-195-gbb7aae557-dirty on 2021-11-2 &
3; Raspberry Pi Pico with RP2040
Type "help()" for more information.
>>> print("hello world")
hello world

Tl [o> I >

MicroPython (Raspberry Pi Pico)

Click “File” , it shows some operations related to files.

File Edit View Run Tools Help

Thonny - <untitled> @ 1:1

Ctri+N ==
1 Open... Ctri+0 g —1 O
Recent files ~ titleds %
| Close Ctrl+w =
Close all Ctrl+Shiftew -
Save Ctrl+S
Save All files Ctri+Alt+S
‘ Saveas... Ctrl+Shift+S
{ Save copy...
| Maove / rename
Print... Ctrl+P 1 %
; -oPython v1.17-195-gbb7aae557-dirty on 2021-11-2 &
Exit Ctrl+ it i J y
9 -, Raspberry Pi Pico with RP2040
Type "help()" for more information.
>>> print("hello world")
hello world
> -0 o

MicroPython (Raspberry Pi Pico)

Click "Edit”, these are some options about code, such as copying, cutting,

63

pv4
o

www.keyestudio.com

pasting.

Thonny - <untitled> @ 1:1

o

File Edit View Run Tools Help

i Undo Ctri+Z
Redo Ctri+Y
Fili

Cut Crl+X
Th Copy Ctrl+C
/N paste Ctri+V
P select all Cirl+A
B
P
B
bl
Ra

' for more information.

helio

world")

Auto-complete Ctrl+space
Find & Replace Ctrl+F
Clear shell Ctrl+L

s

MicroPython (Raspberry Pi Pico)

In the View drop-down menu, these are tools to assist you. For example, if

we do not tick Shell (the Shell is the “command line” of the Pico, and you

can execute code directly here.), the result won' t be displayed. Click

“Files” , the files we saved will be shown on the left.

64

pv4
o

www.keyestudio.com

Thonny - <untitled> @ 1:1

File Edit View Run Tools Help
Assistant]

I + g Exception = O

. | Files3¢ | ¥ Files §‘

) Heap T
IEls cor Help r
ome
" Notes I
b . B Object inspector
I PlE Dot Outli
[} Doy Jnire
bl Mu Program tree
b1y pici v Shell

Stack -
Raspbel variables

1on v1.17-195-gbb7aae557-dirty on 2021-11-2 #

Frogram arguments srry Pi Pico with RP2040

Plotter

.p()" for more information.
("hello world")
Increase font size C’[rE-H—IrLd

Decrease font size Ctri+-

Fodiis aditei AlGE MicroPython (Raspberry Pi Pico)

We can select interpreter in the Run drop-down menu, there are also some

shortcuts used in programming.

Thonny - <untitled> @ 1:1

File Edit View Run Tools Help

. + g g Select interpreter...
i

Run current script F5

Files =t

H

This computer “ :
/home / pi -

>l Desktop
i I»1 /. Documen
I»). Downloac
>[4 Music
Il pico

Raspberry Pi F

aae557-dirty on 2021-11-2 #
RP2040
ormation.

Run current script in terminal Ctrl+T

Dock user windows
Pygame Zero mode

Stop/Restart backend Ctr+F2 MicroPython (Raspberry Pi Pico)

In Tools menu, we can select interpreter, font and import modules, etc.

65

pv4
o

www.keyestudio.com

Thonny - <untitled> @ 1:1

At

File Edit View Run Tools Help
+ g g c Manage packages...
I Open system shell...
- | Files %
Open Thonny program folder...

This comp_uter Open Thonny data folder...
[home / pi
b1} Desktop Manage plug-ins...
| b} Documents Options...
1) Downloads
B LL Music
b L) pico
Raspberry Pi Pico = _Sh Il ¢
el

MicroPython v1.17-195-gbb7aae557-dirty on 2021-11-2 &
3; Raspberry Pi Pico with RP204@
Type "help()" for more information.
>>> print("hello world")
hello world

=t Ml e

MicroPython (Raspberry Pi Pico)

Thonny options

Ul theme \ Editorfor:t‘DejaVu Sans Mono H|13 H
Syntax theme ‘Default Light H 10 font ‘CourierNew H|'I‘I H |
Preview

1 def foo(bar): 1

2 if bar is None: # This is a comment

3 print('The answer is', 33)

4

5 unclosed string = "blah, blah

>>> %Run demo.py

Enter an integer: 2.5
ValueError: invalid literal for int() with base 18: '2.5'

I NB! Some style elements change only after restarting Thonny!

In Help menu, we will see “Help contents” , “Version history” and more.

The icons below the main menu are our commonly used tool shortcuts.

66

pv4
o

www.keyestudio.com

v - etiptitled= @ 1:1

File Edit View Run Tools Help

! <Mt
A fil
, Run files
Create Open files Reboot/Stop

new files Save files

i
i v € neLtot)’ TOF MOre nformati
|»>> print("hello world")

hello world

-5 -] I -

MicroPython (Raspberry Pi Pico)

When we open or save files, it will shows the following contents.

Where to save to?

Where to._en from? ~

This computer This computer

Raspberry Pi Pico e
Raspberry Pi Pico

Note: if we select "MicroPython(generic)” , then “MicroPython Device'

will be displayed.

1

67

Ml
o

www.keyestudio.com

This computer

MicroPython device

We can open programs saved on the Raspberry Pi or the Pico, or save them
on This computer or Raspberry Pi Pico.
Copy the code below to the Thonny and save it to the Pico as test.py.
from machine import Pin, Timer
led = Pin(25, Pin.OUT)
tim = Timer()
def tick(timer):
global led
led.toggle()
tim.init(freq=2.5, mode=Timer.PERIODIC, callback=tick)

68

Ml
o

www.keyestudio.com

Thonny - Raspberry Pi Pico : /ftestpy @ 7:55

File Edit View Run Tools Help
*=a 0O o

[test.py] ‘

from machine import Pin, Timer!.

led = Pin{25, Pin.0QUT)!.

tim = Timer()!

def tick(timer):!.

5 global led!

6 led.toggle()!

tim.init(freq=2.5, mode=Timer.PERIODIC, callback=tick)|

LU B

L

Shell x |
>>> print("hello world")

>>> E
>>> =

MicroPython (Raspberry Pi Pico)

hello world I

Click o to run the code, the on-board LED will blink, then click O to

stop, the LED won’ t blink. If we unplug the MicroUSB cable and plug it in
again, the LED won’ t blink after powering up. This is because we did not
name the file main.py and save it to the Pico. Click “File” , then click “Save
as..” to choose Raspberry Pi Pico. After that, enter main.py as the file name
(don’ tforget to enter the .py file extension) and click "OK" . Run the code

again, the LED will continue to blink.

69

£

www.keyestudio.com

Save to Raspberry Pi Pico

Raspberry Pi Pico =3

File name: |rﬂain.py|] oK | [Cancel |

T

When we unplug the cable again, then plug it in and power on, the LED will
blink. This is because the Raspberry Pi Pico starts running the program

saved on main.py after powering up.

Add Modules

Python is a powerful language due to its modules. Python scripting
language with the most rich and powerful class library, enough to support
the vast majority of day-to-day applications. By importing modules, this
makes it easier for us when using some complex sensors.

The method is simple, just save the module that we need to the Pico, or
open the file saved on our computer, click “File” to choose “Save as”, then
save it to the Pico board (right click the mouse, you can delete files). For
instance, | saved some library files required for these courses on my Pico.
Click "View" to choose “Files” , they will be displayed on the left of the

interface.

70

£

www.keyestudio.com

Raspberry Pi Pico

D Hb
@ Adafrult_ADXL345.py
& ht16k33_matrixpy /
& matrix_fonts.py
& mfrc522.py

%
9- rotary.py Shel
a
@) rotary_irq_rp2.py 35>
[urtc.py
el [23> v

MicraPython (Raspberry Pi Pica)

When using sensors, we can import the corresponding modules directly.
* http://www.keyestudio.com

import machine
import time
import json

import matrix fonts P——,-

from htl16k33_matrix import ht16k33_matrix

clock_pin = 1
data_pin = @

bus = 8
i2c_addr_left = 6x70
use_i2c = True

def scan_for_devices():

i2c = machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_pin)})
devices = i2c.scan()
if devices:

for d in devices:

print(hex(d))

else:

print('no i2c devices')

We save all the code in this tutorial to the Raspberry Pi. Open the terminal

and create a folder in /home/pi.

71

£

www.keyestudio.com

£ pi@raspberrypi | =R) |

459 SMP PREEMPT Wed Oct & 16:42:49

b

Copy the code to the folder and enter Is, it will show the following content.

UTELY NO ¥

7 2021 from 192.16f

b

When using Thonny, we open this path to find the code we saved directly.

72

Ml
o

www.keyestudio.com

Open file
© Recent 4 fpi pico | Pico_code MicroPython »
I @ Home lame
| B Deskiop
= 2. Traffic_Light
[Documents 3 hiittin
¥ Downloads 4. Avoiding
43 Music 5. Tilt switch
B 7 6. Reed Switch
K Fichires 7. PIR motion
m Videos 8. Active buzzer

9. Passive buzzer
10. RGB

M 105GB Volume = 11. potentiometer
12. MicroPhone

13. Photoresistance

M thinclient_drives &

»

+ Other Locations

14. Temperature sensor
15. film pressure sensor
16. Joystick
17 SK6E12

3.5 Keyestudio Raspberry Pico 10 Shield

(1) Overview

The Keyestudio Raspberry Pico IO shield is designed for Raspberry Pi Pico. No
soldering required. To make the connection easier, the interfaces on the
shield have silkscreen labels.The silkscreen labels of the 3pin interface
generally are G, V, S. On the shield, G represents GND, V represents the VCC
interface (3.3V), and S represents digital ports or analog ports. The pitch of
the pin header on the shield is 2.54 mm. The sequence of the pin header is
the same as the Pico board’ s when wiring. The shield also comes with a
reset button, a PWR power indicator and four holes.

The shield offers a variety of communication interfaces including 12C, UART,

73

Ml
o

www.keyestudio.com

SPI, analog 10 and digital IO, and provides an interface of power supply

ranging from 6.5V to 12V.

(2) Specifications:

Output current: <500mA

DC input voltage: 6.5 - 12V

Output voltage: DC 3.3V/5V

Ambient temperature(recommended): -10°C ~ 50°C
Dimensions: 45.339MM *83.617MM

Pin pitch: 2.54mm

(3) Schematic diagram

TP
P15 |

o T

s\ oy

e

T

]

o —o
EREERBEEREREE | |
R —opalelofe bkl Rl kb : ££ HENNEN
3 o =l = = 1 =1 =
bbbkl bl ? EREEFER
) { I e SEEEEEFEEEEEBEER 2 =l 2
swoo SEPECEGEEEEBEBEEl SEEBEEEE kb EEE
‘ [2 GD 5 % SEEERE

41 SWCLK |“‘

L H] |
“FEFPFTEFFEFEFEL, -ERFPEFRERERRRL,
i - |
FEFFFRFFEREREE,, TRFFFFERRREEL,

) 4 GEN (SC) 4 GPI sCL) 6 __GPo (Csm) s ers o
Pl RX) 3 GPI0 (SDA) 3 GPI> (5DA) T GR RN P)
2 2 p TGPl (T FEETITE
Jie = = Lo ()
1 T T GP6 (CLK) 5_cro (o0
Ti g uca_:-,!.-j Hm_;!.-: i—||| —
w0 L i
£ 5

(4) Pinout

74

£

www.keyestudio.com

Interfaces
for Raspberry
UART interfaces IO interfaces Pi Pico board DC power supply

B O NGB s W N

IS A W W e e T R

£ . . F 8 &8 B B R KA. W

SWCLK
SPlinterfaces <«

» Power indicator
SWDIO

lICinterfaces <«— g 4 SR e '

{ A"

4 A %f
I0interfaces ADC 2v-5v 2V po“l’e’ Reset button
reference powst RERY L

It
voltage 3V3 EN 5V power
— supply

(5) Connection

As shown below, stack the Raspberry Pi Pico board onto the Raspberry Pi
Pico shield.

75

pv4
o

www.keyestudio.com

4. Projects

There are 37 sensors and modules in this kit. Next, we will analyze and
introduce how they work step by step. Interface sensors with the Raspberry
Pi Pico board and the Pico shield, run test codes and observe experimental

phenomenon.

Note: please wire up components according to the given connection

diagrams.

Project 1: Lighting up LED

76

Ml
o

www.keyestudio.com

r L1 d

SPOPEPesEEES
T Ll L ittt
“..... ceetrer :-
SOesssssssss

Overview

In this project, we will make an experiment to light up the white LED
module. The high and low levels can be controlled by programming, then
the state of the LED can be controlled.

Working Principle

The two circuit diagrams are given. The left one is wrong wiring-up
diagram. Why? Theoretically, when the S terminal outputs high levels, LED
will receive the voltage and light up.

Due to limitation of IO ports of Pico board, weak current can’ t make LED
brighten.

The right one is correct wiring-up diagram. GND and VCC are powered up.

When the S terminal is a high level, the triode Q1 will be connected and

77

£

www.keyestudio.com

LED will light up(note: current passes through LED and R3 to reach GND by

VCC not 10 ports). Conversely, when the S terminal is a low level, the triode

Q1 will be disconnected and LED will go off.

The triode Q1 is equal to a switch and R1 and R3 stand for limited resistors

which can curb the size of current to prevent from burning out

components

~DI

Ql

ey
SUN)

LR2

0603 1k
= | 0603 108}

tl\;.]

Correct wiring-up diagram

Components

WHITE LED

B 5

0603 1k

DI
R {9
= : ‘Q;HI'GED

WHITE LED

Wrong connection diagram

Raspberry | Raspberry Pi
Pi Pico Pico Expansion

Board*1 Board*1

Keyestudio
Purple LED
Module*1

3P
Dupont
Wire*1

Micro
USB
Cable*1

78

Ml
o

www.keyestudio.com

(Note: in all experiments, the microUSB cable is connected to the pico via a

Raspberry Pi, and the 3p Dupont wire is torn from a 40P Dupont wire.)

Connection Diagram

fritzing

Run the test code
After opening Thonny and connecting to the Pico, click“View” and “Files”,

then the code saved on the Raspberry Pi and the Pico will be shown on the

left side.

79

pv4
o

www.keyestudio.com

% 102168.1.148 - mIESEEE S — - =
& Iﬁﬁ:ﬁ) TR Thonny - /home/pi/... 3

Thonny - /home/pi/pico/Pico_code_MicroPython/1. LED/LEDpy @ 11:20
File Edit Run Tools Help

o T -

Exception

thinclient_driv [EEEUIERS ‘ [’ Files I
) Heap
This cor Help lesson 1.1

/ home i turn on led
otes 1ttp://www. keyestudio. com

i it Object inspector

- Il - . 3 .
¢4 Outline n machine import Pin
4 Program tree

by ¢ v Shell = Pin(0, Pin.OUT)# HMEledi%, IMELEDITERE S

bl o Stack e r e
b Variables wvalue(l)# BBEES=
[1

Program arguments
Raspber Pplotter

Increase font size
Decrease font size

Focus editor

Focus shell MicroPython (Raspberry Pi Pico)

We have saved the code on the Raspberry Pi earlier. Find and click LED.py

and Bink.py. Next, click > to run the code. If it did not work, try clicking
o to stop running, then run the code again. You also can press the reset

button on the Pico shield and click O to run it again.

80

Ml
o

www.keyestudio.com

% u O]
Files % | \ LED.r

MicroPython device

= dht.py
? ds18x20.py

This computer

/ home / pi / pico /
Pico_code_MicroPython
<+ i 1. LED

~_Blink.py
* LED.py

k. u L L —

Code Explanation
Machine module is indispensable, we will use import machine or from

machine import... to program pico with microPython.

time.sleep() function is used to set delayed time, as time.sleep(0.01),

which means, the delayed time is 10ms.

1. led = Pin(0, Pin.OUT), created a pin example and we name led.
0 is indicative of connected pin GPO, Pin.OUT represents output mode,
can use .value() to output high levels (3.3V)led.value(1) or low levels

(OV)led.value(0).,

import machine is used to import modules. When creating pins examples,

it will change into led = machine.Pin(0, machine.Pin.OUT)

81

£

www.keyestudio.com

2. while True is loop function,

It means that sentences under this function will loop unless True changes
into False. For the function while, led.value(1), outputs high levels to the
pin O; then LED lights up. Then the delayed function time.sleep(1) will wait
for 1s. When led.value(0) output low levels to the pin 0, the LED will go off,

and the function time.sleep(1) will wait for 1s, cyclically, and LED will flash.

Test Result

Code 1: upload the code and power on, the purple LED on the module will
light up

Code 2: upload the code and power on, the purple LED will flash with the

interval of 1s.

82

Ml
o

www.keyestudio.com

Test Code

Code 1.

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 1.1

* turn on led

* turn on led

* http://www.keyestudio.com
from machine import Pin
led = Pin(0, Pin.OUT)# create led, connect LED to pin 0, and set pin 0 to OUTPUT
led.value(1)# light up

Code 2:

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 1.2
* Blink
* http://www.keyestudio.com
from machine import Pin

import time

led = Pin(0, Pin.OUT)# create led, connect LED to pin 0, and set pin0 to OUTPUT
while True:

led.value(1)# led lights up

time.sleep(1)# wait for 1s

led.value(0)# led goes off

time.sleep(1)# wait for 1s

83

Ml
o

www.keyestudio.com

Project 2: Traffic Lights Module

T AF IC
L GH

SGN L

Overview

In this lesson, we will learn how to control multiple LED lights and simulate
the operation of traffic lights.

Traffic lights are signal devices positioned at road intersections, pedestrian
crossings, and other locations to control flows of traffic.

In this kit, we will use the traffic light module to simulate the traffic light.

Working Principle

In previous lesson, we already know how to control an LED. In this part, we

only need to control three separated LEDs. Output high levels to the signal

R(3.3V), then the red LED will be on.

84

£

www.keyestudio.com

Components

Raspberry
Pi Pico
Board*1

Raspberry Pi
Pico
Expansion

Board*1

Keyestudio
DIY Traffic
Lights
Module*1

5P
Dupont
Wire*1

Micro
USB
Cable*1

85

Ml
o

www.keyestudio.com

Connection Diagram

-
I
o
-
Q
™
T
<
o
-

Power_OUT
RESET,

fritzing

Run the test code

Find and double-click Traffic_Light.py to open it, then click > to run the

code.

86

pv4
o

www.keyestudio.com

File Edit View Run Device Tools Help

*800 o
Files %

MicroPython device . 3 |

Lo lib
ADXL345.py

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Picc
* lesson 2

* Traffic_Light

* http://www.keyestudio.com

4

»

This computer
/home / pi / pico /
Pico_code_MicroPython import machine

k), 19. Steam sensor & import time
g 2. Trathic_Light 9

Il
WO U R WN P&

4

Traffic_Light.py 10 led red = machine.Pin(14, machine.Pin.OUT)
20, MicroPhone 11 led amber = machine.Pin(13, machine.Pin.OUT)
| 21. Photoresistance | N\ |7 Ted areen = marhine Pin(17. machine Pin 0IT) L

i 22. Temperature se
| 23. film pressure se | | Shell % ‘

' 24. Flame sensor MicroPython v1.17 on 2021-09-02; Raspberry P1 Pico with RP20J
4 25. MQ-2 ')

I 26. MQ-3 r'voe "help()" for more informatiot
| 27. AD Key ol '

1 28. Joystick

b = S~ S A~ v~ S
e o i - [< -

Code Explanation

Create pins, set pins mode and delayed functions.

We use the for loop.

The simplest form is for i in range().

In the code, we used range(3), which means the variable i starts from 0,

increase 1 for each time, to 2.

Test Result

Run the code, the green LED will be on for 5s then off, the yellow LED will

87

£

www.keyestudio.com

flash for 3s then go off and the red one will be on for 5s then off.

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 2
* Traffic_Light
* http://www.keyestudio.com
import machine
import time

led_red = machine.Pin(14, machine.Pin.OUT)
led_amber = machine.Pin(13, machine.Pin.OUT)
led_green = machine.Pin(12, machine.Pin.OUT)

while True:
led_green.value(1) # the green LED lights up for 5s
time.sleep(5)# after 5s
led_green.value(0)# the green LED will go off
for i in range(3):#the yellow LED flashes for three times
led_amber.value(1)
time.sleep(0.5)
led_amber.value(0)
time.sleep(0.5)
led_red.value(1) # the red LED lights up for 5s
time.sleep(5)
led_red.value(0)

88

Ml
o

www.keyestudio.com

Project 3: Laser Sensor

Description

Lasers are widely used to cut, weld, surface treat, and more on specific materials.
The energy of the laser is very high. The toy laser pointer may cause glare to the
human eye, and it may cause retinal damage for a long time. my country also

prohibits the use of laser to illuminate the aircraft.

Working Principle
The laser head sensor module is mainly composed of a laser head with a

light-emitting die, a condenser lens, and a copper adjustable sleeve.

We can see the circuit schematic diagram of this module which is very similar to

89

£

www.keyestudio.com

the LED we have learned. They are all driven by triodes. A high-level digital signal
is directly input at the signal end, then the sensor will start to work; if inputting

low levels, the sensor won't work

Note: don’ t point an laser emitter at eyes of people.

[R
220K
71
1
laser
R2 Q1
B T g, 58050
lIZ-rK
oD
Components

90

Ml
o

www.keyestudio.com

Raspberry Pi Keyestudio 3P Micro
Raspberry Pi
Pico Expansion DIY Laser Dupont USB
Pico Board*1
Board*1 Module*1 Wire*1 Cable*1

Connection Diagram

)’ UARTO UART1
3v3 3V3
GND CND

-2 GP9

Swpig & . .
2
g

HH==lH

fritzing

Run the test code

Find Laser.py, then double-click the code and click @

91

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code_MicroPython/3. Laser sensor/Laserpy @ 15:35

File Edit View Run Device Tools Help
M Laser.py %
MicroPython device = : i 1
b lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Picc
? ADXL345.py 3 * lesson 3
- 4 * Laser
This computer = 5 * http://www.keyestudio.com
/home / pi / pico / an '
Pico_code_MicroPython 7 from machine import Pin
bl 27. AD Key 9 import time
-1} 28. Joystick 9
b) 29. UV sensor 10 laser = Pin{2, Pin.OUT)# Build the laser object, connec
- B 11 while True:
= Laser.py . 12 Taser.value(1V# | aser « .
bl 30. SK6812
b)) 31. Encoder Shell x
k1) 32. Servo T B
- e MicroPython v1.17 on 2021-09-02; Raspberry Pi Pico with RP20
b) 35. DS18B20) P SO
Dl}_- 36. XHT11 Tor mot inTormatliol

Test Result

Upload the test code and power up, the laser tube on the module emits a

red laser signal for 2 seconds, and stops emitting a red laser signal for 2

seconds.

92

Ml
o

www.keyestudio.com

VW WYY MR

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 3
* Laser
* http://www.keyestudio.com
from machine import Pin

import time

laser = Pin(2, Pin.OUT)# create the laser, connect it to the pin 0 and set the pin 2 to OUTPUT
while True:

laser.value(1)# the laser module is on

time.sleep(2)# wait for 2s

laser.value(0)# the laser module is off

time.sleep(2)# wait for 2s

93

2l
o

www.keyestudio.com

Project 4: Button Sensor

Overview

In this kit, there is a Keyestudio single-channel button module, which
mainly uses a tact switch and comes with a yellow button cap.

In previous lessons, we learned how to make the pins of our single-chip
microcomputer output a high level or low level. In this experiment, we will
read the high level (3.3V) and low level (0V).

We can determine whether the button on the sensor is pressed by reading

the high and low level of the S terminal on the sensor.

Working Principle
The button module has four pins. The pin 1 is connected to the pin 3 and

the pin 2 is linked with the pin 4. When the button is not pressed, they are

94

£

www.keyestudio.com

disconnected. Yet, when the button is pressed, they are connected. If the

button is released, the signal end is high level.

vee
R1
0603 4.7K
| g
S | M v
1 ; . 3 C1 YRR G
© 0603 100NF [
2 4 =
2 4 GND
= GND
GND
Components

Do000000000000000000

Keyestudio DIY
Raspberry Pi Raspberry Pi Pico Button 3P Dupont Micro USB
Pico Board*1 Expansion Board*1 Modul e*1 Wire*1 Cable*1

95

£

www.keyestudio.com

Connection Diagram

P’ uarTo

Run the test code

UART]

200000000000000";

sv
" |
5 |
P |

Power_OUT
RESET,

fritzing

Find button.py, double-click, and cIicko

_ Thonny - /hom:
File Edit View Run Device Tools

& £ 1 [O)

| Files 3¢ |

MicroPython device =

@ ADXL345.py
2 dht.py

i

This computer
/home / pi / pico /
Pico_code_MicroPython
by 36. XHT11

b1y 37. DS1307 Real Tii
b1} 38. ADXL345

b1} 39. TM1650 Four di

= 4 b on 4 .
“_ button.py :

1 42. RFID RC522
), 43. Breath
4 44, button control L
1 45. Avoiding alarm
>

-

B

Help

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Picc
* lesson 4

* button

* http://www.keyestudio.com

from machine import Pin
import time

button = Pin(15, Pin.IN, Pin.PULL UP)

while True:

)\ 40. HT16K33 dot My | | Shell 2
) 41. lcd128_32 N

Code Explanation

96

Ml
o

www.keyestudio.com

button = Pin(15, Pin.IN, Pin.PULL UP), we define the pin of the button as
GP15 and set to PULL-UP mode

We can use button = Pin(15, Pin.IN) to set INPUT mode, at this time, the

pins are in high resistance state.

1. button.value(), read levels of buttons. Function returns High or Low

2. if..else.. sentence, when the logic judge is TRUE, the code under the if

will be activated; otherwise, the code udder the else will be activated.

3. When pico detects the button pressed, the signal end is low level (GP 15
is low level). button.value() is 0. If pico detects the button unpressed,

button.value() is 1 and else sentence will be activated.

Test Result

Upload the test code successfully. After powering on the USB cable, open the
serial monitor and set the baud rate to 9600. The serial monitor will display the
corresponding data and characters. When the button is pressed, val is 0, the
monitor will show “Press the button” ; when the button is released, valis 1,
the monitor will show “Loosen the button” ; as shown below

97

pv4
o

www.keyestudio.com

oot ot ol gt

Shell ¥

luu STOOCIT CHC DU CONT .
You loosen the button!

You loosen the button!

You loosen the button!

You loosen the button!

You loosen the button!

You loosen the button!

You loosen the button!

You loosen the button!

You pressed the button!

You pressed the button!

You pressed the button! I

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 4

* button

* http://www.keyestudio.com

Y4
o

www.keyestudio.com

from machine import Pin
import time

button = Pin(15, Pin.IN, Pin.PULL_UP)

while True:
if button.value() == 0:
print("You pressed the button!") #Print information
else:
print("You loosen the button!")
time.sleep(0.1) #delay in 0.1s

Project 5: Capacitive Sensor

Description

In this kit, there is a capacitive touch module which mainly uses a
TTP223-BA6 chip. It is a touch detection chip, which provides a touch

button, and its function is to replace the traditional button with a variable

99

Ml
o

www.keyestudio.com

area button. When we power on, the sensor needs about 0.5 seconds to
stabilize. Do not touch the keys during this time period. At this time, all
functions are disabled, and self-calibration is always performed. The
calibration period is about 4 seconds. We display the test results in the

shell.

Working Principle

Ul

8 1 6

Q TOG — VeC
2 _|__2 VSS VDD — i3
[]RI = 3 S e — J_ J_
0603 1K GND ey c1 C2
TTP223N-BA6 S
. 100NF
Z 1
= PAD =
LED-RED GND

T
22PF NPO

GRD
When our fingers touch the module, the signal S outputs high levels, the red LED
on the module flashes. We can determine if the button is pressed or not by

reading high and low levels on the sensor.

Required Components

100

Ml
o

www.keyestudio.com

- | S
) o Keyestudio DIY)
Raspberry Pi Raspberry Pi Pico o 3P Dupont Micro USB
)) Capacitive]
Pico Board*1 Expansion Board*1 Wire*1 Cable*1
Modul e*1

Connection Diagram

UARTO UARTI

cP21 GPI5
cP20 [.
GND

Run the test code

H
sweik ™
GND
[SWDIO

5V GND

Power_OUT I |

RESET,

Find Touch.py, double-click and click >

fritzing

101

Ml
o

www.keyestudio.com

-

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Picc
* lesson 5

* Touch sensor

* http://www.keyestudio.com

7 ADXL345.py
= dht.py

-

=W R e

-

This computer =
/ home / pi / pico /
Pico_code_MicroPython

I} 45, Avoiding alarm

46. UV alarm 3
. 47. PIR alarm 10 button = Pin(3, Pin.IN, Pin.PULL_UP)

Bl

Bl

b1y 48. play music 11
(P

o

n

o U

from machine import Pin
import time

-~

o

| 49. self-extinguishil | | 17 while True: .

) 5. Touch sensor
|/ 50. Encoder contro :
/. 51. adjust the light
I 52. Smart window

Shell ¢ |

™

| 53. sound-controlle

v v v v v

| 54. Flame alarm

- |>>> =

Code Explanation

When we touch the sensor, the Shell monitor will show “You pressed the

button!” , if not, “You loosen the button!” will be shown on the monitor.

Test Result

The shell monitor shows corresponding data and characters. In the
experiment, when the button is pressed, the red LED lights up and val is
1.Then the shell shows "You pressed the button!”; if the button is released,

the red LED is off and val is 0; “You loosen the button!” will be displayed

102

Ml
o

www.keyestudio.com

You
You
You
You
You
You
You
You
You
You

Shell

loosen
loosen
loosen
loosen
pressed
pressed
pressed
pressed
pressed
pressed

the
the
the
the
the
the
the
the
the
the

button!
button!
button!
button!
button!
button!
button!
button!
button!
button!

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 5

* Touch sensor

* http://www.keyestudio.com

from machine import Pin

import time

button = Pin(3, Pin.IN, Pin.PULL_UP)

103

£

www.keyestudio.com

while True:
if button.value() == 1:
print("You pressed the button!") #press to print information
else:
print("You loosen the button!")
time.sleep(0.1) #delay in 0.1s

Project 6: Obstacle Avoidance Sensor

Overview

In this kit, there is a Keyestudio obstacle avoidance sensor, which mainly
uses an infrared emitting and a receiving tube. In the experiment, we will
determine whether there is an obstacle by reading the high and low level

of the S terminal on the sensor.

Working Principle

104

Ml
o

www.keyestudio.com

NES55 circuit provides IR signals with frequency to the emitter TX, then the
IR signals will fade with the increase of transmission distance. If

encountering the obstacle, it will be reflected back.

When the receiver RX meets the weak signals reflected back, the receiving
pin will output high levels, which indicates the obstacle is far away. On the
contrary, it the reflected signals are stronger, low levels will be output,
which represents the obstacle is close. There are two potentiometers on
the module, and one is for adjusting emission power, another one is for

receiving frequency.

m;;" IR vee
TX
N
R4
+ -8 0603 22k
vee _|.].
c7 = i GND ||| o —{vee
603 10UFGND b 3 5
NEsS5 [
o VOO -
-1 g3 Ul
= adueable ok [_splishiisieedok
) ~Jvcc .
n g R o 3 INF 4
3 =3 !
> jvee 0603 10k B
oy =
= GND .
GND GND

105

Ml
o

www.keyestudio.com

Components

o | S

Keyestudio DIY

Raspberry Pi Raspberry Pi Pico Obstacle 3P Dupont Micro USB
Pico Board*1 Expansion Board*1 Avoidance Wire*1 Cab le*1
Sensor*1

Connection Diagram

7 uarto UARTI

V3

|
1

2oueploAe 2|2BISq0

#

5V _GND

Power_OUT
RESET,

fritzing

Run the test code

Find Avoid.py, double-click and click >

106

£

www.keyestudio.com

=0

Files

MicroPython device

2 dht.py
ds18x20.py

This computer
/ home / pi / pico /
Pico_code_MicroPython

[43. play music

/1 44, Encoder control RGB

4 45. adjust the light

L 46, Smart window

i1 47. sound-controlled lights
) 48. Flame alarm

L 49, smoke alarm

) 5. Touch sensor

1 50, rainbow

4 51. Ultrasonic radar

L 52. IR control LED

L 53. heat abstractor

4 54. Intelligent access cont
4 55. Comprehensive experi
) 6. Avoiding

| “ Avoid.py

Code Explanation

[+
[+
[+
[+
[+
[+
[+
[+
[+
[+
[+
[+
[+
o

Run the code, we start to adjust the two potentiometers to sense distance.
1. Adjust the potentiometer transmitting power. Make the P LED at the
critical point of ON and OFF states.

2. Adjust the potentiometer receiving frequency. Rotate it clockwise, the

107

Ml
o

www.keyestudio.com

frequency will increase. Make the S LED at the critical point of ON and OFF

states, then the 38KHz square wave can be produced.

Test Result

Run the code, when the sensor detects the obstacle, the Shell will show

“There are obstacles”; if the obstacle is not detected, "All going well” will

be shown.

Shell ¢ |

There
There
There
There
There
There

All going
All going
All geoing
All going
All going
All going

are
are
are
are
are
are

well
well
well
well
well
well
obstacles
obstacles
obstacles
obstacles
obstacles
obstacles

108

“

£

www.keyestudio.com

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 6
* Infrared obstacle avoidance sensor
* http://www.keyestudio.com
from machine import Pin

import time

sensor = Pin(16, Pin.IN)
while True:
if sensor.value() == 0:
print("There are obstacles")
else:
print("All going well")
time.sleep(0.1)

109

Ml
o

www.keyestudio.com

Project 7: Line Tracking Sensor

Description

In this kit, there is a DIY electronic building block single-channel line
tracking sensor which mainly uses a TCRT5000 reflective black and white
line recognition sensor element.

In the experiment, we judge the color (black and white) of the object
detected by the sensor by reading the high and low levels of the S terminal

on the module; and display the test results on the shell.

110

Ml
o

www.keyestudio.com

Working Principle

GN

'd

-

4

E31 S 2
—F 3 4
—"h805 330R Pt

]

TCR5000 =
o

d

When a black or no object is detected, the signal terminal will output high
levels; when white object is detected, the signal terminal is low level; its
detection height is 0-3cm. We can adjust the sensitivity by rotating the
potentiometer on the sensor. When the potentiometer is rotated, the
sensitivity is best when the red LED on the sensor is at the critical point

between off and on.

Required Components

o | B®

) o Keyestudio DIY)
Raspberry Pi Raspberry Pi Pico)) 3P Dupont Micro USB
)) Line Tracking .
Pico Board*1 Expansion Board*1 Wire*1 Cab le*1
Sensor*1

111

£

www.keyestudio.com

Connection Diagram

UARTO UARTI

Power_OUT -
RESET,

Run the test code

Find Line_tracking.py, double-click and cIicko

Thonny - /home/pi/pico/Pic Mic
File Edit View Run Device Tools Help

0|0 o

Files ¢ |

MicroPython device = \ 1
2 ADXL345.py > * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Picc
dht.py 38 * lesson 7

4 * Line Tracking sensor

This computer > * http://www.keyestudio.com

/home / pi [pico / B

Pico_code_MicroPython 7 from machine import Pin

56. breathalyzer & import time

57. rainbow

58; Ultrasonic radat 10 sensor = Pin(3, Pin.IN, Pin.PULL_UP)

J/ 59. IR control LED '

J 6. Avoiding

) 60. heat abstractor | -

)| 61. Intelligent acce: | | Shell %

/| 62. Comprehensive ||~ - -

4 7. Line tracking ser
|"". Line_tral:king.pyl_- |
I» 10, 8. Photo Interrupt \

10 9. Tilt switch

£ £ =

whila True: oo
< n

dvvvvvvvv

, | === v

112

£

www.keyestudio.com

Test Result

Upload test code, the shell displays the corresponding data and characters.
In the experiment, when the sensor doesn’ t detect an object or detects a
black object, the val is 1, and the shell will display "Black" ; when a white
object (can reflect light) is detected, the val is 0, and the shell displays

"White" ;

r
£
'.
E
{
§
L4l

1

1 Black

1 Black

1 Black

1 White

O White

0 White

0 White

] White _
|

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 7
* Line Tracking sensor

113

Ml
o

www.keyestudio.com

* http://www.keyestudio.com

from machine import Pin

import time
sensor = Pin(3, Pin.IN, Pin.PULL_UP)

while True:
if sensor.value() == 0:
print("0 White") #print information
else:
print("1 Black")
time.sleep(0.1) #delay in 0.1s

Project 8: Photo Interrupter

L

i

e s

With Shield Without Shield

Current flow
in the phototransistor @

Description

This kit contains a photo interrupter which mainly uses 1 ITR-9608

photoelectric switch. It is a photoelectric switch optical switch sensor.

Working Principle

114

£

www.keyestudio.com

When the paper is put in the slot, C is connected with VCC and the signal end S of

the sensor are high levels; then the red LED will be off. Otherwise, the red LED

will be on.
5 A
—{vCC [I]RE
N 0603 4.7k
= ~A DI
oo MR 1ep
- Ul
[IR3 Gm.|||_E._p—q_. C
0603 1k
- | i g R 0603 180R
Ve - = |8
100NF Photo Interrupter =
. GND
GND

Required Components

115

Ml
o

www.keyestudio.com

. o Keyestudio DIY
Raspberry Pi Raspberry Pi Pico Phot 3P Dupont Micro USB

oto
Pico Board*1 Expansion Board*1 Wire*1 Cable*1
Interrupter*1

Connection Diagram

UARTD UARTI
vz
GND

GP1

1zco 1zc1
5V _GND

Photo Interrupter

Power_OUT

RESET,

fr

i
a8
=
Q

Run the test code

Find Photo Interrupt.py, double-click and click >

116

pv4
o

www.keyestudio.com

File Edit View Run Device Tools Help

0|0

Flesx | N |P i3 |
MicroPython device = :\ .
@ ADXL345.py 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Picc
& dht.py i 3 * lesson 8
= 4 * Photo Interrupt
This computer = 5 * http://www.keyestudio.com
/home / pi/ pico / BN '’
Pico_code_MicroPython 7 from machine import Pin
) 56. breathalyzer § import time
11 57. rainbow 9
b () 58. Ultrasenic radal 18 sensor = Pin(3, Pin.IN, Pin.PULL UP)
b) 59. IR control LED 11 lastState = 0
b} 6. Avoiding . 17 PushCounter = A :
I 60. heat abstractor
b1l 61. Intelligent acce: | | Shell % ‘
1) 62. Comprehensive ||
L4 7. Line tracking ser :
= |4 8. Photo Interrupt P
I) Phntu_lnterrupt.i
P14 9. Tilt switch

Code Explanation

Logic setting:

Initial Setting

Set PushCounter to 0

Set State to 0 (value of the sensor)

Set lastState to 0

when an object

enters the slot

lastState is 0, State turns | Set

into 1; lastState turns | PushCounter to

117

Ml
o

www.keyestudio.com

into 1

PushCounter+1
print the value

of PushCounter

when the object

leaves the slot

lastState is 1 , State
becomes 0, two data are
not equal, lastState turns

into 0.

PushCounterdo
esn't change;

Don't print the
value of

PushCounter

When the object
goes through this

slot again

lastState is 0, State
becomes 1, two data are
not equal, lastState turns

into 1.

Set

PushCounter to
PushCounter+1
And print the
value of

PushCounter

When the object
leaves this slot

again

lastState is 1, State turns
into 0, two data are not
equal lastState turns into

0

PushCounter
doesn’t change;
Don't print the
PushCounter

value

Test Result

118

£

www.keyestudio.com

Wire up, upload test code, and the shell displays the PushCounter data.
Every time when the object passes through the slot of the sensor, the

PushCounter data will increase by 1 continuously, as shown below;

| Shell 3¢

LNw I w S Y T 3 (S - N R I o Y S

(e

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 8
* Photo_lInterrupt
* http://www.keyestudio.com
from machine import Pin

import time

sensor = Pin(3, Pin.IN, Pin.PULL_UP)
lastState =0

119

Ml
o

www.keyestudio.com

PushCounter =0

while True:
State = sensor.value()
if State !=lastState:
if State == 1:
PushCounter += 1
print(PushCounter) #press to print information

lastState = State

Project 9: Tilt Module

Overview

In this kit, there is a Keyestudio tilt sensor. The tilt switch can output signals

120

Ml
o

www.keyestudio.com

of different levels according to whether the module is tilted. There is a ball
inside. When the switch is higher than the horizontal level, the switch is
turned on, and when it is lower than the horizontal level, the switch is
turned off. This tilt module can be used for tilt detection, alarm or other

detection.

Working Principle

Pl
o]
—_— (e} I S
R1 il
| | G
L 0805 4.7K il il
GND

i D1 =

LED-RED GND
0805 1K

The working principle is pretty simple. When pin 1 and 2 of the ball switch
P1 are connected, the signal S is low level and the red LED will light up;
when they are disconnected, the pin will be pulled up by the 4.7K R1 and
make S a high level, then LED will be off.

Components

121

Ml
o

www.keyestudio.com

— = B

Raspberry | Raspberry Pi | Keyestudio
3P Dupont | Micro USB

Pi Pico | Pico Expansion Tilt
Wire*1 Cable*1
Board*1 Board*1 Sensor*1

Connection Diagram

youMS)11

fritzing

Run the test code

Find Tilt switch.py, double-click and click >

122

pv4
o

www.keyestudio.com

Thonny - /hame/pi/pico/Pico_code MicroPython/a. Tilt switch/Tilt switch.py @ 19:20

File Edit View Run Device Tools Help

o K o

Files | Tilt switch.py 3¢ |
MicroPython device \: . 1
7 ADXL345.py 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
 dht.py 38 * lesson 9
= 4 * Tilt switch
This computer = 5 * http://www.keyestudio.com
/home / pi / pica / b
Pico_code_MicroPython 7 from machine import Pin
b} 56. breathalyzer 8 import time
10 57. rainbow 2 ; . ;
b) 58. Ultrasonic radar 10 TiltSensor = Pin(17, Pin.IN)
b} 59. IR control LED 11
_ . 17 while True: A
-1 6. Avoiding 4 >
-}, 60. heat abstractor
[-lp 61. Intelligent access cor Shell %
blp 62. Comprehensiveexpe || "~ =
10 7. Line tracking sensor i -
B[} 8. Photo Interrupt . '
< |0 9. Tilt switch
i Tilt switch.py: s> 1
Test Result

Upload the test code and observe Shell

When the tilt module is inclined to one side, the red LED on the module will
be off and the monitor will display “1 The switch is turned off” . In contrast,
if you make it incline the other side, the red LED will light up and the

monitor will display "0 The switch is turned on” .

123

pv4
o

www.keyestudio.com

Shell

L]

The
The
The
The
The
The
The
The
The
The
The

I N = I S I = = =

switch
switch
switch
switch
switch
switch
switch
zwitch
switch
switch
switch

is
is
is=s
is
is=s
is
is
i=
is
is=s
is

turned
turned
turned
turned
turned
turned
turned
turned
turned
turned
turned

an
on

an

an

off
off
off
off
off
off
off

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson

9

* Tilt switch

* http://www.keyestudio.com

from machine import Pin

import time

TiltSensor = Pin(17, Pin.IN)

while True:

value = TiltSensor.value()

print(value, end =" ")

if value==0:

else:

print("The switch is turned on")

124

pv4
o

www.keyestudio.com

print("The switch is turned off")
time.sleep(0.1)

Project 10: Collision Sensor

Description

The collision sensor uses a tact switch. This sensor is often used as a limit
switch in 3D printers. In the experiment, we judge whether the sensor
shrapnel is pressed down by reading the high and low levels of the S

terminal on the module; and, we display the test results in the shell.

Working Principle

It mainly uses a tact switch. When the shrapnel of the tact switch is pressed,

125

£

www.keyestudio.com

2 and 3 are connected, the signal terminal S is low level, and the red LED on

the module lights up; when the touch switch is not pressed, 2 and 3 are not

connected, and 3 is pulled up to a high level by the 4.7K resistor R1, that is,

the sensor signal terminal S is a high level, and the built-in red LED will be

off at this time.

¥)

Pl
3 L
2
] Rl
T —
0805 4.7k Sty
collision | R? ing B} =
— LED-RED GND
s 08035 1k
Components Required
- | D
Raspberry | Raspberry Pi | Keyestudio
3P Dupont | Micro USB
Pi Pico | Pico Expansion| Collision
Wire*1 Cable*1
Board*1 Board*1 Sensor*1

126

Ml
o

www.keyestudio.com

Connection Diagram

UARTO UART1

o
=3
&
]
=

12c0 1zc1

ez e M =2 mmmnom

Run the test code

Find collision sensor.py, double-click and click @

fritzing

127

Ml
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code MicroPytho..0. collision sensor/collision sensorpy @ 19:20 v ~ x

File Edit View Run Device Tools Help

& o

Files ‘ collision sensor.py ‘
MicroPython device = - . ' 1
b lib) * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
2 ADXL345.py 3 * lesson 10
N 4 * collision sensor

This computer = 5 * http://www.keyestudio.com
/home / pi / pico / | b '
Pico_code_MicroPython 7 from machine import Pin
b 1. LED & import time
- |41 _10. collision sensor 9

|.=_ e 5f_.ns(,r_wl 160 TiltSensor = Pin(17, Pin.IN)
[»1) 11. Hall sensor 11 .
b 12. Reed Switch . 17 while True: =
-1} 13. PIR motion \)
b1 14. Active buzzer Shell % ‘
b} 15. Passive buzzer T -
bl 16. Motor '
b)) 17. RGB
[18. potentiometer NI = L T
S 56, Sioain aihess Type "help() 'F more i Stion. '

o |=e> v

Test Result

Run the test code, the shell displays the corresponding data and characters.
In the experiment, when the shrapnel on the sensor is pressed down, val is
0, the red LED of the module is on, and "The end of his!" is printed; when
the shrapnel is released, the val is 1, the red LED of the module is off, and

"All going well" is printed. !" character, as shown below.

128

Ml
o

www.keyestudio.com

Shell 3¢ |

=

A1l going well
211 going well
A1l going well
211 going well
The end of his!
The end of his!
The end of his!
The end of his!
The end of his!

o B oo B o B = T o= R

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 10
* collision sensor
* http://www.keyestudio.com
from machine import Pin

import time

TiltSensor = Pin(17, Pin.IN)

while True:
value = TiltSensor.value()
print(value, end =" ")
if value==0:
print("The end of his!")
else:

print("All going well")

129

pv4
o

www.keyestudio.com

time.sleep(0.1)

Project 11: Hall Sensor

Description

In this kit, there is a Hall sensor which mainly adopts a A3144 linear Hall
element. The element P1 is composed of a voltage regulator, a Hall voltage
generator, a differential amplifier, a Schmitt trigger, a temperature
compensation circuit and an open-collector output stage. In the
experiment, we use the Hall sensor to detect the magnetic field and display
the test results on the shell.

Working Principle

When the sensor detects no magnetic field or a north pole magnetic field,

130

£

www.keyestudio.com

the signal terminal will be high level; when it senses a south pole magnetic
field, the signal terminal will be low levels.

The stronger the magnetic field strength is, induction distance is longer.

Required Components

g

Di I

Pl ! 1 Rl 2] 1 v
T E
ERT TR LED-RED |

Hall Sensor D

Raspberry Pi Raspberry Pi Pico Keyestudio DIY 3P Dupont Micro USB
Pico Board*1 Expansion Board*1 Hall Sensor*1 Wire*1 Cab le*1

131

£

www.keyestudio.com

Connection Diagram

Lmn'm UART]

g . ﬂ.@@ﬁ@@.ﬁ&:& s Gu

SPIO SPN

GP13 o Raspberry PiPico @ 2020 BOOTSEL g F
(] ul .
GP4 GPI12 SWCLK

GP1 .) . i GND
- om I
. H 4
ap2 GP10 & <wDio
3v3 3v3 , P -
GND GND . -) L1 .

12co

/ GND
GP21 cPis 5
GP20 G
V3
r [a [2 C C = g
3 1 @ Power_OUT

Run the test code

RESET,

Find and double-click Hall.py and cIickO

File Edit View Run Device Tools Help

(O o

FI|ESX Hall.py =

('}

1l

MicroPython device

b lib * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
ADXL345.py * lesson 11
s * Hall magnetic
This computer = | * http://www. keyestudio.com
/home / pi / pico / i
Pico_code_MicroPython 7 from machine import Pin
bl) 1. LED & import time

[), 10. collision sensor
- g Ha ensn hall = Pln{5, Pln.IN}

11 while True:
. 12. Reed Switch value = hall .valuef() =

)1 13. PIR motion w ;
). 14. Active buzzer ™ Shell .
). 15. Passive buzzer .
4 16. Motor

L 17. RGB

} 18. potentiometer
) 19. Steam sensor

L A A S

v | >>> =

Test Result

132

£

www.keyestudio.com

Upload the test code, when the sensor detects no magnetic fields or the
north pole magnetic field, Shell will show “1 There is no magnetic field” and
the LED on the sensor will be off; When it detects the south pole magnetic
field, the Shell will show “0 A magnetic field” and the LED on the sensor will
be off.

| Shell 3¢ |

| B S S S g e Sy J "
1 There is no magnetic field

There is no magnetic field

magnetic field

magnetic field

magnetic field

magnetic field

magnetic field

magnetic field

magnetic field

o e T e B T R e B
RN

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 10

* Hall magnetic

* http://www.keyestudio.com

from machine import Pin

133

Ml
o

www.keyestudio.com

import time

hall = Pin(5, Pin.IN)
while True:
value = hall.value()
print(value, end =" ")
if value == 0:
print("A magnetic field")
else:
print("There is no magnetic field")
time.sleep(0.1)

Project 12: Reed Switch Module

Overview

134

Ml
o

www.keyestudio.com

In this kit, there is a Keyestudio reed switch module, which mainly uses a
MKA10110 green reed component.

The reed switch is the abbreviation of the dry reed switch. It is a passive
electronic switch element with contacts.

It has the advantages of simple structure, small size and easy control.

Its shell is a sealed glass tube with two iron elastic reed electric plates.

In the experiment, we will determine whether there is a magnetic field near
the module by reading the high and low level of the S terminal on the

module; and, we display the test result in the shell.

VOO
—
g o
0603 4.7k | 0603 1k
b gt
s BED LED
b
v
l: []L']
GND Read Switch Module

S

GND
Working Principle

Reed switch is an abbreviation of the dry reed contacts a passive

135

Ml
o

www.keyestudio.com

electronic switching elements, and has the advantages of simple structure,
small size and ease of control, its shell is a sealed glass tube, the tubes are
installed two iron elastic reed plate, but also filling called rhodium metal
inert gas. In peacetime, the glass tube in the two reeds made of special

materials are separated.

When a magnetic substance close to the glass tube, in the role of the
magnetic field lines, the pipe within the two reeds are magnetized to
attract each other in contact, the reed will suck together, so that the
junction point of the connected circuit communication. After the
disappearance of the outer magnetic reed because of their flexibility and
separate, the line is disconnected. Therefore, as a use of the magnetic field
signals to control the line switching device, reed tube can be used as a
sensor for counting the number, spacing, etc., and also are widely used in a

variety of communication devices.

Components

136

Ml
o

www.keyestudio.com

Keyestudio DIY
Raspberry Pi Raspberry Pi Pico Reed Switch 3P Dupont Micro USB
Pico Board*1 Expansion Board*1 Modul e*1 Wire*1 Cab le*1

Connection Diagram

UARTO UARTI

A

(]

@

=]

2 .

=

o

=3

. A
-
=

cP21 GPIs
P20 ’

Ty

RESET,

fritzing

Run the test code

Find Reed Switch.py, double-click and cIick@

137

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code_MicroPython/12. Reed Switch/Beed Switch.py @ 18:20 + a x

File Edit View Bun Device Tools Help

L o

Files 2 ‘
MicroPython device == . T
b lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
@ ADXL345.py 3 * lesson 12
= 4 * Reed Switch

This computer = 5 * http://www.keyestudio.com
/ home / pi / pico / | By "'’
Pico_code_MicroPython 7 from machine import Pin
bl 1. LED § import time
I 1} 10. collision sensor 9
B i 11. Hall sensor 10 ReedSensor = Pin(18, Pin.IN)
< [l 12. Reed Switch 11 while True:

[F Reed switch.py | " 12 value = ReedSensar_valuel() ®
b[J 13. PIR motion \
I} 14, Active buzzer Shell 2
I 15. Passive buzzer T =
>4 16. Motor i
bl 17. RGB b
by 18. potentiometer = e e i
11 19. Steam sensor N >>I> Pt SRR e l

Test Result

Upload the code and observe the Shell monitor. When the sensor detects a
magnetic field, val is 0 and the red LED of the module lights up, "A
magnetic field" will be displayed; when no magnetic field is detected, val is
1, and the LED on the module goes out, "There is no magnetic field" will be

shown, as shown below.

138

Ml
o

www.keyestudio.com

[Shell 3¢ |

-

There
There
There
There
There

000000 KR

is
is
is
is
is

no
no
no
no
no

A magnetic
L magnetic
L magnetic
L magnetic
L magnetic
L magnetic

magnetic
magnetic
magnetic
magnetic
magnetic
field
field
field
field
field
field

field
field
field
field
field

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 11
* Reed Switch

* http://www.keyestudio.com

from machine import Pin

import time

ReedSensor = Pin(18, Pin.IN)

while True:

value = ReedSensor.value()

print(value, end =" ")

if value == 0:

else:

print("A magnetic field")

print("There is no magnetic field")

time.sleep(0.1)

139

Ml
o

www.keyestudio.com

Project 13: PIR Motion Sensor

Overview

In this kit, there is a Keyestudio PIR motion sensor, which mainly uses an
RE200B-P sensor elements. It is a human body pyroelectric motion sensor
based on pyroelectric effect, which can detect infrared rays emitted by
humans or animals, and the Fresnel lens can make the sensor's detection
range farther and wider.

In the experiment, we determine if there is someone moving nearby by
reading the high and low levels of the S terminal on the module. The

detected results will be displayed on the Shell.

140

Ml
o

www.keyestudio.com

Working Principle

The upper left part is voltage conversion(VCC to 3.3V). The working voltage
of sensors we use is 3.3V, therefore we can’ t use 5V directly. The voltage

conversion circuit is needed.

When no person is detected or no infrared signal is received, and pin 1 of
the sensor outputs low level. At this time, the LED on the module will light
up and the MOS tube Q1 will be connected and the signal terminal S will
detect Low levels.

When one is detected or an infrared signal is received, and pin 1 of the
sensor outputs a high level. Then LED on the module will go off, the MOS

tube Q1 is disconnected and the signal terminal S will detect high levels.

XC6206P332MR. (662K) SOT-23

vCC

t3 @, O
L ()
}l{('
o

= z
8 bl =
= u2 — iy it
= o
g |® GHD & 3V3 =
z =] 5V
= GKND il
GND ~D1
| LED-RED
V3
R1 3
. 0603 510R 10K 10K Pl
V3 U1 TFT S ;

=)

1
g —1
Lyt VCCp—— 2
bl |
2 [1 Q1 MOS Tl 3
C1 — Header3
| 100NF Ledt

GND GND

Required Components

141

Ml
o

www.keyestudio.com

Raspberry Pi Raspberry Pi Pico
Pico Board*1 Expansion Board*1

Keyestudio DIY
PIR Motion

Sensor*1

3P Dupont
Wire*1

Micro USB
Cab le*1

Connection Diagram

UARTO
V3
GND.

cPl

uoljow ¥id
» .

Run the Test Code

Find and double-click PIR motion.py to open it, click > to run the code.

Power_OUT

RESET,

fritzing

142

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Fico.code_MicroPython/13. PIR motion/PIR motion.py @ 18:20 v oa X

File Edit View Run Device Tools Help

=0 o

Files 2 | PIR motion.py ‘

1
2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
Bl * lesson 13

MicroPython device \
Iy lib

A ADXL345.py W
motion

4
This computer 5 * http://www.keyestudio.com
/home / pi/ pico / 2 .
Il ;
8

Pico_code_MicroPython from machine import Pin

B[12. Reed Switch import time
<+ [, 13. PIR motion 9 _ _
“.{ PIR motion.py. I 16 PII? = Pin(19, Pin.IN)
17 Active buzzer 11 while True:
valiie = PTR.valuel() ~

I, 15. Passive buzzer
. 16. Motor

1 17. RGB

. potentiometer
I, 19. Steam sensor
| 2. Traffic_Light

) 20. MicroPhone

) 21. Photoresistance Y it S e [
o [=>> b

v T T T VY v W W
EEAEfEEEEEE
=
o0

Test Result

Upload the code and open the Shell monitor. When the sensor detects
someone nearby, value is 1, the LED will go off and the monitor will show
“Somebody is in this area!” . On the contrary, the value is 0, the LED will go

up and “0 No one!” will be shown.

143

£

www.keyestudio.com

[‘shell ¢ |

0

N I T T

No one!
No one!
No one!
No one!

Some
Some
Some
Some
Some
Some
Some

body
body
body
body
body
body
body

is
is
is
is
is
is
is

in
in
in
in
in
in
in

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 12

* PIR motion

* http://www.keyestudio.com

this
this
this
this
this
this
this

area!
area!
area!
area!
area!
area!
area!

from machine import Pin

import time

PIR = Pin(19, Pin.IN)
while True:

value = PIR.value()

print(value, end =" ")

if value == 1:

print("Some body is in this area!")

else:

print("No one!")

time.sleep(0.1)

144

Ml
o

www.keyestudio.com

Project 14: Active Buzzer

Overview

In this kit, it contains an active buzzer module and a power amplifier
module (the principle is equivalent to a passive buzzer). In this experiment,
we control the active buzzer to emit sounds. Since it has its own oscillating

circuit, the buzzer will automatically sound if given large voltage.

Working Principle

145

Ml
o

www.keyestudio.com

0603 10k

GND

01 Active
SR050 E UZzZer

From the schematic diagram, the pin of buzzer is connected to a resistor

R2 and another port is linked with a NPN triode Q1. So, if this triode Q1 is

powered, the buzzer will sound.

If the base electrode of the triode connected to the R1 resistor is a high

level, the triode Q1 will be connected.If the base electrode is pulled down

by the resistor R3, the triode is disconnected.

When we output a high level from the IO port to the triode, the buzzer will

emit sounds; if outputting low levels, the buzzer won’ t emit sounds.

Components

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio
Active

Buzzer*1

3P Dupont
Wire*1

Micro USB
Cable*1

146

£

www.keyestudio.com

Connection Diagram

UARTO UARTI

3v3 V3

GND GND

ONIHSVYM
H3il4dv

avas
JAONW3Y

&
w
c
N
N
m
0

GP21 cl:1<

GP20 cnu

Run the Test Code

Find and double-click A-

Power_OUT
RESET,

fritzing

buzzer.py to open it, then click > to run the code.

File Edit View Run Device Tools Help

F|Ies x |

MicroPython device
Il lib
ADXL345.py

This computer

/ home / pi / pico /

Pico_code_MicroPython

> 12. Reed Switch

[) 13. PIR motion

J 14, Active buzzer
15. Passive buzzer\.
16. Motor

. RGB

. potentiometer

. Steam sensor

L 2. Traffic_Light

) 20. MicroPhone

) 21. Photoresistance

4

i
-]

A A

v [>>>

| Shell 2

o

: A-buzzer.py =

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi
* lesson 14

* Active buzzer

* http://www.keyestudio.com

from machine import Pin|
import time

buzzer = Pin(20, Pin.OUT)

while True:
huzzer_ value(1) - |

147

£

www.keyestudio.com

Code Explanation
In the experiment, we set the pin number to 20. When setting to high, the
active buzzer will beep; when setting to low, the active buzzer will stop

emitting sounds

Test Result

Upload the code and power on. The active buzzer will emit sound for 1

second, and stop for 1 second.

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 13

* Active buzzer

* http://www.keyestudio.com

from machine import Pin
import time

buzzer = Pin(20, Pin.OUT)
while True:

148

£

www.keyestudio.com

buzzer.value(1)
time.sleep(1)
buzzer.value(0)
time.sleep(1)

Project 15: 8002b Audio Power Amplifier

Overview

In this kit, there is a Keyestudio 8002b audio power amplifier. The main
components of this module are an adjustable potentiometer, a speaker,
and an audio amplifier chip;

The main function of this module is: it can amplify the output audio signal,

with a magnification of 8.5 times, and play sound or music through the

149

Ml
o

www.keyestudio.com

built-in low-power speaker, as an external amplifying device for some
music playing equipment.
In the experiment, we used the 8002b power amplifier speaker module to

emit sounds of various frequencies.

Working Principle

In fact, it is similar to a passive buzzer. The active buzzer has its own
oscillation source.Yet, the passive buzzer does not have internal oscillation.
When controlling the circuit, we need to input square waves of different
frequencies to the positive pole of the component and ground the
negative pole to control the buzzer to chime sounds of different

frequencies.

2 GND

T Lo
2 VCC ||I PR
I Control IN
I | I_U _ A
Control IN = J— SmiD VO2
N 2 7
"B GND 1UF 2 57 o ; vCC , BEEI
RP-3386P C2 Rl N+ VDD —
2 | e 4 . r 2 3 1
L} 0603 20K - . “= AU BEE
1UF] 8002B
GND
B2
| T |

=]
0603 20K

150

Ml
o

www.keyestudio.com

Components

g Eﬂ LB WEEE

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio
8002b Audio
Power
Amplifier*1

3P Dupont Wire*1

Micro USB
Cable*1

Connection Diagram

layeadg

UARTO UART1
33 V3
CND

cP1

SWCLK

GND.

SWDID

5V GND

Power_OQUT

RESET,

]
-

fritzing

151

Ml
o

www.keyestudio.com

Run the test code

Find and double-click Horn.py to open it, then click > to run the code.

Thonny - /home/pi/pico/Pico_code_MicroPython/15. Passive buzzer/Hom.py @ 27 119

File Edit View Run Device Tools Help

|0 o

Files 2 ‘ Horn.py 2 ‘

»

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi

MicroPython device \€ s 1
)
3| * lesson 15
i
9

L0 lib

A ADXL345.py :
* Passive buzzer

* http://www.keyestudio.com

This computer
/ home / pi / pico / |

o

Pico_code_MicroPython from machine import Pin, PWM

from time import sleep

00 ~J

) 12. Reed Switch

B[4 13. PIR motion 9 buzzer = PWM(Pin(21))
b)) 14. Active buzzer 10
< |41 15. Passive buzzer 11 buzzer.duty ul6(1000)
: »
)16, Motor \
b)) 17. RGB Shell 5

[»1) 18. potentiometer
1) 19. Steam sensor

> 14 2. Traffic_Light

[> |} 20. MicroPhone
1)) 21. Photoresistance

- | === =)

Code Explanation

1. In this experiment, we use the PWM class of the machine module, buzzer
= PWM(Pin(21)) to create an instance of the PWM class, and the buzzer pin
is connected to GP21.

The buzzer.duty u16(1000): set the duty cycle, and the duty cycle is
1000/65535. The larger the value, the louder the buzzer. When set to 0, the

152

Ml
o

www.keyestudio.com

buzzer does not emit sound. buzzer.freq() is the frequency setting

method.

In the experiment, we use the PWM on the machine module. buzzer =

PWM(Pin(21))

Test Result

Upload the test code successfully and power on. The power amplifier
module will emit the sound of the corresponding frequency corresponding
to the beat:

DO for 0.5s, Re for 0.5s, Mi for 0.5s, Fa for 0.5s, So for 0.5s, La 0.5s and Si for
0.5s

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 14

* Passive buzzer

* http://www.keyestudio.com

from machine import Pin, PWM
from time import sleep

buzzer = PWM(Pin(21))

buzzer.duty_u16(1000)

153

Ml
o

www.keyestudio.com

buzzer.freq(523)#DO
sleep(0.5)
buzzer.freq(586)#RE
sleep(0.5)
buzzer.freq(658)#Ml
sleep(0.5)
buzzer.freq(697)#FA
sleep(0.5)
buzzer.freq(783)#SO
sleep(0.5)
buzzer.freq(879)#LA
sleep(0.5)
buzzer.freq(987)#SI
sleep(0.5)
buzzer.duty_u16(0)

154

Ml
o

www.keyestudio.com

Project 16: 130 Motor

Description

The 130 motor driver module is compatible with servo motors, which has
high efficiency and good quality fans.

It adopts a HR1124S motor control chip. HR1124S is a single-channel
H-bridge driver chip for DC motor solutions. In addition, this chip has low
standby current and low quiescent current.

The module is compatible with various single-chip control boards. In the
experiment, we can control the rotation direction of the motor by
outputting the voltage directions of the two signal terminals IN+ and IN-

to make the motor rotate.

Working Principle

155

Ml
o

www.keyestudio.com

The chip is used to help drive the motor.

We can’ t drive it with a triode or an IO port due to its a large current of

need. It is very simple to make the motor rotate. Just apply voltage to both

ends of the motor. The direction of the motor is different in different

voltage directions. Within the rated voltage, the higher the voltage, the

faster the motor rotates; on the contrary, the lower the voltage, the slower

the motor rotates, or even unable to rotate.

So we can use the PWM port to control the speed of the motor. We haven't

learned PWM here, so we use the high and low levels to control the motor

first.
oA
+5V Ul 100nf — —‘_L
¥ NC/VOUTA |] LT
IN- 2 | 1n- PGND |—L s
Nt |3 e 4| = MOTOR
1n+ AGND .
+1 VvDDOUTB = 5 -I e
[| I 100nf j—'

C1
22uf

YX-7T5VI18/HR11248

{2
-1_0 Onf

C3

| 100nf

GND

156

Ml
o

www.keyestudio.com

Required Components

o | S

Raspberry Pi Raspberry Pi Pico keyestudio DIY 4P Dupont
Pico Board*1 Expansion Board*1 130 Motor*1 Wire*1

Micro USB Cable*1

Note: the motor is separated with its fan, you need to assemble it first.

Connection Diagram

u

P uarTo
3vs| s
GND| GND
cP)
GPo| Gp8
oPs GPI3
P
GP: ul

1030w ue4 HAOET

sPIo sPil

Power_OUT
RESET,

fritzing

157

pv4
o

www.keyestudio.com

Run the test code

Find Motor.py, double-click and cIicko

Thonny - /home/pi/pico/Pico_code_MicroPython/16. Motor/Motorpy @ 30:18

o

File Edit View Run Device Tools Help

& b

Motor.py #

> 1)) 19. Steam sensor

. Micr
L0 2. Traffic_Light

: RP20
15 20. MicroPhone T"l"u
/pe
>4 21. Photoresistance ye
-l | 22>

oPython v1.17 on 2021-09-02; Raspberry Pi Pico with
40
"help()" for more information.

MicroPython device \ =5 i B
by lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
A ADXL345.py Il 88 * lesson 16
= 4 * 130-DC Motor
This computer = 5 * http://www.keyestudio.com
/ home / pi / pico / ol
Pico_code_MicroPython | 7 from machine import Pin
b i 12. Reed Switch 8 import time
b 13. PIR motion 9
b} 14. Active buzzer 160 #EBHETFS|
b1 15. Passive buzzer 11 INA = Pin(14, Pin.OUT)
< [1 16. Motor ! 12 TNR = Pin{15. Pin_NIT) -
b1} 17. RGB \ m
15 18. potentiometer T =

158

Ml
o

www.keyestudio.com

Code Explanation
Set pins to 14 and 15, when the pin 14 outputs high levels and the pin 15 outputs
low levels, the motor will rotate counterclockwise; when both pins are set to low,

the motor stops rotating.

Test Result

Wire up, upload test code and test the 130 motor, the fan will rotate

counterclockwise for 2 seconds, stop for 1 second; and rotate clockwise for

2 seconds and stop for 1 second; cycle alternately.

159

Ml
o

www.keyestudio.com

Test Code
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 15
* 130-DC Motor
* http:/ /www.keyestudio.com
from machine import Pin

import time

#two pins of the motor
INA = Pin(14, Pin.OUT)

INB = Pin(15, Pin.OUT)

while True:
#turn anticlockwise for 2s
INA.value(1)
INB.value(0)
time.sleep(2)
#stop 1s

INA.value(0)

160

Ml
o

www.keyestudio.com

INB.value(0)
time.sleep(1)

#turn clockwise for 2s
INA.value(0)
INB.value(1)
time.sleep(2)

#stop 1s
INA.value(0)
INB.value(0)

time.sleep(1)

161

£

www.keyestudio.com

Project 17: RGB Module

Overview

Among these modules is a RGB module. It adopts a F10-full color RGB
foggy common cathode LED. We connect the RGB module to the PWM
port of MCU and the other pin to GND(for common anode RGB, the rest
pin will be connected to VCC). So what is PWM?

PWM is a means of controlling the analog output via digital means. Digital
control is used to generate square waves with different duty cycles (a signal

that constantly switches between high and low levels) to control the analog

162

Ml
o

www.keyestudio.com

output.In general, the input voltages of ports are OV and 5V. What if the 3V
is required? Or a switch among 1V, 3V and 3.5V? We cannot change

resistors constantly. For this reason, we resort to PWM.

Voltage

Time Duty Cycle: 05

For Arduino digital port voltage outputs, there are only LOW and HIGH
levels, which correspond to the voltage outputs of OV and 5V respectively.
You can define LOW as “0” and HIGH as “1' , and let the Arduino output
five hundred ‘0" or “1" within 1 second. If output five hundred ‘1" , that
is 5V; if all of whichis ‘0" ,thatis OV; if output 250 01 pattern, that is 2.5V.
This process can be likened to showing a movie. The movie we watch are
not completely continuous. Actually, it generates 25 pictures per second,
which cannot be told by human eyes. Therefore, we mistake it as a
continuous process. PWM works in the same way. To output different
voltages, we need to control the ratio of 0 and 1. The more ‘0" or ‘1’

output per unit time, the more accurate the control.

163

£

www.keyestudio.com

Working Principle

For our experiment, we will control the RGB module to display different

colors through three PWM values.

Components

Common cathode RGB

GND

" . ——150R N
: s L=
: |I: exp I—I:ﬁgm = g

] i =

—200R. |
= Terminal

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio
Gommon Cathode
RGB Module *1

4P Dupont
Wire*1

Micro USB
Cab le*1

164

£

www.keyestudio.com

Connection Diagram

Run the test code

RGB LED

qs.

Power_OUT
RESET,

fritzing

Find rgb1.py and rgb2.py, double-click and cIicko

File Edit View Run Device

o K

(>

Files i

MicroPython device

Bl lib

ADXL345.py

This computer

/home / pi / pico /

Pico_code_MicroPython

P10 12. Reed Switch
13. PIR motion
14. Active buzzer

=W W

16. Motor
L 17. RGB

15. Passive buzzer

 rgbl.py
“ rgb2.py

A

. 18. potentiometer
19. Steam sensor
L 2. Traffic_Light
)i 20. MicroPhone

Tools Help

i

rgh1.py

4

| Shell x

>

(R

o

rgh2.py =

Keyestudio 42 in 1 Starter Kit for Raspberry Pi

RGB
http://www. keyestudio.com

from machine import Pin, PWM
from time import sleep

pwm_r

pwm_g
pwm_b

*
* lesson 17.2
*
*

= PWM(Pin(9))
PWM(Pin(10))
PWM(Pin(11))

165

Ml
o

www.keyestudio.com

Test Code 1.
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 16.1
* RGB
* http:/ /www.keyestudio.com
from machine import Pin

from time import sleep

red = Pin(9, Pin.OUT)
green = Pin(10, Pin.OUT)

blue = Pin(11, Pin.OUT)

while 1:
red.value(1)
green.value(0)
blue.value(0)
sleep(1)

red.value(0)

166

Ml
o

www.keyestudio.com

green.value(1)
blue.value(0)
sleep(1)
red.value(0)
green.value(0)
blue.value(1)

sleep(1)

Code 2:
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 16.2
* RGB
* http:/ /www.keyestudio.com
from machine import Pin, PWM
from time import sleep
pwm_r = PWM(Pin(9))
pwm_g = PWM(Pin(10))

pwm_b = PWM(Pin(11))

pwm_r.freq(1000)

167

Ml
o

www.keyestudio.com

pwm_g.freq(1000)
pwm_b.freq(1000)

def light(red, green, blue):
pwm_r.duty_ulé6(red)
pwm_g.duty_ul6(green)
pwm_b.duty_ul6(blue)

while 1:
light(65535, 0, 0)#red
sleep(1)
light(65535, 25088, 0)#orange
sleep(1)
light(65535, 65535, 0)#yellow
sleep(1)
light(0, 65535, 0)#green
sleep(1)
light(0, 0, 65535)#blue
sleep(1)
light(0, 65535, 65535)#cyanogen
sleep(1)
light(41216, 8448, 61696)#purple

168

Ml
o

www.keyestudio.com

sleep(1)

Explanation

Code 1:

In the code 1, red, green and blue represent the red, green and blue ports.
According to the wiring diagram, we have connected to GP9, GP10 and
GP11,thensetto 9, 10 and 11.Use the function .value(1) to set three LEDs.If
the corresponding digital port is high level, and the corresponding LED will

be on.

The RGB module displays red color for 1 second, green color for 1 second,

and blue color for 1 second, cycle alternately.

Code 2.

1. In the code 2, we use PWM output, and set frequency
to .freq(1000), .duty u16()
The number in the brackets means the proportion of the color of LED. The

larger the duty cycle data we set, the larger the proportion of the color.

169

Ml
o

www.keyestudio.com

(Note: the duty cycle above we set is maximum to .duty u16(65535),
this value is 256*256 - 1, thatis 0~65535. As for the following the

RGB color table, you only need to make values below multiply by 256

In the experiment, we adjust the ratio of red, green and blue colors on the
RGB LED by setting the corresponding values, so as to control the RGB LED
to display corresponding colors. So theoretically, there are 256*256*256
colors that can be set (for details, please refer to the common RGB color

table below)

RGB Color Chart

170

£

www.keyestudio.com

Hex Code|Decimal Code L
Color Hamae Lolor Name
RGB RGH

Rads
IndianRed 205,92,92

Hex Code|Decimal Coda

RGH

173,255 47

1272550

I 260,128,114
: |E996TA |233.150,122

LightSalrron FFADTA |255,160,122

Crimson DC143C 220,20,60

152.251, 152

Riad FFooDD 25500

144 236,144

FireBnick Ba22xr AT8.34 3

DarkRed EBOORO 13900
Pinks
Pink 255,192 203 SeaGreen
LLightPink 265.182.193 ForostGraen
fotPink |FF63B4 | 255,105,180 Graen DOB0GO

CaepHink LK ‘.EEr.'_":_EEII 147 Dk Groen Q0EA00

MeveDrab

60,179,113
45,139,87
,139,34
0,128,0

0100 0

10714235

Clear BOE000
Dk OlrmGeaen RERDAT

1281280
#6107 47

DiagkCyran O0EBER
Teal 00B0S0

Yellows BluasiCyans

Gald FFOT00 §2556.2150

‘32178170
0139139
0.428.128

pe=scherne. cfmlcolarMame=ForestGreen 25510

171

pv4
o

www.keyestudio.com

omsitk FFFEDC |255.248 220
lanchedAimond|FFEBCD 255,235 205
Bisque FFE4C4 25522819
avapiWhite [FFDEAD (285 222 173
FEDEB3 245222179

| S-S, -

DarkGoldennod
Feru
Chocolate

= addianown
Slenna

Srowem

Bidn0H
COBS3IF
DMIE
aB4513
Al 220

el =]

FFFFFF

188,143,143

184,134, 11

205,133,563

21010530
139 89 149
10,82 45

165,42 .42

255 255 2556

FFEAFA

265,250,250

FOFFFQ

240,255,240

FSFFFA

245 255 250

FOFFFF

240,255 255

FOFFF

240 248 255

GhaostWWhite

FEFEFF

248 248 255

teSmoke

FSFSFES

245 245 245

Ml
o

www.keyestudio.com

Test Result

Upload the code 1, the RGB on the module will show red, green and blue
color with an interval of 1s.
Upload the code 2, the RGB on the module will show red, orange, yellow,

green, cyan-blue, blue, purple and white color with an interval of 1s.

173

Ml
o

www.keyestudio.com

Project 18: Potentiometer

Overview

The following we will introduce is the Keyestudio rotary potentiometer
which is an analog sensor.

The digital 10 ports can read the voltage value between 0 and 3.3V and the
module only outputs high levels. However, the analog sensor can read the
voltage value through ADC analog ports(GP26~GP28) on the pico board.

In the experiment, we will display the test results on the Shell.

174

£

www.keyestudio.com

Working Principle

It uses a 10K adjustable resistor. We can change the resistance by rotating

the potentiometer. The signal S can detect the voltage changes(0-3.3V)

which are analog quantity

Components

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio
Rotary

Potentiometer*1

3P Dupont
Wire*1

Micro USB
Cab le*1

175

£

www.keyestudio.com

Connection Diagram

u»nm UART1
GND g
GPS

sPID SPII

P13
GP12
cPn

GP10

Run the Test Code

Jsjawonuslod

fritzing

Find and double-click potentiometer.py to open it, then click > to run the

code.

File Edit View RBun Device Tools Help

> NIRS[»)

F|Ies % | . potentiometer.py '

MicroPython device

blL lib
A ADXL345.py

1

This computer
/home / pi / pico /
Pico_code_MicroPython
Py 17. RGB
|= [}, 18. potentiometer
I L pctentiometer.pyl
/1 19. Steam sensor
L 2. Traffic_Light

20. MicroPhone

4

} 22. Temperature sensor
1 23. film pressure sensor
24. Flame sensor

25. MQ-2

L 26, MQ-3

¢
!

A A A A A A

R _.>>>

) s -
. 21. Photoresistance Shell 2

o

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi
* lesson 18

* Rotary potentiometer

* http://www.keyestudio.com

import machine
import utime

potentiometer = machine.ADC(26)

while True: =)

176

Ml
o

www.keyestudio.com

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 17

* Rotary potentiometer

* http://www.keyestudio.com

import machine
import utime

potentiometer = machine.ADC(26)
while True:
pot_value = potentiometer.read_u16()

print(pot_value)
utime.sleep(0.1)

Code Explanation
In the experiment, we will create ADC example, connect GP26 ADC(26).
That means ADC(0).

.read_ul6() is used to read analog values, in the range of 0~65535.

potentiometer.read u16() means that reading the analog value of

ADC(26) pin then assign it to the variable pot value

1. utime.sleep() is the delay function which works as same as the

function time.sleep()

177

Ml
o

www.keyestudio.com

Test Result

Run the test code, observe the analog value in the Shell monitor. In the
experiment , run the test code then observe the analog value. Rotate the knob of
the potentiometer clockwise to increase the analog value. On the contrary, the
analog value will be reduced by rotating the potentiometer anticlockwise. The

value is in the range of 0-65535.

Code Explanation

analogvVal means analog value. The rotary potentiometer outputs analog
values(0~4095), therefore, we set pins to analog ports. For example, we connect

to ADCO(GP26)

analogRead(pin): read the value of the specified analog pin. The pico board
contains a multi-channel, 12-bit converter. This means that it will map the
input voltage between 0 and the working voltage (5V or 3.3V) to an
integer value between 0 and 4095. For example, this will produce a

resolution among readings: 3.3V/4096 stands for 0.0008V per unit.

Pin: the name of analog input pin. GP26 is connected to GP28, GP29

measures VSYS voltage and ADC4 measures the internal temperature.

178

Ml
o

www.keyestudio.com

Test Result

Upload the code power up by a USB cable, open the serial monitor and set
baud rate to 9600.

In the experiment, rotate the potentiometer clockwise, the analog value
increases, and turn the potentiometer counterclockwise, the analog value

decreases(0-4095), as shown in the figure below.

[Shell 3¢ |

65535 o
65535
65535
65535
63503
61422
59566
5E366
57341
55581
52872

179

Ml
o

www.keyestudio.com

Project 19: Steam Sensor

ﬁescription

This is a commonly used steam sensor. Its principle is to detect the amount
of water by bare printed parallel lines on the circuit board. The more the
water is, the more wires will be connected. As the conductive contact area
increases, the output voltage will gradually rise. It can detect water vapor in
the air as well. The steam sensor can be used as a rain water detector and
level switch. When the humidity on the sensor surface surges, the output
voltage will increase.

In the experiment, we connect the signal terminal (S terminal) of the sensor to
the analog port of the pico development board. The analog value detected will be

displayed on the serial monitor.

180

Ml
o

www.keyestudio.com

This is a DIY electronic building block water drop sensor. It is an analog
(digital) input module, also called rain, rain sensor. It can be used to
monitor various weather conditions, detect whether it is raining and the
amount of rain, convert it into digital signal (DO) and analog signal (AO)
output, and is widely used in Arduino robot kits, raindrops, rain sensors,
and can be used for various It can monitor various weather conditions, and
convert it into digital signal and AO output, and can also be used for
automobile automatic wiper system, intelligent lighting system and
intelligent sunroof system. In the experiment, we input the sensor signal
terminal (S terminal) to the analog port of the pico development board,
sense the change of the analog value, and display the corresponding

analog value on the shell.

Its principle is to detect the amount of water through the exposed printed parallel
lines on the circuit board. The more water there is, the more wires will be
connected, and the conductive contact area increases. The voltage output by pin
2 will gradually increase. The larger the analog value detected by the signal

terminal S is.

It can also detect steam in the air. Two position holes are used to install on the

other devices

181

£

www.keyestudio.com

C

b

e

|
|
08035 100NF

E |Ir exp

0805 470R J1

[FER ST

steam sensor

Required Components

Raspberry Pi Raspberry Pi Pico | Keyestudio DIY 3P Dupont Micro USB
Pico Board*1 Expansion Board*1 | Steam Sensor *1 Wire*1 Cable*1

Connection Diagram

182

£

www.keyestudio.com

Y UARTO UARTI
k%

GND

I
@
o
o
3
w
o
=
wn
°
e

fritzing

Run the test code

Find Water.py, double-click and click >

Thonny - /home/pi/pico/Pico_code_MicroPython/19. Steam sensor/Waterpy @ 1671
File Edit View Run Device Tools Help

L AR (> o

| Files rx Water.py ‘

(R

MlcroPython device

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi
] * lesson 19
| * Steam sensor
This computer =l * http://www.keyestudio. com
/home / pi / pico / by '
Pico_code_MicroPython i 7 import machine
b} 17. RGB & import utime
1 18. potentiometer 4
< [l 19. Steam sensor 10 sensor = machine.ADC(26)
b2 Trame TG .‘.= > while True: ’v.
1) 20. MicroPhone L ; -
[} 21. Photoresistance Shell = .
I [J) 22. Temperature sensor i A
-4 23. film pressure sensor
I}, 24. Flame sensor
Py 25. MQ-2
. Py 26. MQ-3 o |[>>> v

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 18
* Steam sensor

183

Ml
o

www.keyestudio.com

* http://www.keyestudio.com

import machine
import utime

sensor = machine.ADC(26)#ADCO
while True:
value = sensor.read_u16()

print(value)
utime.sleep(0.1)

Test Result

Wire up, run the test code, then the output analog value is displayed in the
shell. The more water volume, the greater the output voltage and the

analog value, as shown below.

' Shell 3¢ |

AR) |
-

1
1152
928
544
49051
49067
48027
48443
48283

184

Ml
o

www.keyestudio.com

Project 20: Sound Sensor

Overview

In this kit, there is a sound sensor. In the experiment, we test the analog
value corresponding to the sound level in the current environment with it.

The louder the sound, the larger the analog value;

Working Principle

185

£

www.keyestudio.com

0A03 10K

0603 100N

1206 10UF 16V A-typel0%

1206 10UF 16V A-typel07

CE L Co
i i 1||2 |||-G:¢D
VCC il
Ll : o ; VCC
c2 el | O : kit)
. D:B < : _ | o603 470m
| 0603 100NF E :
C3 . C3
mic _?E'-Mﬁf’ 0603 100NF R i
Microphone GND - 3 Yellow-green
4 == GND
= 0603 100NF D
GND
Rotary potentiometer
; RBL_
!_|+|||- GND w2
i . 5 3
Dl s Voo ‘1
IN4148 T4 =
7 GND

Gl

D

It uses a high-sensitive microphone component and an LM386 chip.

We build the circuit with the LM386 chip and amplify the sound through

the high-sensitive microphone. In addition, we can adjust the sound

volume by the potentiometer. Rotate it clockwise, the sound will get

louder.

Components

186

2l
o

www.keyestudio.com

Raspberry Pi Raspberry Pi Pico Keyestudio DIY 3P Dupont Micro USB
Pico Board*1 Expansion Board*1 Sound Sensor*1 Wire*1 Cab le*1

Connection Diagram

uunm UARTI

- g .

SPI0 sPn

Gpssm o Raspberry PiPice

GP4 GPI2 l
D
GP3 GPN - c
0= d
Gp2 cP1o & 2

auoydoidi

3vs 33

1zco 12€1

QQDﬂOOﬂOﬂE”ﬂﬂﬂﬂ

2

B .
GND

fritzing

Run the test code

Find MicroPhone.py, double-click and click >

187

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code_MicroPython/20. MicroPhone/MicroPhone.py @ 14 21

File Edit View Run Device Tools Help

00 o

Files 2 ‘ MicroPhone.py %
MicroPython device \E H gy ' T I
b lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi l
7 ADXL345.py 3 * lesson 20
= 4 * MicroPhone
This computer = 5 * http://www.keyestudio.com
/ home / pi / pico / b !
Pico_code_MicroPython 7 import machine
k() 17. RGB g import utime
>l 18. potentiometer 9
bl 19. Steam sensor 10 MicroPhone = machine.ADC(27)
blj) 2. Traffic_Light 11 while True:
< [J) 20. MicroPhone : 12 value = MicraoPhane.read ulaf) i
I i I'n!il:mPhunE:.p)«I‘~~
) Z1. Photoresistance Shell 2 ‘
I» [}, 22. Temperature sensor i Pe
10 23, film pressure sensor
=10 24. Flame sensor
k) 25 MQ-2
Bl 26, MQ-3
Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 19
* MicroPhone
* http://www.keyestudio.com
import machine
import utime

MicroPhone = machine.ADC(27)
while True:
value = MicroPhone.read_u16()

print(value)
utime.sleep(0.1)

Test Result

Upload the code and observe the analog value on the Shell monitor.

188

Ml
o

www.keyestudio.com

Rotate clockwise the potentiometer and speak at the MIC. Then you can

see the analog value get larger, as shown below

Shell 3¢ |
560 -

464

189

Ml
o

www.keyestudio.com

Project 21: Photoresistor

Structure of a photoresistor

Electrode

s

/./" \
Substrate

CDS

Description

In this kit, there is a photoresistor which consists of photosensitive
resistance elements. Its resistance changes with the light intensity. Also, it
converts the resistance change into a voltage change through the
characteristic of the photosensitive resistive element. When wiring it up, we
interface its signal terminal (S terminal) with the analog port of pico, so as
to sense the change of the analog value, and display the corresponding
analog value in the shell.

Working Principle

190

£

www.keyestudio.com

If there is no light, the resistance is 0.2MQ and the detected voltage at the
terminal 2 is close to 0. When the light intensity increases, the resistance of

photoresistor and detected voltage will diminish.

5V

| Photoresistor 0805
Ny ¢/ . PH
Sy | =
)| . A6

3 i

2 —vee 2 Rl

1 603 100INF 10K

BT -
GND -
_— GND
GND
Components

Raspberry Pi Raspberry Pi Pico Keyestudio DIY 3P Dupont)
)))] Micro USB Cab le*1
Pico Board*1 Expansion Board*1 Photoresistor*1 Wire*1

Connection Diagram

191

Ml
o

www.keyestudio.com

UARTO UARTI

T
=
=]
-
o
A
(]

fritzing

Run the test code

Find photoresistance.py to double-click and click >

File Edit View Run Device Tools Help

M o

Files photoresistance py
MicroPython device = & - e -
by lib » * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
@ ADXL345.py ll * lesson 21
% 4 * Photoresistance
= *

This computer http://www.keyestudio.com

/home / pi / pico / K

1

Pico_code_MicroPython /7 import machine

blJ 17. RGB & import utime

I- |4 18. potentiometer - ;

b)) 19. Steam sensor 10 photoresistance = machine.ADC(28)

b 2. Traffic_Light 11 while True:

b} 20. MicroPhone value = nhataresistance. read ulaf) o
: . 5

<+ |4 21. Photoresistance

~ photoresistance.py I Shell %

22. Temperature sensor\” a
23. film pressure sensor

24. Flame sensor -

25. MQ-2
26. MQ-3

v v v v v
£ 2 & 5 &

v [>>> =

192

Ml
o

www.keyestudio.com

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 20
* Photoresistance

* http://www.keyestudio.com

import machine
import utime

photoresistance = machine.ADC(28)
while True:
value = photoresistance.read_u16()

print(value)
utime.sleep(0.1)

Test Result
Wire up, run the test code, observe the Shell monitor. Then you will view
the analog value of the light intensity. The brighter the light, the greater

the analog value

193

Ml
o

www.keyestudio.com

Shell 3¢
lo2y B
1749
1792
1728
1712
1664
1600
3360
1e5386
30023
35608
40921
45195 I

44106

194

Ml
o

www.keyestudio.com

Project 22: NTC-MF52AT Thermistor

Overview

In the experiment, there is a NTC-MF52AT analog thermistor. We connect
its signal terminal to the analog port of the Raspberry Pi Pico Board and

read the corresponding analog value.

We can use analog values to calculate the temperature of the current

195

Ml
o

www.keyestudio.com

environment through specific formulas. Since the temperature calculation
formula is more complicated, we only read the corresponding analog

value.

Working Principle

Pl 1 g

Analog temperature

4.7K 1
1 0603 100NF

This module mainly uses NTC-MF52AT thermistor elements. The
NTC-MF52AT thermistor element can sense the changes of the
surrounding environment temperature. Resistance changes with the
temperature, causing the voltage of the signal terminal S to change.

This sensor uses the characteristics of NTC-MF52AT thermistor element to

convert resistance changes into voltage changes.

Components

196

Ml
o

www.keyestudio.com

) o Keyestudio
Raspberry Pi Raspberry Pi Pico 3P Dupont)
)) NTC-MF52AT] Micro USB Cab | e*1
Pico Board*1 Expansion Board*1) Wire*1
Thermistor*1

Connection Diagram

UARTO UART]

3vz 3V3

ECNng .

EIELITIETR

| =
4
sweik =
GND

SWDIO

]
|;
H
&

fritzing

Run the test code

Find and double-click temperature.py and click >

197

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code MicroPytho... Temperature sensor/temperaturepy @ 16:21 ~ A X

File Edit View Run Device Tools Help

= K o

Files 3¢ ‘ temperature.py
MicroPython device =& 1 . T I
b lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi |
ADXL345.py 88 * lesson 22
: 4 * Temperature sensor
This computer = 5 * http://www.keyestudio.com
/ home / pi / pico / L R
Pico_code_MicroPython 7 import machine
b)) 21. Photoresistance & import utime
— |22, Temperature sensor I 9 import math
I - temperature.py I 160]
I 1)) 23. film pressure sensor\h\’l\l Sensor-= machine.ADC(0)
1)) 24. Flame sensor ¥ 2 whila Trua: i
[y 25. MQ-2
by 26, MQ-3 Shell 52 ‘
1 27. AD Key i 7
[- 1) 28. Joystick
14 29. UV sensor
-4 3. Laser sensor R R T R
b)) 30. SK6812 ’ REREAE IRT AR SR RS .
Bl [> C

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 21
* Temperature sensor
* http://www.keyestudio.com
import machine
import utime
import math

sensor = machine.ADC(0)

while True:
temp = sensor.read_u16()
print("Temperature ADC: ",end="")
print(temp)
utime.sleep(0.1)

Test Result

Upload the code and observe the Shell monitor. The higher the

198

Ml
o

www.keyestudio.com

temperature, the larger the analog value.

[Shell 3¢ |

lengmrdLure
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature

HBUCT
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:

£013%
26166
26182
26188
26188
286262
28262
28262
25294
26278
26278
26294
26294
26310

199

pv4
o

www.keyestudio.com

Project 23: Thin-film Pressure Sensor

Overview

In this kit, there is a Keyestudio thin-film pressure sensor. The thin-film
pressure sensor composed of a new type of nano pressure-sensitive
material and a comfortable ultra-thin film substrate, has waterproof and
pressure-sensitive functions.

In the experiment, we determine the pressure by collecting the analog
signal on the S end of the module. The smaller the analog value, the

greater the pressure; and the displayed results will shown on the Shell.

Working Principle

200

£

www.keyestudio.com

When the sensor is pressed by external forces, the resistance value of
sensor will vary. We convert the pressure signals detected by the sensor
into the electric signals through a circuit. Then we can obtain the pressure

changes by detecting voltage signal changes.

vee
3
7 510K Ul vee
1 ‘ i N+ VCC s
: = | GND g
I Uy 3 Eane Pour |2
PR = ——
GND)z LM321
R1 R2
| e | | p— |
1K 10K

Components

201

Ml
o

www.keyestudio.com

Keyestudio
Raspberry Pi Raspberry Pi Pico Thin—film 3P Dupont Micro USB
Pico Board*1 Expansion Board*1 Pressure Wire*1 Cab | e*1
Sensor*1

Connection Diagram

UARTO UARTI

3v3

fritzing
Run the test code

Find the film pressure.py open it and double-click >

202

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code MicroPytho..3. film pressure sensor/film pressurepy @ 8:1

File Edit View Run Device Tools Help

A

MicroPython device =5 . A
b1 lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi

7 ADXL345.py 3 * lesson 23

: 4 * Film pressure sensor
This computer = 5 * http://www.keyestudio.com
/home / pi / pico / oE '’
Pico_code_MicroPython 7 import machine
b)) 21. Photoresistance 8 import utime
|1 22. Temperature sensor 9
< [} 23. film pressure sensor 10 film = machine.ADC(1)
[= film pressure.py | 11 while True: _

bl 24. Flame sensor '\ ? 12 value = film.read ula() =
by 25. MQ-2
by 26. MQ-3 m
b} 27. AD Key T =

[0 28. Joystick
10 29. UV sensor
P LY 3. Laser sensor
1) 30. SK6812

/1.17 on 2021-09-02; Raspberry Pi Pico with

r more inrormation.

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 22
* Film pressure sensor
* http://www.keyestudio.com
import machine
import utime

film = machine.ADC(1)
while True:
value = film.read_u16()
print(value)
utime.sleep(0.1)

Test Result

203

Ml
o

www.keyestudio.com

Upload the code and observe the Shell monitor. When the thin-film is pressed

by fingers, the analog value will decrease, as shown below;

65535
65535
21205
6369
8562
6289
5633
7249
6657
6785
9394
2994
5457

204

£

www.keyestudio.com

Project 24: Flame Sensor

Description

In daily life, it is often seen that a fire broke out without any precaution. It will
cause great economic and human loss. So how can we avoid this situation? Right,
install a flame sensor and a speaker in those places that easily break out a fire.
When the flame sensor detects a fire, the speaker will alarm people quickly to put
out the fire.

So in this project, you will learn how to use a flame sensor and an active buzzer
module to simulate the fire alarm system.

Working Principle

This flame sensor can be used to detect fire or other light sources with
wavelength stands at 760nm ~ 1100nm. Its detection angle is about 60°. You can
rotate the potentiometer on the sensor to control its sensitivity. Adjust the
potentiometer to make the LED at the critical point between on and off state. The

205

£

www.keyestudio.com

sensitivity is the best.

From the below figure, power up. When detecting fire, the digital pin outputs low

levels, the red LED2 will light up first, the digital signal terminal DO outputs a low

level, and the red LED1 will light up. The stronger the external infrared light, the

smaller the value; the weaker the infrared light, the larger the value.

VCC VEC
—| vri
.ﬁ.d'{ustqble 5 ol
| potentiometer 10K 7 0803 4.7k ooy
3 DB| 1 _ T
I 2 O =1 B
_AD 3 | 6 C1 0603 10k
4 3
i n 0603 100NF
= w
GND BA10393F SOIC-8-150mil
GND
VCC
L 1:"[:{: U-‘
3 AD
__ o603 1K R4
0603 470R 5
J? ttg[glﬁ g 0603 100NE
A0 © - ED —_ Flame sensor
; |00 ol GND
1 Jvee 0603 Re ki
1 — -
Pl :|:_ GND S
GND

Required Components

206

Ml
o

www.keyestudio.com

Raspberry Pi Raspberry Pi Pico keyestudio DIY 4P Dupont)
.] . Micro USB Cab | e*1
Pico Board*1 Expansion Board*1 Flame Sensor*1 Wire*1

Connection Diagram

P’ uarTo UART1

E
GND
GP3
GP8 E

sen

GP13
GPI2

GP1

5V GND

e

Power_QUT = -
PESET

fritzing

Run the test code

Find and double-click Flame _sensor.py and cIicke

207

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code MicroPython/24. Flame sensor/Flame_sensorpy @ 19:7 ~ a x

File Edit View Run Device Tools Help

+ 1|0 o

Files = ‘ Flame_sensor.py & ‘
MicroPython device =4 i ' 1
bl lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
© ADXL345.py 38 * lesson 24
: 4 * Flame sensor

This computer = 5 * http://www.keyestudio.com
/home / pi / pico / oy '’
Pico_code_MicroPython 7 import machine
I} 21. Photoresistance § import utime
1) 22. Temperature sensor 9
B 1) 23. film pressure sensor 10 flame D = machine.Pin(22, machine.Pin.IN)
< J_24. Flame sensor 11 flame A = machine.ADC(26)

7 Flame_sensor.py 4 12 "
b 25. MG-2
by 26. MQ-3 She ‘
k1) 27. AD Key T -
[0 28. Joystick
Iln 29, UV sensor
-1} 3. Laser sensor
1) 30. SK6812 2k I

vl | =

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 23
* Flame sensor
* http://www.keyestudio.com
import machine
import utime

flame_D = machine.Pin(22, machine.Pin.IN)
flame_A = machine.ADC(26)

while True:
digitalval = flame_D.value()
analogVal = flame_A.read_u16()
print(digitalval,end =" ")
print(analogVal)
utime.sleep(0.1)

Code Explanation

Two pins we use are defined as 22 and 26 according to the wiring-up

208

£

www.keyestudio.com

diagram, and print digital signals and analog signals respectively.

Test Result

Upload the test code and power up, LED2 is on and LED1 is off. Open the
monitor and set baud rate to 9600. When fire is detected, LED1 will be on.
the digital value will change from 1 to 0, and the analog value will become

smaller, as shown in the figure below.

8 §
1
0
]
0 2864
]
o]
]
o

209

£

www.keyestudio.com

Project 25: MQ-2 Gas Sensor

Description

This analog gas sensor - MQ2 is used in gas leakage detecting equipment
in consumer electronics and industrial markets.

This sensor is suitable for detecting LPG, I-butane, propane, methane,
alcohol, Hydrogen and smoke. It has high sensitivity and quick response.
In addition, the sensitivity can be adjusted by rotating the potentiometer.
In the experiment, we read the analog value at the AO port and the DO port

to determine the content of gas.

210

Ml
o

www.keyestudio.com

Working Principle

VCC
VCC Vec
—| vRi Rl
c Adjustable 0603 10k
2 potentiometer 10K
| o603 1K
3 po_ |t
4 ~LED2 e a2 | @
5 AQ | 0603Red 3
; Do 4
2 —vcc — Ul
1 = BA10393F SOIC-8-150mil
PJ4 :|—_ B
GND
Ve
‘ U2
Vee 2
7
AO : Gas sensor
R4
0603 470R . R3
i B z 0603 5. 1R
L' L}
~]ED1 - = =
B2 o C2 =
“0603 Red e [R2 = GND
GND *
L
GND

The greater the concentration of smoke, the greater the conductivity, the
lower the output resistance, the greater the output analog signal.

When in use, the A0 terminal reads the analog value of the corresponding
gas; the DO terminal is connected to an LM393 chip (voltage comparator),
we can adjust the alarm threshold of the measured gas through the

potentiometer, and output the digital value at DO. When the measured gas

211

£

www.keyestudio.com

content exceeds the critical point, the DO terminal outputs a low level;

when the measured gas content does not exceed the critical point, the DO

terminal outputs a high level.

Required Components

Raspberry Pi
Pico Board*1

Raspberry Pi Pico
Expansion Board*1

keyestudio
DIY Analog
Gas Sensor*1

4P Dupont
Wire*1

Micro USB
Cable*1

Connection

Diagram

212

Ml
o

www.keyestudio.com

UARTO UARTI 1
B

T
e Fa 3 & 3 & F & 8 2 8
GND
m R m n M r 2] 2] gl m
GP9 . =3
000000000000000-
GPB o

pv 4

keyestudio

CODOLooDHAoOD0E0-
"

= -
&
i . :
T ——

Run the test code

Find and double-click MQ-2.py and click >

File Edit View Run Device Tools Help

o L

o

Fileg ¢ MQ-2.py
MicroPython device : ik 1
b lib * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
A ADXL345.py il * lesson 25
= * Gas sensor
This computer = * http://www.keyestudio.com
/home / pi / pico / L
Pico_code_MicroPython import machine
b)) 24. Flame sensor import utime

- I MO -
mqg_g machine.Pin(22, machine.Pin.IN)
mgz_

) 26, MQ-3 machine.ADC(26)
L 27. AD Key 4 }v
L 28. Joystick

/1 29. UV sensor Shell =

4 3. Laser sensor T <
! 30. 5K6812

1 31. Encoder

L 32. Servo

4 33. Ultrasonic

R Y A A A A A

o | =5 =

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

213

Ml
o

www.keyestudio.com

* lesson 24
* Gas sensor

* http://www.keyestudio.com

import machine
import utime

mg2_D = machine.Pin(22, machine.Pin.IN)
mg2_A = machine.ADC(26)

while True:
digitalVal = mg2_D.value()
analogVal = mq2_A.read_u16()

print(digitalval,end =" ")
print(analogVal,end =" ")
if digitalval == 0:

print("Exceeding")
else:

print("Normal")
utime.sleep(0.1)

Test Result

Run the test code, the yellow-green LED on the module lights up, observe
the shell, and display the corresponding data and characters. In the
experiment, we can see that when the simulated value of the test is less
than or equal to 45627, the gas content does not exceed the critical point,
and the red LED is off; when the simulated value of the test is greater than
or equal to 45627, the gas content exceeds the critical point, and the red
LED lights up. ; Then it means that the analog value of the critical point of
gas content is between 43018-45627, we can adjust the critical point by

rotating the potentiometer on the sensor.

214

£

www.keyestudio.com

PRy e

b

30007 Normal
35544 Normal
39857 Normal
43018 Normal
Exceeding
47547 Exceeding
48091 Exceeding
45756 Exceeding
5031¢ Exceeding

Lo Qe S e T e B B R B el
s
wn
iy
3
~1

Project 26: MQ-3 Alcohol Sensor

Description

In this kit, there is a MQ-3 alcohol sensor, which uses the gas-sensing
material is tin dioxide (SnO2) which has a low conductivity in clean air.
When there is alcohol vapor in the environment where the sensor is
located, the conductivity of the sensor increases with the increase of the

alcohol gas concentration in the air. The change in conductivity can be

215

Ml
o

www.keyestudio.com

converted into an output signal corresponding to the gas concentration
using a simple circuit.

In the experiment, we read the analog value at the A0 end of the sensor
and the digital value at the DO end to judge the content of alcohol vapor in

the air and whether they exceed the standard.

Working Principle

<
(=]
ot

g

0603 100NF

&l

0603 470R AQD : 2

vee
uw
R4 3
B

~LED!
N LR

R3
JEGS 5.1R

) a
~ GND

0603 1.5k

al

At a certain temperature, the conductivity changes with the composition of
the ambient gas. When in use, A0 terminal reads the analog value

corresponding to alcohol vapor; DO terminal is connected to an LM393

216

£

www.keyestudio.com

chip (comparator), we can adjust and measure the alcohol vapor alarm
threshold through the potentiometer, and output the digital value at DO.
When the measured alcohol vapor content exceeds the critical point, the
DO terminal outputs a low level; when the measured alcohol vapor content

does not exceed the critical point, the DO terminal outputs a high level.

Components Required

) o keyestudio
Raspberry Pi Raspberry Pi Pico Dupont)
]) Alcohol i Micro USB Cab|e*1
Pico Board*1 Expansion Board*1 WiredP*1
Sensor*1

Connection Diagram

217

Ml
o

www.keyestudio.com

P
3]
e
=
=

UARTO UARTY ‘ 0 O L %)

o) 0 q
'R EEEEERERERESEIER]
S B 3] 3
cp8
)
R
]

SPIO sPn
GDI}

c:a-’. GPI12
GP3 cpPn
GP2 GP10

3vs V3,

P21 GPI1s
GPz0 GP14 .
GND

mmmmmmmm

fritzing

Run the test code

Find the MQ-3.py, double-click the code and click @

218

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Fico_code_MicroPython/26. MQ-3/MQ-3.py @ 4:17

File Edit View Run Device Tools Help

e SRRl (P) o

Files 3¢ ‘ MQ-3.py ‘
MicroPython device =° . ' M ‘
b)) lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi ‘
7 ADXL345.py 3 * lesson 26
| 4 * Alcohol Senso
This computer = 5 * http://www.keyestudio.com
/home / pi / pico / Gl '
Pico_code_MicroPython 7 import machine
1) 24. Flame sensor 8 import utime
bl 25. MQ-2 | 9
< [} 26. MQ-3 10 mg2 D = machine.Pin(22, machine.Pin.IN)
11 mg2 A = machine.ADC(26)

bl 27. AD Key \ - 12 -
L 28. Joystick
b 1) 29. UV sensor Shell =

I 4 3. Laser sensor -
By 30. SK6812
15 31. Encoder
-4 32. Servo
B4 23, Ultrasonic

Test Code™

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 26
* Alcohol Senso
* http://www.keyestudio.com
import machine

import utime

mq2_D = machine.Pin(22, machine.Pin.IN)

mq2_A = machine.ADC(26)

while True:
digitalval = mq2_D.value()
analogVal = mg2_A.read_u16()

print(digitalval,end =" ")
print(analogVval,end =" ")
if digitalVal == 0:

print("Exceeding")

219

£

www.keyestudio.com

else:
print("Normal")

utime.sleep(0.1)

Test Result

Run the test code, the red LED on the module lights up, and the shell
displays the corresponding data and characters. In the experiment, when
the tested simulated value is less than or equal to 45387, the gas content
does not exceed the critical point, and the yellow-green LED will be off;
when the tested simulated value is greater than or equal to 45419, the gas
content exceeds the critical point, and the yellow-green LED will light up;
That means the critical point is in the range of 45387-45419. We can adjust

the critical point by rotating the potentiometer on the sensor.

220

2l
i

www.keyestudio.com

44954 Normal =

45131 Normal
45275 Normal
45387 Normal
45413 Exceeding
45573 Exceeding
45973 Exceeding
45883 Exceeding
45851 Exceeding

COoOD0D O M =

Project 27: Five-key AD Button Module

Description

When we talked about analog and digital sensors earlier, we talked about
the single-channel key module. When we press the key, it outputs a low
level, and when we release the key, it outputs a high level. We can only
read these two digital signals. In fact, the key module ADC acquisition can
also be performed. In this kit, a DIY electronic building block five-way AD

button module is included.

221

Ml
o

www.keyestudio.com

We can judge which key is pressed through the analog value. In the

experiment, we print out the key press information in the shell.

GND
= It's 500 actually
. | Pross SWL1.5W R3 Pross SW2:.4W
: VD ——
: O] SV] ey []
.) . 0601 S10R | :
Header 3 Cl ' ! '
psoztoosE | | 2. .| 4 i T
el I~ — ~— R
L.Iﬁ_mll” 0603 3 SELECT o1 LEFT RI+R3
Rl Rl
0603 820K
DOWN RIGHT [¥3
3 1] 1
! i N 1 }
. RS . R4 X
.. 1t la . -3 grr— L g L3
3 3 - 4) 3 - 4
50 603 4. 15K 5Wa IHEERE SW3
RI+RI+R4+RI= 5000 RI+RI+R4 = 3000
DN W - L T
Prass SWs:1h Prass SW4:2V Prass SW3:3v

Working Principle

Let’s look at the schematic diagram, when we do not press the key, the OUT of S
output to the signal end is pulled down by R1. At this time, we read the low level
0V. When we press the key SW1, the OUT of the output to the signal end S is
directly connected to the VCC. At this time, we read the high level 3.3V(the figure
is marked as a 10-bit ADC(0~1023) and VCC is 5V. The principle is the same. Here
we have VCC of 3.3V and ADC mapped to 16 bits), which is an analog value of
65535.

222

Ml
o

www.keyestudio.com

Next,when we press the key SW2, the OUT terminal voltage of the signal we read
is the voltage between R2 and R1, namely VCC*R1/(R2+R1), which is about

2.64V, and the analog value is about 52219.

When we press the key SW3, the OUT terminal voltage of the signal we read is
the voltage between R2+R3 and R1, namely VCC*R1/(R3+R2+R1), which is

about 1.99V, and the analog value is about 39360.

When we press the key SW4, the OUT terminal voltage of the signal we read is
the voltage between R2+R3+R4 and R1l, namely VCC*R1/(R4+R3+R2+R1),

about 1.31V, and the analog value is about 26109.

Similarly, when we press the key SW5, the OUT terminal voltage of the signal we
read is the voltage between R2+R3+R4+R5 and R1l, namely
VCC*R1/(R5+R4+R3+R2+R1), which is about 0.68V, and the analog value is

about 13415.

223

Ml
o

www.keyestudio.com

Components Required

keyestudio
Raspberry Pi Pico
Raspberry Pi 5-Channel | 3P Dupont Micro USB
Expansion
Pico Board*1 AD Button Wire*1 Cable*1
Board*1
Modu | e*1

Connection Diagram

UARTO

uARTY g 8 8 2 % a9 990 a
3v3 V3 = - =
GND GND
cP1 cP9 P P Vo
GPO| GPB g . pei? pectfige Yo
:)
0

SPIO SPIN

CP5 GP13
GP4 GPI2
cP3 cPn
GP2Z GP10

3v3 V3

B 5 3 8 8 2 8 N

fritzing

Run the test code

224

pv4
o

www.keyestudio.com

Find the AD key.py, double-click the code and click >

i File Edit View Run Device Tools Help

%[O o

MicroPython device =t ' 7 |

b lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi |
A ADXL345.py 38 * lesson 27 |

= 4 * AD key

This computer = 5 % http://www.keyestudio.com

/home / pi / pico / By ' !

Pico_code_MicroPython 7 import machine

() 24. Flame sensor 8 import utime

bl 25. MQ-2 9

bl 26. MQ-3 | 10 ad _key = machine.ADC(26)

< [} 27. AD Ke 11 .
\ - 17 while True: =

4 28. Joystick

[} 29. UV sensor Shell ¢ ‘

B>

b

[l 3. Laser sensor &
S W SOUEREET —
p
P
P

4 31. Encoder
|4 32. Servo
[J1 33. Ultrasonic

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 27
* AD key
* http://www.keyestudio.com
import machine

import utime

ad_key = machine.ADC(26)

while True:
value = ad_key.read_u16()
print(value, end = ")

if value <= 6000:

225

Ml
o

www.keyestudio.com

print(" no key is pressed")
elif value <= 20000:

print(" SWS5 is pressed")
elif value <= 32000:

print(" SWA4 is pressed")
elif value <= 45000:

print(" SW3 is pressed")
elif value <= 59000:

print(" SW2 is pressed")
else:

print(" SW1 is pressed")

utime.sleep(0.1)

Code Explanation

We assign the read analog value to the variable val, and the shell displays
the value of val, (our default setting is 9600, which can be changed). We
judge the read analog value. When the analog value is lower than 6000, we
judge that the button is not pressed; when the analog value is between
6000 and 20000, we judge that the button SW5 is pressed; Between 20000
and 32000, we judge that the button SW4 is pressed; when the analog
value is between 32000 and 45000, we judge that the button SW3 is
pressed; when the analog value is between 45000 and 59000, we judge
that the button SW2 is pressed. Press; otherwise, when the analog value is
above 59000, we judge that the button SW1 is pressed; if we only use a

fixed value, there will inevitably be errors, so we use the interval to judge.

226

Ml
o

www.keyestudio.com

Test Result

After uploading the test code successfully, when the button is pressed, the

shell prints out the corresponding information, as shown in the figure

below.

Shell 3¢ |

48 no key 1is pressed
48 no key i3 pressed
0 no key 13 pressed
52412 S5SW2 i3 pressed
48 no key 1is pressed
48 no key 1is pressed
39529 S5SW3 is pressed
39497 SW3 1is pressed
64 no key 1is pressed

227

Ml
o

www.keyestudio.com

Project 28: Joystick Module

Overview

Game handle controllers are ubiquitous.

It mainly uses PS2 joysticks. When controlling it, we need to connect the X
and Y ports of the module to the analog port of the single-chip
microcomputer, port B to the digital port of the single-chip microcomputer,
VCC to the power output port(3.3-5V), and GND to the GND of the MCU.
We can read the high and low levels of two analog values and one digital
port) to determine the working status of the joystick on the module.

In the experiment, two analog values(x axis and y axis) will be shown on

Shell.

228

Ml
o

www.keyestudio.com

Working Principle

1-._':_':1 s vee
1= 10
3 = g Y
E: 2 [+ 11 | 3
: I 3
cl gm el I ety 0603 100NF
0603 100NF 4 TK Joytick s
—— vl —|||-Gm T
= P GND I
= b =
GND .. 220R
z X c2
4 —1 c
3 Z J;!LED
f, VCC 0603-LED
: GND | b
S GND GND

In fact, its working principle is very simple. Its inside structure is equivalent
to two adjustable potentiometers and a button. When this button is not
pressed and the module is pulled down by R1, low levels will be output; on
the contrary, when the button is pressed, VCC will be connected (high
levels), When we move the joystick, the internal potentiometer will adjust

to output different voltages, and we can read the analog value.

229

Ml
o

www.keyestudio.com

Components

Raspberry | Raspberry Pi | Keyestudio
5P Dupont | Micro USB
Pi Pico | Pico Expansion | Joystick
Wire*1 Cable*1
Board*1 Board*1 Module*1

Connection Diagram

fritzing

230

pv4
o

www.keyestudio.com

Run the Test Code

Find and double-click joystick.py, then click o to run the code.

Thonny - /home/pi/pico/Pico_code_MicroPython/28. Joystick/joystickpy @ 9:1

| File Edit View Run Device Tools Help
BN (>) o
Files = | joystick py ‘
B

ok
r

MicroPython device \

3

4

This computer g
/ home / pi / pico / 6
T

8

b lib * Keyestudio 42 in 1 Starter Kit for Raspberry Pi || |
ADXL345.py Il : }Ezizzcis |
= *

http://www.keyestudio.com

Pico_code_MicroPython

-1} 24. Flame sensor

import machine
import utime

by 25. MQ-2 9

bl 26. MQ-3 | 10 B = machine.Pin(22, machine.Pin.IN)

b} 27. AD Key 11 X = machine.ADC(26)

< [} 28. Joystick ! 17 Y = macrhine ADC(27) -

7 joystick.py

I} 29. UV sensor
[1) 3. Laser sensor
1} 30. SK6812
>} 31. Encoder
1)) 32. Servo

b [33. Ultrasonic type "heipl) Or more ITormation. i
>>> =

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 25
* Joystick
* http://www.keyestudio.com
import machine
import utime

B = machine.Pin(22, machine.Pin.IN)
X = machine.ADC(26)
Y = machine.ADC(27)
while True:
B_value = B.value()

231

Ml
o

www.keyestudio.com

X_value = X.read_u16()
Y_value = Y.read_u16()
print("button:",end="")

print(B_value, end =" ")
print("X:",end="")
print(X_value, end =" ")

print("Y:",end="")
print(Y_value)
utime.sleep(0.1)

Code Explanation

In the experiment, according to the wiring diagram, the x pin is set to
ADC(26), the y pin is set to ADC(27) and the pin of the joystick is set to
GP22.

Then print() function will print without changing lines.

Test Result
Run the test code and observe Shell monitor to display corresponding value. Move
the joystick, analog values at X and Y axis will change then press the button, the

digital value is 1, on the contrary, the value will be 0. as shown below;

232

Ml
o

www.keyestudio.com

[Shell 3¢ |

UARTE

DuLLoLig
button:
button:
button:
button:
button:
button:
button:
button:
button:
button:
button:
button:
button:

L e e e o - T O o

EEDEL)
33016
33080
33016
33048
33048
33112
33080
33064
33032
33080
33048
33048
33048

R VIY]
33048
33048
33000
33032
33176
33048
33048
323032
33016
33032
33064
32808
33032

233

Ml
o

www.keyestudio.com

Project 29: Ultraviolet Sensor

UVC Rays

Description

There is a ultraviolet Sensor used for UV index monitoring, UV radiation
dose measurement, flame detection. Suitable for measuring UV index of
smart wearable devices, such as UV index detection of watches,
smartphones and outdoor equipment. It can also be used to monitor the
intensity of UV light, or as a UV flame detector when UV sanitizing items.
The sensor has a specific spectral response. In the experiment, we use the
purple led module to test the UV module, and then display the results on

the shell.

234

Ml
o

www.keyestudio.com

Working Principle

The output current of the UV sensor is proportional to the light intensity,
and the output of the product has a very high consistency. The module
circuit has been set up, and we directly use the ADC to collect the analog

signal.
J1 S

=t b LD
-
0
O

Ultraviolet u g

1
-
.
]
e
d
— b L
Iw|w
o
7
=

\I 1 S
| “ sensor -
N pg SGME521
i
1 100of
GND bzl

Required Components

235

Ml
o

www.keyestudio.com

. o Keyestudio . Keyestudio DIY
Raspberry Pi Raspberry Pi Pico) 3P Dupont Micro USB
)) Ultraviolet) Purple LED*1
Pico Board*1 Expansion Board*1 Wire*2 Cable*1
Sensor*1

Connection Diagram

898929 ce0s8ea0ases6a8o0oe

= F &8 35 33 33 F IS8 =23
GND| i
= cps ; Co . iy
CooEcECCoe0ntas-,
s spn

uuuuu

Ultraviolet

fritzing

(V of led module is connected to VUSB(5V) to make the LED brighter)

Run the test code

Find and double Ultraviolet.py and click >

236

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code_MicroPython/29. UV sensor/Ultravioletpy @ 18:1

| File Edit View Run Device Tools Help

& (O

Files 2 ‘ \ Ultraviolet py =

o

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi
* lesson 29

* UV_sensor

* http://www.keyestudio.com

import machine
import utime

led = machine.Pin(27, machine.Pin.OUT)
sensor = machine.ADC(26)
lTed valuel 1145 =1 FND

MicroPython device = - 1
b [0 lib 2
3
2 ADXL345.py u 3
4
This computer = 5
/ home / pi / pico / 6
Pico_code_MicroPython 7
-0 24. Flame sensor 8
b)) 25. MQ-2 9
) 26. MQ-3 10
b1y 27. AD Key 11
b1 28. Joystick ; 12
— L4 29. UV sensor

| 3. Laser sensor

< Ultraviolet.py Shell

P

> 1), 30. SK6812
P4 31. Encoder
P
P

Micrc

[)) 32. servo
4 33. Ultrasonic

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 26

* UV_sensor

* http://www.keyestudio.com
import machine
import utime

led = machine.Pin(27, machine.Pin.OUT)

sensor = machine.ADC(26)
led.value(1)#light up LED

while True:
analogVal = sensor.read_u16()
print(analogVal)
utime.sleep(0.1)

237

£

www.keyestudio.com

Test Result
After running the test code, the Shell displays the corresponding UV value.

When we make the LED close to the ultraviolet module. Then view the data on

the Shell monitor, as shown below:

|5ha|x
R A-
224
608
1120
1840
2240
2320
2640
2704
2800

Project 30: SK6812 RGB Module

238

£

www.keyestudio.com

Overview

In previous lessons, we learned about the plug-in RGB module and used
PWM signals to color the three pins of the module.

There is a Keyestudio 6812 RGB module whose the driving principle is
different from the plug-in RGB module. It can only control with one pin.
This is a set. It is an intelligent externally controlled LED light source with
the control circuit and the light-emitting circuit. Each LED element is the
same as a 5050 LED lamp bead, and each component is a pixel. There are
four lamp beads on the module, which indicates four pixels

In the experiment, we make different lights show different colors.

Working Principle

From the schematic diagram, we can see that these four pixel lighting
beads are all connected in series. In fact, no matter how many they are, we
can use a pin to control a light and let it display any color. The pixel point

contains a data latch signal shaping amplifier drive circuit, a high-precision

239

Ml
o

www.keyestudio.com

internal oscillator and a 12V high-voltage programmable constant current
control part, which effectively ensures the color of the pixel point light is

highly consistent.

The data protocol adopts a single-wire zero-code communication method.
After the pixel is powered up and reset, the S terminal receives the data
transmitted from the controller. The first 24bit data sent is extracted by the

first pixel and sent to the data latch of the pixel.

D1 D D3 D4
GNJ:J-|||—l vss pout [GND-|||—l vss pour [GND-IH L1 vss pour [er:-l”—1 vss pouT -
sv v sy sv
i 2)pw wop { 21l pn voD { Llpw voD { 2]lpw vDD {
WS2812B4P Bl WS2312B4P o2 WS2812B4P s WS2812B4P ol
I:-s:.w 100NF 0603 100NF I:s;: 100NE I:s:: 100NF
GND GND N GND

Components

) o Keyestudio
Raspberry Pi Raspberry Pi Pico 3P Dupont
)) 6812 RGB) Micro USB Cable*1
Pico Board*1 Expansion Board*1 Wire*1
Modul e*1

Connection Diagram

240

£

www.keyestudio.com

=]
iy
N
]
]
o]
-
[
o

UARTO UARTT

V3 3V

GND|

Run the test code

020000000000000°

< .
e
b

Power_OuUT o
RESET,

fritzing

Find and double-click sk6812.py and click >

File Edit View Bun Device

g

Files % \

MicroPython device
Iy lib
2 ADXL345.py

This computer
/ home / pi / pico /

1]

Pico_code_MicroPython

P4 24. Flame sensor

} 25. MQ-2

L 26. MQ-3

L 27. AD Key

4 28. Joystick

} 29. UV sensor
J

b
b
b
P
P
P
|= L 30. 5K6812

| p 4 31. Encoder
Py 32. Servo
1) 33. Ultrasonic

3. Laser sensor

4

| Shell ¢ |

-~

- >

Tools Help

o

sk6812 py =

(A}

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi |
* lesson 30
* 6812 RGB LED
* http://www.keyestudio.com
import array, time
from machine import Pin
import rp2

NIIM IFDS = 4 e

Test Code

241

£

www.keyestudio.com

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 27
* 6812 RGB LED
* http://www.keyestudio.com
import array, time
from machine import Pin
import rp2

Configure the number of sk6812 LEDs, pins and brightness.
NUM_LEDS =4

PIN_NUM =16

brightness = 0.1

@rp2.asm_pio(sideset_init=rp2.P1I0.OUT_LOW, out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=24)
def sk6812():

T1=2

T2=5

T3=3

wrap_target()

label("bitloop")

out(x, 1) .side(0) [T3-1]
jmp(not_x, "do_zero") .side(1) [T1-1]
jmp("bitloop") .side(1) [T2-1]
label("do_zero")

nop() .side(0) [T2-1]
wrap()

Create the StateMachine with the sk6812 program, outputting on Pin(16).
sm = rp2.StateMachine(0, sk6812, freq=8_000_000, sideset_base=Pin(PIN_NUM))

Start the StateMachine, it will wait for data on its FIFO.

sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.
ar = array.array("1", [0 for _ in range(NUM_LEDS)])

def pixels_show():
dimmer_ar = array.array("1", [0 for _ in range(NUM_LEDS)])
fori,c in enumerate(ar):
r = int(((c >> 8) & OxFF) * brightness)
g = int(((c >> 16) & OxFF) * brightness)

242

Ml
o

www.keyestudio.com

b = int((c & OxFF) * brightness)

dimmer_ar[i] = (g<<16) + (r<<8) + b
sm.put(dimmer_ar, 8)
time.sleep_ms(10)

def pixels_set(i, color):
ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]

def pixels_fill(color):
foriin range(len(ar)):
pixels_set(i, color)

RED = (255, 0, 0)

GREEN = (0, 255, 0)
BLUE = (0, 0, 255)
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)

pixels_set(0, RED)
pixels_set(1, GREEN)
pixels_set(2, BLUE)
pixels_set(3, WHITE)
pixels_show()
time.sleep(5)

for i in range(len(ar)):

pixels_set(i, BLACK)
pixels_show()

Code Explanation

A few function ports and functions:
NUM LEDS = 4, there are four LED beads, so we set to 4.
PIN_ NUM = 16, this is the pin number, we connect to GP16

brightness = 0.1, brightness setting. 1 implies brightest

243

£

www.keyestudio.com

pixels show(), this function is used to refresh
pixels set(i, color), this function is used to set locations and color of LED

beads.

pixels fill(color), display colors of LED beads

Test Result
Run the test code, wire up and power up. Then we can see four LED beads

show red, green, blue and white color; as shown below;

244

Ml
o

www.keyestudio.com

Project 31: Rotary Encoder

Overview
In this kit, there is a Keyestudio rotary encoder, dubbed as switch encoder.
It is applied to automotive electronics, multimedia audio, instrumentation,

household appliances, smart home, medical equipment and so on.

In the experiment, it it used for counting. When we rotate the rotary
encoder clockwise, the set data falls by 1; if you rotate it anticlockwise, the
set data is up 1; and when the middle button is pressed, the value will be

show on Shell.

245

Ml
o

www.keyestudio.com

Working Principle

603 10K .
v R2 603 10K
]
. 603 10K
CLK | [_sw LS
L\Dlll',r— C.) SW
SRR rr— VECh————
Rotary encoder-5 e
GND =

The incremental encoder converts the displacement into a periodic electri
c signal, and then converts this signal into a counting pulse, and the num
ber of pulses indicates the size of the displacement.This module mainly us
es 20-pulse rotary encoder components. It can calculate the number of pu
Ises output during clockwise and reverse rotation. There is no limit to cou

nt rotation. It resets to the initial state, that is, starts counting from 0.

Components

246

Ml
o

www.keyestudio.com

ot SO

Rotary encoder

) o Keyestudio)
Raspberry Pi Raspberry Pi Pico Rot 5P Dupont Micro USB
otar
Pico Board*1 Expansion Board*1 y Wire*1 Cable*1
Encoder*1

Connection Diagram

UARTO UARTI
3v3| V3
GND GND

GP1

Japodua Aiejoy

12co izc1

GP21 G Pls

i D)D G F'la

fritzing

Run the test code

Find and double-click encoder.py to open it, then click > to run the code.

247

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code_MicroPython/31. Encoder/encoderpy @ 33:1

File Edit View Run Device Tools Help

8010 o

Files 3t | \ encoder.py 3 ‘

MicroPython device =5 . i |

by lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi || |
A ADXL345.py B * lesson 31 |

= 4 * Encoder

This computer = 5 * http://www.keyestudio.com

/home / pi / pico / o

Pico_code_MicroPython 7 import time

bl 24. Flame sensor & from rotary irq rp2 import RotaryIRQ

bl 25 MQ-2 9 from machine import Pin

Bl 26. MQ-3 10 SW=Pin(20,Pin.IN,Pin.PULL_UP)

bl) 27. AD Key 11 r = RotaryIRQ(pin_num_clk=18,

b) 28. Joystick : 1774 nin num dt=19. i

P 1p 29. UV sensor =

b1} 3. Laser sensor Shell % ‘

b1} 30. SK6812 i -

-y

1} 32, Servo ; _

b)) 33. Ultrasonic YR L I

N =

>>> %HUN -C $EULIUK CUNIENI

Traceback (most recent call last):
File "<stdin=", line 8, in <module>
ImportError: no module named 'rotary_irg_rp2'

This is because we did not import the module needed by the encoder. We
have mentioned how to import modules before, please refer to the

previous method.

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 28
* Encoder
* http://www.keyestudio.com
import time
from rotary_irq_rp2 import RotarylRQ
from machine import Pin
SW=Pin(20,Pin.IN,Pin.PULL_UP)
r = RotarylRQ(pin_num_clk=18,
pin_num_dt=19,

248

Ml
o

www.keyestudio.com

min_val=0,
reverse=False,
range_mode=RotarylIRQ.RANGE_UNBOUNDED)
val_old = r.value()
while True:
try:
val_new = r.value()
if SW.value()==0 and n==0:
print("Button Pressed")
print("Selected Number is : ",val_new)
n=1
while SW.value()==0:
continue
n=0
if val_old != val_new:
val_old = val_new
print('result =', val_new)
time.sleep_ms(50)
except Keyboardinterrupt:
break

Code Explanation

In the experiment, we need to add the rotary encoder to pico, then import
the module.

You only need to save the .py file to pico

1. After adding the rotary encoder, click File

Raspberry Pi Pico = if SW.value()==0 and n==0:
: 1 print("Button Pressed")
b lib print("Selected Number is : ",val new)
& nt16k33_matrixpy 5 1
& matrix_fonts.py 24 while SW.value()==0:
® rotary py [shell 3¢ |
@ rotary_irg_rp2.py 33>
| & urtc.py
>

249

Ml
o

www.keyestudio.com

2. We will see the file rotary.py and rotary irq rp2.py. This means the we
save them in the pico successfully. Then we can use from rotary irq rp2

import RotarylRQ

3. SW=Pin(20,Pin.IN,Pin.PULL UP) indicates that the SW pin is
connected to GP20, pin num clk=18 indicates that the pin CLK is
connected to GP18, and pin num dt=19 means that the DT pin is

connected to GP19. We can change these pin numbers.

4. try/except is the python language exception capture processing
statement, try executes the code, except executes the code when an

exception occurs, and when we press Ctrl+C, the program exits.

5. r.value() returns the value of the encoder

Test Result

Run the test code, observe the Shell below. Rotate the encoder clockwise,
the displayed data decrease; rotate the encoder counterclockwise, the
displayed data increase; press the button of the encoder, the displayed

data is the value of the encoder, as shown in the figure below.

250

Ml
o

www.keyestudio.com

Shell 3¢ |

>33

Button Pressed

Select
result

ed

result =

result
result
result
result
result

Humber is : 0

L T N o S A

-1

Button Pressed
Selected Number is : -1

251

£

www.keyestudio.com

Project 32: Servo Control

Overview

Servo motor is a position control rotary actuator. It mainly consists of a
housing, a circuit board, a core-less motor, a gear and a position sensor. Its
working principle is that the servo receives the signal sent by MCU or
receiver and produces a reference signal with a period of 20ms and width
of 1.5ms, then compares the acquired DC bias voltage to the voltage of the

potentiometer and obtain the voltage difference output.

In general, servo has three lines in brown, red and orange. The brown wire
is grounded, the red one is a positive pole line and the orange one is a

signal line.

252

£

www.keyestudio.com

(OV) GND
180° (+5V)
(PWM)
0 degrees 45 degrees 180 degrees
o
o
o
s]ala]
o
8
high |
™ T ps

Working Principle

When the motor speed is constant, the potentiometer is driven to rotate
through the cascade reduction gear, which leads that the voltage
difference is 0, and the motor stops rotating. Generally, the angle range of

servo rotation is 0° --180 °

The rotation angle of servo motor is controlled by regulating the duty cycle
of PWM (Pulse-Width Modulation) signal. The standard cycle of PWM
signal is 20ms (50Hz). Theoretically, the width is distributed

between 1ms-2ms, but in fact, it's between 0.5ms-2.5ms. The width

253

£

www.keyestudio.com

corresponds the rotation angle from 0° to 180°. But note that for different

brand motors, the same signal may have different rotation angles.

Controlling principle of Servo Angles of the servo

are differant at
PWM waves w0 different time period

The time of
high levels is
ms =2ms.
This time
pgr'"j.d : T of !

decides the 8 eTosme i P
angles of
the servo

The tirmee of high bevels = 125ms

hake sure the frequancy 50Hz

The calculation fermula of angles of the sarvo:
degree = fhigh lewal time) 2ms) TB0TE;

Components

Raspberry Pi Raspberry Pi Pico)
)) Servo*1 Micro USB Cab |l e*1
Pico Board*1 Expansion Board*1

Connection Diagram

254

Ml
o

www.keyestudio.com

Power_OUT
RESET,

fritzing

Run the Test Code

Find Servo test 1.py and Servo test 2.py, double-click to open them. Then

click o to run the code.

Thonny - /home/pi/pico/Pico_code MicroPython/32. Servo/Servo test 2.py @ 39: 1

File Edit View Run Device Tools Help

00 o

Files | Servo test 1.py ‘ Servo test 2.py % |
MicroPython device =° ' =
b0 lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi §| |
ADXL345.py 3 * lesson 32.2
| 4 * Servo test 2
This computer = 5 * http://www.keyestudio.com
/home / pi / pico / o R
Pico_code_MicroPython 7 from utime import sleep
b [31. Encoder & from machine import Pin
< [32. servo 9 from machine import PWM
A Servo test 1.py 10
< Servo test 2.py L 11 pwm = PWM(Pin(0))~
k) 33. Ultrasonic . 17 num. frea(56) n the Treauency W(IH =
>4 34. IR Receiver —
bJ 35, DS18B20 Shell 2¢
By 36. XHT11 a
I} 37. DS1307 Real Time Cl
[} 38. ADXL345
I»1) 39. TM1650 Four digital t
b4 4. button ¥ I
_ MES2T S

255

£

www.keyestudio.com

Test Code 1//:

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 29.1
* Servo test 1
* http://www.keyestudio.com
from machine import Pin, PWM
import time
pwm = PWM(Pin(0))

pwm.freq(50)

0° ----2.5%----1638
45° ----5%----3276

90° ----7.5%----4915
135° ----10%----6553
180° ----12.5%----8192
angle_0=1638
angle_90 = 4915
angle_180 = 8192

while True:
pwm.duty_ul6(angle_0)
time.sleep(1)
pwm.duty_ul6(angle_90)
time.sleep(1)
pwm.duty_ul6(angle_180)

time.sleep(1)

Code 2.

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 29.2

* Servo test 2

256

Ml
o

www.keyestudio.com

* http://www.keyestudio.com
from utime import sleep
from machine import Pin
from machine import PWM

pwm = PWM(Pin(0))#the pin of the servo is connected with GPO
pwm.freq(50)#20ms, frequency is 50Hz
Duty cycles that angles correspond
0°----2.5%----1638
45°----5%----3276
90°----7.5%----4915
135°----10%----6553
180°----12.5%----8192
Considering the error, set the duty cycle at 1000~9000, so that it can rotate 0~180 degrees smoothly
set rotation angles of the servo
def setServoCycle (position):
pwm.duty_ul6(position)
sleep(0.01)

calculate rotation angles into duty cycle
def convert(x, i_m, i_M, o_m, o_M):
return max(min(o_M, (x-i_m) * (o_M-o0_m) // (i_M -i_m) + 0_m), o_m)

while True:
for degree in range(0, 180, 1):#rotate from 0° to 180°
pos = convert(degree, 0, 180, 1000, 9000)
setServoCycle(pos)
for degree in range(180, 0, -1):#frotate from 180° to 0°

pos = convert(degree, 0, 180, 1000, 9000)

setServoCycle(pos)

Code Explanation

Code 1:

According to the angle of the signal pulse width, it is converted into a duty

257

Ml
o

www.keyestudio.com

cycle. The formula is: 2.5+angle/180*10. The PWM pin resolution of Pi Pico
is 2216 = 65535. When converted to 0 degree, its duty cycle is 65535 *
2.5% = 1638.375 , when the angle is 180 degrees, its duty cycle value is
65535 * 12.5% = 8191.875, these two values will be related to the program,
considering the error and rotation angle, | set the duty cycle at 1000

Between 9000 and 9000, the servo can rotate smoothly 0~180 degrees

Code 2:
1. convert(x,i m,i M, o m, o M): x is the value we want to map;i m,i M
are the lower and upper limits of the current value; o m, o M are the lower

and upper limits of the target range we want to map to.

Test Result 1:
Run the test code successfully, the servo rotates cyclically from 0 degrees,

90 degrees, and 180 degrees.

Test Result 2:
Run the test code successfully, the servo rotates back and forth from 0 to

180 degrees, one degree every 10ms.

258

£

www.keyestudio.com

Project 33: Ultrasonic Sensor

Overview

In this kit, there is a keyes HC-SR04 ultrasonic sensor, which can detect obstacles
in front and the detailed distance between the sensor and the obstacle. Its
principle is the same as that of bat flying. It can emit the ultrasonic signals that
cannot be heard by humans. When these signals hit an obstacle and come back
immediately. The distance between the sensor and the obstacle can be calculated
by the time gap of emitting signals and receiving signals.

In the experiment, we use the sensor to detect the distance between the sensor
and the obstacle, and print the test result.

Ultrasonic detector module can provide 2cm-450cm non-contact sensing

259

Ml
o

www.keyestudio.com

distance, and its ranging accuracy is up to 3mm, very good to meet the normal
requirements. The module includes an ultrasonic transmitter and receiver as well

as the corresponding control circuit.

Working Principle

The most common ultrasonic ranging method is the echo detection. As
shown below; when the ultrasonic emitter emits the ultrasonic waves
towards certain direction, the counter will count. The ultrasonic waves
travel and reflect back once encountering the obstacle. Then the counter

will stop counting when the receiver receives the ultrasonic waves coming

back.

The ultrasonic wave is also sound wave, and its speed of sound V is related
to temperature. Generally, it travels 340m/s in the air. According to time t,
we can calculate the distance s from the emitting spot to the obstacle.
s=340t/2.

The HC-SR04 ultrasonic ranging module can provide a non-contact
distance sensing function of 2cm-400cm, and the ranging accuracy can
reach as high as 3mm; the module includes an ultrasonic transmitter,

receiver and control circuit. Basic working principle:

260

£

www.keyestudio.com

1. First pull down the TRIG, and then trigger it with at least 10us high level

signal;

2. After triggering, the module will automatically transmit eight 40KHZ

square waves, and automatically detect whether there is a signal to return.

3. If there is a signal returned back, through the ECHO to output a high

level, the duration time of high level is actually the time from emission to

reception of ultrasonic.

Test distance = high level duration * 340m/s * 0.5.

Components

Ernlsslon Emitting pin
» circuit "
MCU
Receiving
. circuit I >'
Receiving pin

Obstacle

261

£

www.keyestudio.com

keyestudio
SRO1
Raspb Pi Raspb Pi Pi 4P D t
éSp erry Pi asp ell’ry i Pico . | upon Micro USB Cable*1
Pico Board*1 Expansion Board*1 Ultrasonic Wire*1
Sensor*1

Connection Diagram

OIpPN3IsaLa)|

v ano
§ er
2

fritzing

Run the test code

Find and double-click ultrasonic.pyto to open it, then click > to run the

code.

262

pv4
o

www.keyestudio.com

i

Thonny - /home/pi/pico/Pico_code_MicroPython/33. Ultrasonic/ultrasonicpy @ 4:14

o

File Edit View Run Device Tools

*

Help

Files % | ultrasonic.py & ‘
MicroPython device =" s 1
b lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
? ADXL345.py Sl * lesson 33

= 4 * Ultrasonic
This computer = 5 * http://www.keyestudio.com
fhome / pi / pico / .
Pico_code MicroPython 7 from machine import Pin
b0 31. Encoder 8 import utime
1) 32. Servo 9 . _ _ _
< [J) 33. Ultrasonic 10 # Ultrasonic ranging, unit: cm

Ia{ ultrasonic.py 11 def getDistance(trigger, echo):
b1l 34. IR Recever ’ 12 # enerate 1018 sallare wAave o
bl) 35. DS18B20 N,
BlJ 36. XHT11 Shell 2
b)) 37. DS1307 Real Time Cl¢ | |~~~ -
bl 38. ADXL345 e
L vl 170 021-09-0 pberry P1 Pic 1t}

Py 39. TM1650 Four digital t
By 4. button T T e
b)) 40. HT16K33 dot matrix 4 S _

- [== =

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 30
* Ultrasonic
* http://www.keyestudio.com
from machine import Pin
import utime

ultrasonic ranging, unit: cm
def getDistance(trigger, echo):
produce 10us square waves
trigger.low() #preserve a short low level to secure a high level:
utime.sleep_us(2)
trigger.high()
utime.sleep_us(10)#pull up levels, wait for 10ms and set to low levels
trigger.low()

while echo.value() == 0: #build up a while loop pin 0 and record time

263

Ml
o

www.keyestudio.com

start = utime.ticks_us()
while echo.value() == 1: #build up a while loop pin 1 and record time
end = utime.ticks_us()
d = (end - start) * 0.0343 / 2 #travel time x sound speed(343.2 m/s, 0.0343cm for one ms), the distance is
divided by 2
returnd
set pins
trigger = Pin(14, Pin.OUT)
echo = Pin(13, Pin.IN)
main program
while True:
distance = getDistance(trigger, echo)

print("The distance is : {:.2f} cm".format(distance))
utime.sleep(0.1)

Code Explanation

The maximum distance of the sensor is 3-4m, the minimum distance is 2cm. The
distance value on the Shell is the distance between the sensor and the
obstacle

utime.ticks_us(): return the program to run

Test Result
Run the test code and observe the Shell monitor.
Display the distance between the sensor and the obstacle, the unitis cm, as

shown below;

264

pv4
o

www.keyestudio.com

Shell 3

L
The
The
The
The
The
The
The
The
The
The
The
The
The

ailscance
distance
distance
distance
distance
distance
distance
distance
distance
distance
distance
distance
distance
distance

15
is
is
is
is
is
is
is
is
is
is
is
is
is

oI SR SR S SRR - TR)

.49
o
-44

o
.98
.29
o %
.20
.98
-46
A
=18
=18

265

£

www.keyestudio.com

Project 34: IR Receiver Module

Overview

There is no doubt that infrared remote control is ubiquitous in daily life. It
is used to control various household appliances, such as TVs, stereos, video
recorders and satellite signal receivers. Infrared remote control is
composed of infrared transmitting and infrared receiving systems, that is,
an infrared remote control and infrared receiving module and a single-chip

microcomputer capable of decoding.

In this experiment, we need to know how to use the infrared receiving

sensor. The infrared receiving sensor mainly uses the VS1838B infrared

266

Ml
o

www.keyestudio.com

receiving sensor element. It integrates receiving, amplifying, and
demodulating. The internal IC has already completed the demodulation,
and the output is a digital signal. It can receive 38KHz modulated remote
control signal. In the experiment, we use the IR receiver to receive the
infrared signal emitted by the external infrared transmitting device, and

display the received signal in the shell.

Working Principle

7133
E2
L R3 m O 7
L IX 47K
“~RED-0603 S A Rl
o ‘ | 22R
S 1l Y
—_- TR
GND =T 100nf
GND

The main part of the IR remote control system is modulation, transmission
and reception. The modulated carrier frequency is generally between
30khz and 60khz, and most of them use a square wave of 38kHz and a duty
ratio of 1/3. A 4.7K pull-up resistor R3 is added to the signal end of the

infrared receiver.

267

Ml
o

www.keyestudio.com

Initial signals

sscwoves |

Signals after ” I” ||| ””l” ”l ||| |
modulation

Components

= = |

- =S5
. Raspberry Pi . .
Raspberry Pi)) Keyestudio DIY 3P Dupont Micro USB Remote
. Pico Expansion .)
Pico Board*1 IR Receiver*1 Wire*1 Cable*1 Control*1
Board*1

Connection Diagram

UARTO UART1

18A1828. J|

P21 GPIs
GP20 P14 -‘
=

Power_OUT

RESET,

fritzing

268

pv4
o

www.keyestudio.com

Run the test code:

Double-click IR receive.py, and click > to run the code

Thonny - /home/pi/pico/Pico_code_MicroPython/34. IR Receiver/IB receivepy @ 62:1

File Edit View Run Device Tools Help

K o

Files 2 ‘ IR receive.py % ‘
MicroPython device == . T
b lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
ADXL345.py I 3 * lesson 34
= 4 * IR Receiver

This computer = 5 ¥ http://www.keyestudio.com
/home / pi / pico / oy '’
Pico_code_MicroPython 7 import utime
bj: 31. Encoder ¢ from machine import Pin
Il 32. Servo 9
[}, 33. Ultrasonic 16 ird = Pin{lﬁ,Pin.IN)
< [})_34, IR Receive 11

17 act = £™1": "L11TLTTHHHHHHHHL HHLHE L DHLDHEHHHD "2

4 r
-1} 35, DSIBB20 \
blL 36. XHT11 Shell = ‘
B} 37. DS1307 Real Time Clt | |~~~ E
b[J 38. ADXL345
[-l4 39. TM1650 Four digital t
P} 4. button)
b} 40. HT16K33 dot matrix y} v I
-l | P> =

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 31
* IR Receiver
* http://www.keyestudio.com
import utime
from machine import Pin

ird = Pin(16,Pin.IN)

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2": "LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":
“LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",
“4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5": "LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":

“LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

269

£

www.keyestudio.com

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8": "LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":
"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

"0": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up": "LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":
"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":
"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok": "LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

" "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#": "LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):
wait=1
complete=0
seq0 =]
seql =]

while wait == 1:
if ird.value() == 0:
wait=0
while wait == 0 and complete == 0:
start = utime.ticks_us()
while ird.value() == 0:
ms1 = utime.ticks_us()
diff = utime.ticks_diff(ms1,start)
seq0.append(diff)
while ird.value() == 1 and complete ==
ms2 = utime.ticks_us()
diff = utime.ticks_diff(ms2,ms1)
if diff > 10000:
complete=1
seql.append(diff)
code =""
for val in seql:
if val < 2000:
if val < 700:
code +="L"
else:
code +="H"
print(code)
command =""
for k,v in act.items():
if code == v:
command = k
if command =="":
command = code

270

£

www.keyestudio.com

return command
while True:
command = read_ircode(ird)

print(command)
utime.sleep(0.5)

Test Result

Find the infrared remote control, pull out the insulating sheet, and press
the button at the receiving head of the infrared receiving sensor. After

receiving the signal, the LED on the infrared receiving sensor also starts to

flash, as shown in the figure below.

271

Ml
o

www.keyestudio.com

| shell3¢ |
x>

Left
Ok
LLLLLHAHHAAAALHALLLALALLEAALH

Right
Down

1
LLLHALLHHA

3

1 b

Project 35: DS18B20 Temperature Sensor

o
NN
2|9

15°
107

1
Q@29

- 10"

Description

The DS18B20 is a 1-wire programmable Temperature sensor from maxim
integrated. It is widely used to measure temperature in hard environments
like in chemical solutions, mines or soil etc. The constriction of the sensor is
rugged and also can be purchased with a waterproof option making the
mounting process easy. It can measure a wide range of temperature from

272

Ml
o

www.keyestudio.com

-55°C to +125° with a decent accuracy of £5°C. Each sensor has a unique
address and requires only one pin of the MCU to transfer data so it a very
good choice for measuring temperature at multiple points without

compromising much of your digital pins on the microcontroller.

Working Principle
+5

|

| +

R65
4.7K 3
lware ; A
1 0
GND
U9
—— DS18B20

The hardware interface of the 1-Wire bus is very simple, just connect the
data pin of the DS18B20 to an 10 port of the microcontroller. The timing of
the 1-Wire bus is relatively complex. Many students can’ t understand the
timing diagram independently here. We have encapsulated the complex
timing operations in the library, and you can use the library functions

directly.

Schematic Diagram of DS18B20
This can save up to 12-bit temperature vale. In the register, save in code

complement. As shown below;

273

Ml
o

www.keyestudio.com

3% | 2% |2h |00 |2V % | oY |a* | LSB
MSb (unit =°C) LSb

S|Is|s|s|s|2¢0]2°]|2*| MSB

A total of 2 bytes, LSB is the low byte, MSB is the high byte, where MSb is
the high byte of the byte, LSb is the low byte of the byte. As you can see,
the binary number, the meaning of the temperature represented by each
bit, is expressed. Among them, S represents the sign bit, and the lower 11
bits are all powers of 2, which are used to represent the final temperature.
The temperature measurement range of DS18B20 is from -55 degrees to
+125 degrees, and the expression form of temperature data, S represents
positive and negative temperature, and the resolution is 2 - 4, which is

0.0625.

Required Components

274

Ml
o

www.keyestudio.com

Raspberry Pi Raspberry Pi Pico

Pico Board*1 Expansion Board*1

Keyestudio DIY
18B20
Temperature

Sensor*1

3P Dupont
Wire*1

Micro USB Cable*1

Connection Diagram

UARTO UART]
3v3 33

GND GND

Import the 18B20 module, save the test code in

onewire.py

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 32
* DS18B20

* http://www.keyestudio.com

import machine, onewire, ds18x20, time

ds_pin = machine.Pin(3)

ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin))

@
=
c
o
©
T
@
o
c
]
il

fritzing

the pico and name

275

£

www.keyestudio.com

roms = ds_sensor.scan()
print('Found DS devices: ', roms)
while True:
ds_sensor.convert_temp()
time.sleep_ms(750)
for rom in roms:
#print(rom)
print(ds_sensor.read_temp(rom))

time.sleep(1)

Code Explanation

We need to import the DS18B20 module.

Raspberry Pi Pico
dht.py
ds18x20.py
htl1ek33_matrix.py
matrix_fonts.py

onewire.py

rotary.py
rotary_irq_rp2.py
urtc.py

oo sele oele

Set the pin to 3.
Shell means temperature value, ds sensor.read temp(rom) is used to read

temperature value.

Test Result

276

Ml
o

www.keyestudio.com

Run the test code, the shell displays the temperature of the current

environment, as shown below.

' Shell 3¢ |

e w

21.0

21.0

21.0

21.0

22.125

25.4373

27.125

28.3125

29.4375 I

277

£

www.keyestudio.com

Project 36: XHT11 Temperature and Humidity Sensor

Description

This DHT11 temperature and humidity sensor is a composite sensor which
contains a calibrated digital signal output of the temperature and humidity.
DHT11 temperature and humidity sensor uses the acquisition technology
of the digital module and temperature and humidity sensing technology,

ensuring high reliability and excellent long-term stability.

278

Ml
o

www.keyestudio.com

It includes a resistive element and a NTC temperature measuring device.

VCC

R1
060347K]I
S

HL
Q
g

el L2

VOO
GND

(TSR SF R

Cl ||
0603 100NF | |

GND

Working Principle

The communication and synchronization between the single-chip
microcomputer and XHT11 adopts the single bus data format. The
communication time is about 4ms. The data is divided into fractional part
and integer part.

Operation process: A complete data transmission is 40bit, high bit first out.
Data format: 8bit humidity integer data + 8bit humidity decimal data +
8bit temperature integer data + 8bit temperature decimal data + 8bit
checksum

8-bit checksum: 8-bit humidity integer data + 8-bit humidity decimal data
+ 8-bit temperature integer data + 8-bit temperature decimal data "Add

the last 8 bits of the result.

279

Ml
o

www.keyestudio.com

Required Components

Keyestudio
XHT11
Raspberry Pi Pico Raspberry Pi Pico Temperature and 3P Dupont .
. o) Micro USB Cable*1
Board*1 Expansion Board*1 Humidity Sensor Wire*1
(compatible

with DHT11)*1

Connection Diagram

UAnTo UARTI

ainjesaduwa)
Apruny

fritzing

Run the test code

Import the xht11 module, save it in pico and name dht.py

Test Code

280

Ml
o

www.keyestudio.com

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 33
* xht11

* http://www.keyestudio.com

import machine
import utime
import dht

pin = machine.Pin(22, machine.Pin.OUT, machine.Pin.PULL_DOWN)
sensor = dht.DHT11(pin)

while True:
print("temperature: {} ‘C humidity: {} %".format(sensor.temperature, sensor.humidity))
utime.sleep(1)

Code Explanation
1. In the experiment, we need to import the XHT11 library:

Raspberry Pi Pico
& dht.py
ds18x20.py
htlek33_matrix.py
matrix_fonts.py

onewire.py

rotary.py
rotary_irq_rp2.py
' urtc.py

e 0 I R R R O

1. We set the pin to GP22, read the temperature data sensor.temperature,

read the humidity data sensor.humidity.

Test Result

281

Ml
o

www.keyestudio.com

After running the test code, the shell displays the temperature and

humidity data, as shown below.

Shell 3¢ |

3y 5

o

temperature : 21.
temperature : 21.
temperature ! 21.
temperature ! 21.
temperature ! 21.
temperature ! 21.
temperature ! 21.

humidity : 47.
humidity: 47.
humidity : 47.
humidity : 47.
humidity : 47.
humidity : 47.
humidity: 47.

o o0 o oo
i)

[L
o o o o o o

o

L Lo G () o [
SSSSSS8

282

Ml
o

www.keyestudio.com

Project 37: DS1307 Clock Module

Overview

The DS1307 serial real-time clock (RTC) is a low-power, full binary-coded
decimal (BCD) clock/calendar plus 56 bytes of NV SRAM. Address and
data are transferred serially through an 12C, bidirectional bus.

The clock/calendar provides seconds, minutes, hours, day, date, month,

283

Ml
o

www.keyestudio.com

and year information. The end of the month date is automatically

adjusted for months with fewer than 31 days, including corrections for leap

year. The clock operates in either the 24-hour or 12-hour format with

AM/PM indicator. The DS1307 has a built-in power-sense circuit that

detects power failures and automatically switches to the backup supply.

Timekeeping operation continues while the part operates from the backup

supply.

Working Principle

32.768kHz "
Y1
3.3V

Detailed address and data:

: 0 <t
= X1 VCC = YA
4 x2 saw =
! I :r VBATT SCL
GND SDA
___gfij__* DS1307S08

284

Ml
o

www.keyestudio.com

Serial real-time clock records year, month, day, hour, minute, second and
week; AM and PM indicate morning and afternoon respectively; 56 bytes of
NVRAM store data; 2-wire serial port; programmable square wave output;
power failure detection and automatic switching circuit; battery current is

less than 500nA.

Pins description: X1, 32.768kHz crystal terminal ;
VBAT:X2: +3V input;

SDA: serial data;

SCL: serial clock;

SQW/OUT: square waves/output drivers

ADDRESS | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO [FUNCTION | RANGE
00h CH 10 Seconds Seconds Seconds 00-59
01h 0 10 Minutes Minutes Minutes 00-59

10
12 1-12
02h 0 o 10 Hours Hours +AM/PM
24 PM/ Hour 00-23
AM
03h 0 0 0 0 0| DAY Day 01-07
04h 0 0 10 Date Date Date 01-31
10
05h 0 0 0 A Month Month 01-12
06h 10 Year Year Year 0099
07h ouT | 0o | 0 [sawe 0 | o | RSt [RSO Control =
RAM
08h—3Fh et 00h—FFh
Components

285

£

www.keyestudio.com

ile N | o :
) o Keyestudio
Raspberry Pi Raspberry Pi Pico 4P Dupont .
]) DS1307 Clock] Micro USB Cab|e*1
Pico Board*1 Expansion Board*1 Wire*1
Modul e*1
Connection Diagram

. 3 B .omnnmnumm

fritzing

VUSB is 5V, then connect the power to VUSB.

286

pv4
o

www.keyestudio.com

Thonny - MicroPython device & /urtcpy @ 180:1

File Edit View Run Device Tools Help

#8154 OE EEEO O

Files % ‘ [urtc.py | %

MicroPython device T, 1 import ucollections i
= ADXL345.py ™. 2 dimport utime

2 dht.py 3

ds18x20.py 4 . . i

ht16k33_matrix.py 5 DateTimeTuple = ucollections.namedtuple("DateTimeTuple'
@ Icd128_32.py 6 "day", "weekday", "hour", "minute", "second", "mill
7 lcd128_32 fonts.py 7

2 matrix_fonts.py 8 .

2 mfrc522_config.py 9 def datetime_tuple(year, month, day, weekday=0, hour=0,
& mfrcs22_i2¢. py 10 second=0, millisecond=0):

& onewire.py 11 return DateTimeTuple(year, moth,_day, weekday, hot
“ rotary.py) 12 serand. millisernnd) }v
7 rotary_irg_rp2.py —_—

»_soft iic.p Shell |

(Cuncoy e ~

« |MicroPython v1.17 on 2021-09-02; Raspberry Pi Pico with RP20

This computer = 10

/ home / pi / pico / Type "help()" for more information.

Pico_code_MicroPython S5

Run the DS1307.py:

i File Edit View Run Device Tools Help

00 [QEEEECO
Fles | N [ostao7mx]
MicroPython device =° . B T
b 10 lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
2 ADXL345.py 38 * lesson 37
s 4 * DS1307 Real Time Clock
This computer = 5 * http://www.keyestudio.com
/home / pi / pico / 5 .
Pico_code_MicroPython 7 from machine import I2C, Pin
bl 36. XHT11 & from urtc import DS1307
< [} 37. DS1307 Real Time Cls 9 import utime
o
) 38. ADXL345 11 | i?c = I2C{1,5c'|. = Pin{lS),sda = Pln{l4),fr‘eq = 4001
b 1)) 39. TM1650 Four digital €]~ 17 rte = DS13A7(i2¢) o
1} 4. button
b[) 40. HT16K33 dot matrix Shell %
b)) 41. lcd128 32 i =
AL Rcs2e MicroPython v1.17 on 2021-09-02; Raspberry Pi Pico with
l>f1_| 43. Breath RP2040
>} 44. button control LED . = s -
s Type "help()" for more information.
-1} 45. Avoiding alarm o isss :

287

Ml
o

www.keyestudio.com

Test Code
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 34
* DS1307 Real Time Clock
* http:/ /www.keyestudio.com
from machine import I2C, Pin
from urtc import DS1307

import utime

i2c = I2C(1,scl = Pin(15),sda = Pin(14),freq = 400000)

rtc = DS1307(i2c)

year = int(input("Year : "))

month = int(input("month (Jan --> 1, Dec --> 12): "))

date = int(input("date : "))

day = int(input("day (1 --> monday, 2 --> Tuesday ... 0 --> Sunday):
")

hour = int(input("hour (24 Hour format): "))

minute = int(input("minute : "))

second = int(input("second : "))

288

Ml
o

www.keyestudio.com

now = (year,month,date,day,hour,minute,second,0)

rtc.datetime(now)

#(year,month,date,day,hour,minute,second,pl) = rtc.datetime()
while True:
DateTimeTuple = rtc.datetime()
print(DateTimeTuple[0], end = '-")
print(DateTimeTuple[1], end = '-'
print(DateTimeTuple[2], end =" ")
print(DateTimeTuple[4], end = ":")
print(DateTimeTuple[5], end = ":")
print(DateTimeTuple[6], end ="' week:')
print(DateTimeTuple[3])

utime.sleep(1)

Code Explanation

rtc.datetime(): Return a tuple of time. When the program is running, we set
the "please input" program, run the code, it will prompt us to input the
time and date, after the input is completed, the data will be printed every

second.

289

Ml
o

www.keyestudio.com

DateTimeTuple[0]: save time
DateTimeTuple[1]: save months
DateTimeTuple[2]: save days
DateTimeTuple[3]: save weeks
Rtc.GetDateTime().Month(): return months
DateTimeTuple[4]: save hours
DateTimeTuple[5]: save minutes

DateTimeTuple[6]: save seconds

Test Result
Upload the code and view the Shell monitor. We can see the displayed year,

month, day, hour, minute, second and week, as shown below;

290

Ml
o

www.keyestudio.com

Shell 2 |

date : 11 -
day (1 --> monday , 2 --> Tuesday ... 0 —-> Sunday): 4

hour (24 Hour format): 18

minute : 56

second : 50

2021-11-11 week:

2021-11-11 week:

2021-11-11 18:56:52 week:
2021-11-11 18:56:53 week:
2021-11-11 18:56:54 week:

[S Y

2021-11-11 week:
2021-11-11 week:
2021-11-11 week:
2021-11-11 week:

291

pv4
o

www.keyestudio.com

Project 38: ADXL345 Acceleration Sensor

GRAVITATION

FORCE

1g
¥=0g
Y=
£=-1q

GROUND

In this kit, there is a DIY electronic building block ADXL345 acceleration sensor

module, which uses the ADXL345BCCZ chip. The chip is a small, thin, low-power

3-axis accelerometer with a high resolution (13 bits) and a measurement range of

+ 169 that can measure both dynamic acceleration due to motion or impact as

well as stationary acceleration such as gravitational acceleration, making the

device usable as a tilt sensor.

In the study, we test the acceleration value of sensor X, Y and Z axis.

more, we show the test data in the shell.

Working Principle

What's

292

Ml
o

www.keyestudio.com

,..
2

IN IC2 VCC_ 33V
1 3

oy
o
4.7F
VCC_33V
Ic4
é‘ VDD_IO
Rl o ¥ Vs
L cs o
K SCL
SDA
il - GND ——
| — GND INTI —sa e
R spols—] GND INT2 =
DAA’—;‘-_ ADDR
47K i
=3 ADXL345B

The ADXL345 is a complete 3-axis acceleration measurement system with a
selection of measurement ranges of £2 g, =4 g, =8 gor £16 g. Its digital
output data is in 16-bit binary complement format and can be accessed through

an SPI (3-wire or 4-wire) or I12C digital interface.
The sensor can measure static acceleration due to gravity in tilt detection
applications, as well as dynamic acceleration due to motion or impact. Its high

resolution (3.9mg/LSB) enables measurement of tilt Angle changes of less than

1.0°.

Required Components

293

Ml
o

www.keyestudio.com

scL
SDA
v
G

v
DXL345 . .

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio
ADXL345
Acceleration
Modul e*1

4P Dupont
Wire*1

Micro USB Cable*1

Connection Diagram

SPEIXav
I RN

vas
108

Run the sample code:

Power_OUT
RESET,

fritzing

Find adxl345 test.py, and then double-click to open the code. Before

running the code, we need to import the clock module ADXL345.py.

We can save the following code directly on pico and name it ADXL345.py:

294

Ml
o

www.keyestudio.com

from machine import Pin
from machine import I12C
import time

import ustruct

DATA_FORMAT = 0x31
BW_RATE = Ox2c
POWER_CTL = 0x2d
INT_ENABLE = Ox2E
OFSX = Ox1e

OFSY =0x1f

OFSZ =0x20

class adxI345:
def __init__ (self, bus, scl, sda):
self.bus = bus
self.scl = scl
self.sda = sda
time.sleep(1)

self.i2c = I2C(self.bus, scl = self.scl, sda = self.sda, freq =

10000)

slv = self.i2c.scan()

295

Ml
o

www.keyestudio.com

print(slv)
for s in slv:
buf = self.i2c.readfrom_mem(s, 0, 1)
print(buf)
if(buf[0] == Oxe5):
self.slvAddr = s
print(‘adx1345 found')
print(self.slvAddr)
print(‘adx1345 found')
break
#self.writeByte(POWER_CTL,0x00) #sleep
#time.sleep(0.001)
#Low-level interrupt output, 13-bit full
right-justified output data, 16g range
self.writeByte(DATA_FORMAT,0x2B)
#Data output speed is 100Hz
self.writeByte(BW_RATE,0x0A)
#do not use interrupts

self.writeByte(INT_ENABLE,0x00)

self.writeByte(OFSX,0x00)

self.writeByte(OFSY,0x00)

resolution,

296

Ml
o

www.keyestudio.com

self.writeByte(OFSZ,0x00)
#
self.writeByte(POWER_CTL,0x28)

time.sleep(1)

def readXYZ(self):
fmt = '<h’' #little-endian
bufl = self.readByte(0x32)
buf2 = self.readByte(0x33)
buf = bytearray([buf1[0], buf2[0]])
X, = ustruct.unpack(fmt, buf)
X = x*3.9

#print('x:',x)

bufl = self.readByte(0x34)

buf2 = self.readByte(0x35)

buf = bytearray([buf1[0], buf2[0]])
y, = ustruct.unpack(fmt, buf)

y =y*3.9

#print('y:',y)

bufl = self.readByte(0x36)

297

Ml
o

www.keyestudio.com

buf2 = self.readByte(0x37)

buf = bytearray([buf1[0], buf2[0]])

z, = ustruct.unpack(fmt, buf)

z =2z*3.9

#print('z:',z)
#print('************************')
#time.sleep(0.5)

return (x,y,z)

def writeByte(self, addr, data):
d = bytearray([data])
self.i2c.writeto_mem(self.slvAddr, addr, d)
def readByte(self, addr):

return self.i2c.readfrom_mem(self.slvAddr, addr, 1)

298

pv4
o

www.keyestudio.com

Thonny - MicroPython device @ /ADXL345.py @ 7

File Edit View Run Device Tools Help

Files [ADXL345.py | ‘
MicroPython device 1\1 from machine import Pin
from machine import I2C

—

2

2 dht.py \ 3 dimport time

ds18x20.py 4 import ustruct

 ht16k33_matrix.py 5

2 lcd128 32.py o DATA_FORMAT = 0x31

2 lcd128_32_fonts.py 7 BW RATE = 0x2c

. matrix_fonts.py & POWER_CTL = Ox2d

2 mfrc522_config.py 9 INT _ENABLE = Ox2E

2 mfrc522_i2c.py 10 OFSX = bBxle

-] onewire_py 11 OFSY =@X1f

@ rotary.py 12 OFSZ =0x20

7 rotary_irg_rp2.py

“ soft_iic.py Shell =

. urtc.py . -

2| [MicroPython v1.17 on 2021-09-82; Raspberry Pi Pico with RP20

This computer = 40
/ home / pi / pico / Type "help()" for more information.
Pico_code_MicroPython >5>

RIEFA BT adxI345_test.py:

Thonny - /home/pi/pica/Pico_code MicroPython/38. ADXL345/adxI345_testpy @ 18:20
File Edit View Run Device Tools Help
Files % \ adxI345_test py
MicroPython device =< i T
b lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
2 ADXL345.py " 3 * lesson 38
= 4 * ADXL345
This computer = 5 * http://www.keyestudio.com
/home / pi/ pico / BN "'
Pico_code_MicroPython 7 from machine import Pin
bl) 36. XHT11 8 import time
b4 37. DS1307 Real Time clt 9 from ADXL345 import adx1345
<) 38. ADXL345 10
|7 _adxi345 testpy | 11 scl = Pin(21)
b)) 39. TM1650 Four digital t] |, 17 sda = Pin(7A) .
I 4. button —
b[J 40. HT16K33 dot matrix Shell %
) 41, lcd128 32 T =
o i MicroPython v1.17 on 2021-09-02; Raspberry Pi Pico with
b1l 43. Breath RP2040
4. HREon conrol LED Type '.'I‘..&l p()" for more information
-4 45. Avoiding alarm i >;>' gl) o S - g

299

£

www.keyestudio.com

Code Explanation
Set IIC pins, select IICO, sda-->20, scl-->21, then assign the value to x, y and z.

The shell shows the value of x,y and z, unit is mg.

Test Result
Run the test code and watch the shell.
The shell displays the corresponding value of the three-axis acceleration in

mg, as shown in the following figure.

Illllrll||_||-|

-y

&
=
Lol

| Shell x |

T0.2 w: 35.1'2: 1096.% nint:mg
50.7 w: 35.1 z: 1045.2 uint:mg
T4.1 w: -982.8 z: 1072.5 nint:mg
54.60001 w: 35.1 z: 1076.4 uint:mg
SOy 19,5 22 1080 3-nintimy
66.30001 vw: 23.4 z: 1072.5 uint:mg
T0.2 w: 54.60001 z: 1068.6 uint:mg

T

L

E
TR T T R T

300

Ml
o

www.keyestudio.com

Test Code:

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 38
* ADXL345
* http:/ /www.keyestudio.com
from machine import Pin
import time

from ADXL345 import adxi345

scl = Pin(21)
sda = Pin(20)
bus =0

snsr = adxI345(bus, scl, sda)

while True:
X,Y,z = snsr.readXYZ()
print('x:',x,'y:",y,'z:",z,'uint:mgqg")

time.sleep(0.1)

301

Ml
o

www.keyestudio.com

Project 39: TM1650 4-Digit Tube Display

Overview

This module is mainly composed of a 0.36 inch red common anode 4-digit
digital tube, and its driver chip is TM1650. When using it, we only need two
signal lines to make the single-chip microcomputer control a 4-bitdigit
tube, which greatly saves the IO port resources of the control board.

TM1650 is a special circuit for LED (light emitting diode display) drive
control. It integrates MCU input and output control digital interface, data
latch, LED drivers, keyboard scanning, brightness adjustment and other

circuits.

TM1650 has stable performance, reliable quality and strong

302

Ml
o

www.keyestudio.com

anti-interference ability.

It can be applied to the application of long-term continuous working for 24

hours.

TM1650 uses 2-wire serial transmission protocol for communication (note

that this data transmission protocol is not a standard 12C protocol). The

chip can drive the digital tube and save MCU pin resources through two

pins and MCU communication.

Working Principle

TM1650 adopts IIC treaty and SDA and SCL wire

Data command setting is 0x48. This means that lighting up the tube

display not perform its button scanning function.

. 7
{Dh}; " CLK GKD
1] DAT FKla
GND -|| — GND EXIS
DIG. 5 | pic2 Dkl
DIG3 6 2 Zen
BTG DI63 CKn
— DIGd veC
] AKI BED
TMI650

DiGl DPREP

CLK 7
IO |
‘.T‘r}—"——' ?
4
L
16 SEGS ONP
™5 SEGT
14 SEGG
7T SECR
12 SEGH
11_SEG3
10 e
s SEor T —1Vee
1
Ulfll:l:'-[Dﬂﬂ.f
GRD

4-digit

Dioss o,

LED]
SEGH _ ¢ [pie] —12.DIG]
SEG42 _ 2 1 SEG1
SEGS _ ndo g —10SEG6
SEG34 _ . —prey —2DIG2
SEGTS G 2 By 8 DIG3
7 SEG2

commeon cathode

303

Ml
o

www.keyestudio.com

Data command setting: 0x48 means that we light up the digital tube,

instead of enable the function of key scanning

B7 | B& | B5 | B4 | B3 | B2 | B1 | BO | Function Description
X0 (V|0 b A Eight-level brightness
® |G 0%y) ® | ¥ One-level brightness
X0 |11 0 L Two-level brightness
X0 4|1 x| % Three-level brightness
— — Brightness setting

x(1 |0 |0 X | X Four-level brightness
* (1 |0 . 1 x| X Five-level brightness
X1 |1 _ 4] | X | % Six-level brightness
X1 {1 X | % Seven-level brightness
> . X | X 7/8 segment 8-segment display way
w0 w | ow display control bit 7-segment display way
b oo | |0 . Off display

- T CON/OFF display bit
4 ® [x| On display

Command display setting:

bit[6:4]: set the brightness of tube display, and 000 is brightest

bit[3]: set to show decimal points

bit[0]: start the display of the tube display

Components

304

pv4
o

www.keyestudio.com

Keyestudio
Raspberry Pi Raspberry Pi Pico | TM16504-Digit 4P Dupont Micro USB
Pico Board*1 Expansion Board*1 Segment Wire*1 Cable*1
Display*1

Run the test code:

Double-click TM1650.p to open the code and click > to run the code.

Thonny - /home/pi/pico/Pico_code_MicroPytho . TM1650 Four digital tube/TM1650.py @ 182:1 ~» ~ x

File Edit View Run Device Tools Help

o K o

Files TM1650.py
MicroPython device \=? e i
b lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
2 ADXL345.py 3 * lesson 39

T 4 * TM1650 Four digital tube
This computer = 5 * http://www.keyestudio.com
/ home / pi / pico / B '
Pico_code_MicroPython 7 from machine import Pin
b)) 36. XHT11 8 import time
bl 37. DS1307 Real Time Cle 9 _
b1 38. ADXL345 10 # definitions fori
< 11 ADDR _DIS = 0x48 d

17 ADDR KFY = (%49 k Al I e

1) 4. button - g
blJ 40. HT16K33 dot matrix | Shell
) 41. lcd128 32 T =
b1} 42. RFID RC522
1) 43. Breath
1) 44. button control LED
1) 45. Avoiding alarm ' S I

- | === 2=

Connection Diagram

305

Ml
o

www.keyestudio.com

4
v)
&
2,
8
=
o
D

B 5V_GND

e L R -
A
. . -6

fritzing

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 35
* TM1650 Four digital tube
* http:/ /www.keyestudio.com
from machine import Pin

import time

definitions for TM1650
ADDR_DIS = 0x48 #mode command

ADDR_KEY = 0x49 #read key value command

definitions for brightness

306

Ml
o

www.keyestudio.com

BRIGHT_DARKEST =0
BRIGHT_TYPICAL = 2

BRIGHTEST =7

on =1

off =0

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6¢c,0x6e]

DIG = [0x6e,0x6c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15
dioPin = 14
clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):

global clk,dio

307

Ml
o

www.keyestudio.com

for i in range(8):

if(wr_data & 0x80 == 0x80):

dio.value(1)
else:

dio.value(0)
clk.value(0)
time.sleep(0.0001)
clk.value(1)
time.sleep(0.0001)
clk.value(0)
wr_data <<=1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
time.sleep(0.0001)
dio.value(0)

return

def ack():

308

Ml
o

www.keyestudio.com

global clk,dio
dy=0
clk.value(0)
time.sleep(0.0001)
dio = Pin(dioPin, machine.Pin.IN)
while(dio.value() == 1):
time.sleep(0.0001)
dy +=1
if(dy>5000):
break
clk.value(1)
time.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, machine.Pin.OUT)

return

def stop():
global clk,dio
dio.value(0)
clk.value(1)
time.sleep(0.0001)

dio.value(1)

309

Ml
o

www.keyestudio.com

return

def displayBit(bit, num):

global ADDR_DIS

if(num > 9 and bit > 4):
return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

if(DOT[bit-1] == 1):
writeByte(NUM[num] | 0x80)

else:
writeByte(NUM[num])

ack()

stop()

return

310

Ml
o

www.keyestudio.com

def clearBit(bit):

if(bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()
stop()

return

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness

DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

311

Ml
o

www.keyestudio.com

return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+0OnOff

return

def displayDot(bit, OnOff):
if(bit > 4):
return
if(OnOff == 1):
DOT[bit-1] = 1;
else:
DOT[bit-1] = 0;

return

def InitDigitalTube():

312

Ml
o

www.keyestudio.com

setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):
clearBit()

return

def ShowNum(num): #0~9999

displayBit(1,num%10)

if(num < 10):
clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)

clearBit(4)

if(num > 999 and num < 10000):

313

Ml
o

www.keyestudio.com

displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

InitDigitalTube()

while True:
#displayDot(1,0n) = on or off,
DigitalTube.Display(bit,number); bit=1---4 number=0---9
foriin range(0,9999):
ShowNum(i)

time.sleep(0.01)

Code Explanation

clkPin = 15, dioPin = 14 is pin number, CLK is connected to GP15, DIO is
connected to GOP14. We can set any pin at random.

displayBit(bit, num): show numbers at bit(1~4) bit num(0~9)

clearBit(bit): clear up bit(1~4)

setBrightness(): brightness setting

displayOnOFF() 0 means OFF, 1 means ON

displayDot(bit, OnOff)shows dots, 0 means OFF, 1 means ON

314

£

www.keyestudio.com

ShowNum(num): show integer num, in the range of 0~9999

Test Result
Run the test code, wire up and power on. The 4-digit tube display will show
integer from 0 to 99999, an increase of 1 for each 10ms, then start from 0

once reaching 99999

315

£

www.keyestudio.com

Project 40: HT16K33 8X8 Dot Matrix Module

Overview

What is the dot matrix display?

The 8X8 dot matrix is composed of 64 light-emitting diodes, and each
light-emitting diode is placed at the intersection of the row line and the
column line. When the corresponding row is set to 1 level, and a certain

column is set to 0 level, the corresponding diode will light up.

316

Ml
o

www.keyestudio.com

Working Principle

As the schematic diagram shown, to light up the LED at the first row and column,
we only need to set C1 to high level and R1 to low level. To turn on LEDs at the
first row, we set R1 to low level and C1-C8 to high level.

16 IO ports are needed, which will highly waste the MCU resources.

Therefore, we designed this module, using the HT16K33 chip to drive an 8*8 dot
matrix, which greatly saves the resources of the single-chip microcomputer.
There are three DIP switches on the module, all of which are set to 12C
communication address. The setting method is shown below.

A0, Aland A2 are grounded, that is, the address is 0x70

AO A1 A2 AO A1 A2 AO A1 A2
Mm | @ [3 | @O | @ | 3 | 1O | @ | 3
0 0 0 1 0 0 0 1 0
(OFF| (OFF| (OFF| (ON| (OFF| (OFF| (OFF| (ON| (OFF
))))))
OX70 OX71 OX72
AO Al A2 AO Al A2 AO Al A2
M [@ [& (M @ | 3 | 1) | @ | @)

317

£

www.keyestudio.com

1 1 0 0 0 1 1 0 1
(ON| (ON| (OFF| (OFF| (OFF| (ON| (ON| (OFF| (ON
)))))))))
OX73 OX74 OX75
AO A1 A2 AO A1 A2
(1) (2) (3) (1) (2) (3)
0 1 1 1 1 1
(OFF| (ON| (ON| (ON| (ON/| (ON
))))))
OX76 OX77
Components

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio
HT16K33_
8X8 Dot Matrix*1

4P Dupont
Wire*1

Micro USB Cable*1

318

Ml
o

www.keyestudio.com

Connection Diagram

UARTO UART]

Run the test code:
Save the following code to pico, import modules, name it as ht16k33 matrix.py:

ht16k33_matrix.py:

import machine
showbytes = @
class htl6k33_matrix:

_HT16K33_BLINK_CMD = const(0x80)
_HT16K33_BLINK_DISPLAYON = const(0x01)
_HT16K33_CMD_BRIGHTNESS = const(@XEQ)
_HT16K33_OSCILATOR_ON = const(@x21)

def init (self,dt,clk,bus,addr):
self.addr = addr
self.i2c = machine.I2C(bus,sda=machine.Pin(dt),scl=machine.Pin(clk))
self.setup()

def setup(self):
self.reg write(HT16K33 OSCILATOR ON,0x00) # 00100001 turn on multiplexing
self.reg_write(_HT16K33_BLINK_CMD | _HT16K33_BLINK_DISPLAYON,0@x00)

319

Ml
o

www.keyestudio.com

self.set_brightness(15)

def show_char(self, c):
bytes = bytearray() # &nA8f 3% (byte)
global showbytes
for item in c:
temp = item
for i in range(8):
if temp & 0x01:
showbytes |= 0x01
showbytes <<= 1
temp >>= 1
bytes.append(((showbytes & OXFE)<<0)|((showbytes & 0x01)>>7)) # fHAFKISL
#, A o1
#tbytes.append((item & 0x01)<<7)
bytes.append(0x00)
self.i2c.writeto_mem(self.addr, 0x00, bytes)

def set brightness(self,brightness):
self.reg_write(HT16K33_CMD_BRIGHTNESS | brightness,@xe0)

def reg write(self, reg, data):
msg = bytearray()
msg.append(data)
self.i2c.writeto_mem(self.addr, reg, msg)

Then save the following code to pico and name it matrix_fonts.py

textFontl={

' ':[Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, 0x00],
"1':[ex18, Ox3c, Ox3c, Ox18, Ox18, 0x00, 0x18, 0x00],
'"'.[Ox66, OX66, Ox24, Ox00, Ox00, Ox00, 0x00, 0x00],
"#':[0Ox6Cc, OXx6C, OXfe, OX6C, Oxfe, Ox6C, Ox6C, Ox00],
%' :[0x00, Oxc6, Oxcc, Ox18, Ox30, Ox66, Oxc6, Ox00],

&':[0x38, Ox6c, Ox38, OX76, Oxdc, Oxcc, Ox76, 0x00],

"\'':[0x18, Ox18, Ox30, Ox00, Ox00, Ox00, Ox00, 0x00],

(':[0x0c, 0x18, Ox30, 0Ox30, 0x30, 0x18, OxOC, 0OX00],

)':[0x30, 0x18, Ox0c, OxOc, Ox0c, Ox18, 0x30, 0x00],

*':[0x00, 0x66, Ox3c, Oxff, Ox3c, Ox66, Ox00, 0Ox00],

"+':[0x00, 0x18, 0x18, Ox7e, Ox18, Ox18, 0x00, 0x00],

'-':[Ox00, Ox00, Ox00, Ox7e, Ox00, Ox00, 0x00, 0x00],

320

Ml
o

www.keyestudio.com

:[0x00, 0x00, Ox00, Ox00, 0x00, Ox18, Ox18, 0x00],
:[ox06, Ox0c, Ox18, Ox30, Ox60, OxcO, Ox80, 0x00],
:[0x7c, Oxc6, Oxce, Oxd6, Oxe6, Oxc6, Ox7c, 0Ox00],
:[0x18, Ox38, Ox18, 0x18, 0x18, Ox18, Ox7e, 0x00],
:[0x7c, Oxc6, Ox06, Oxlc, Ox30, Ox66, Oxfe, 0x00],
:[0x7c, Oxc6, Ox06, Ox3c, Ox06, Oxc6, Ox7c, 0Ox00],
:[6x1c, ©x3c, Ox6c, Oxcc, Oxfe, Ox0c, Oxle, 0Ox00],
:[oxfe, Oxc@, OxcO, Oxfc, Ox06, Oxc6, Ox7c, 0Ox00],
:[0x38, ©Ox60, Oxcd, Oxfc, Oxc6, Oxc6, Ox7c, 0Ox00],
:[oxfe, Oxc6, Ox0Oc, Ox18, Ox30, Ox30, Ox30, 0x00],
:[0x7c, Oxc6, Oxc6, OXx7c, Oxc6, Oxc6, Ox7c, 0Ox00],
:[0x7c, Oxc6, Oxc6, Ox7e, Ox06, Ox0c, Ox78, 0Ox00],
':':[0x00, Ox18, Ox18, Ox00, Ox00, Ox18, Ox18, 0x00],
";':[0x7c, Oxc6, Ox0Oc, Ox18, Ox18, 0x00, Ox18, 0x00],
<':[0x06, @x0Cc, Ox18, Ox30, Ox18, OxOCc, OXx06, OXx00],
'=':[0x00, Ox00, Ox7e, Ox00, Ox00, Ox7e, Ox00, 0x00],
>':[0x60, Ox30, Ox18, Ox0c, Ox18, Ox30, Ox60, 0x00],
"?':[@x7c, Oxc6, Ox0Oc, Ox18, Ox18, 0x00, 0x18, 0x00],
'@':[0x7c, Oxc6, Oxde, Oxde, Oxde, OxcO, 0x78, 0x00],
':[0x38, Ox6c, Oxc6, Oxfe, Oxc6, Oxc6, Oxc6H, Ox00],
':[@xfc, Ox66, OXx66, OX7Cc, OX66, OXx66, Oxfc, Ox00],
:[0x3c, Ox66, OxcO, OxcO, OxcO, Ox66, Ox3c, Ox00],
:[oxf8, Ox6c, Ox66, Ox66, Ox66, Ox6C, OXf8, Ox00],
:[oxfe, Ox62, Ox68, Ox78, Ox68, Ox62, Oxfe, 0x00],
:[oxfe, Ox62, Ox68, Ox78, Ox68, Ox60, Oxf0, 0x00],
:[0x3c, Ox66, OxcO, OxcO, Oxce, Ox66, Ox3a, 0x00],
:[Oxc6, Oxc6, Oxc6, Oxfe, Oxc6, Oxc6, Oxc6, Ox00],
:[0x3c, ©x18, ©x18, 0x18, 0x18, 0x18, Ox3c, 0x00],
:[0xle, ©x0OC, OXxOC, OXxOC, Oxcc, Oxcc, Ox78, 0Ox00],
:[Oxe6, Ox66, Ox6C, OX78, Ox6C, Ox66, Oxe6, Ox00],
:[0xf0, Ox60, Ox60, Ox60, Ox62, Ox66, Oxfe, 0x00],
:[Oxc6, Oxee, Oxfe, Oxfe, Oxd6, Oxc6, Oxc6, Ox00],
:[Oxc6, Oxe6, Oxf6, Oxde, Oxce, Oxc6, Oxc6, Ox00],
:[Ox7c, Oxc6, Oxc6, Oxc6H, Oxc6, Oxc6, Ox7c, Ox00],
:[exfc, Ox66, Ox66, OX7cC, Ox60, Ox60, OxfO, 0x00],
:[Ox7c, Oxc6, Oxc6, Oxc6, Oxc6, Oxce, Ox7c, Ox0e],
:[exfc, Ox66, Ox66, OXx7cC, Ox6C, Ox66, Oxe6, Ox00],
:[0x7c, Oxc6, Ox60, Ox38, Ox0c, Oxc6, Ox7c, 0Ox00],
:[0x7e, ©x7e, Ox5a, 0x18, Ox18, Ox18, Ox3c, 0x00],
:[Oxc6, Oxc6, Oxc6, OxcbH, Oxc6, Oxc6, Ox7c, Ox00],
:[Oxc6, Oxc6, Oxc6, OxcH, Oxc6, Ox6¢C, Ox38, Ox00],
:[Oxc6, Oxc6, Oxc6, Oxd6, Oxd6, Oxfe, Ox6¢c, Ox00],
:[Oxc6, Oxc6, Ox6C, Ox38, Ox6C, OxCc6, Oxc6, Ox00],
:[Ox66, Ox66, OXx66, Ox3c, Ox18, Ox18, Ox3c, 0x00],

W 00 N O U1 A W N R O

< X=<CcCH4UVWHOUVOZZTrAUHIOGTMOIAN®D>

321

Ml
o

www.keyestudio.com

'Z':[oxfe, Oxc6, Ox8c, Ox18, Ox32, Ox66, Oxfe, 0x00],
"[':[0x3c, Ox30, 0x30, 0x30, 0x30, 0x30, 0x3c, 0x00],
"\\':[0Oxc0, ox60, 0x30, 0x18, OxOc, Ox06, 0x02, 0x00],
"]1':[0x3c, @xlc, Ox0Oc, OXxOCc, OxOC, OxOCc, Ox3c, Ox00],
"A':[0x10, Ox38, Ox6C, OXC6, Ox00, Ox00, Ox00, 0x00],
' ':[0x00, Ox00, Ox00, Ox00, Ox00, Ox00, 0x00, Oxff],
'*':[0x30, Ox18, OXOC, Ox00, Ox00, Ox00, Ox00, 0x00],
'a':[0x00, 0x00, Ox78, OXOC, OX7C, OXCcC, Ox76, Ox00],
'b':[0Oxe0, Ox60, Ox7Cc, OX66, OX66, OXx66, Oxdc, Ox00],
"c':[0x00, 0x00, Ox7c, OXC6, OXxCcO, Oxc6, Ox7c, Ox00],
'd':[@x1c, @x@c, Ox7c, Oxcc, Oxcc, Oxcc, Ox76, Ox00],
'e':[0x00, Ox00, OX7C, OXC6, Oxfe, OxcO, Ox7c, Ox00],
f':[0x3c, Ox66, Ox60, Oxf8, OXx60, Ox60, OxfO, 0x00],
g':[0x00, 0x0e0, Ox76, Oxcc, Oxcc, Ox7c, OxOc, Oxf8],
h':[0xe®, 0x60, Ox6cCc, Ox76, Ox66, OX66, Oxe6, Ox00],
i':[ox18, 0x00, 0x38, 0x18, 0x18, Ox18, Ox3c, 0x00],
j':[0x06, Ox00, Ox06, Ox06, Ox06, OX66, OX66, Ox3C],
k':[0xe0®, 0x60, Ox66, Ox6C, Ox78, OX6C, OXe6, Ox00],
1':[ox38, ox18, 0x18, 0x18, 0x18, Ox18, Ox3c, 0x00],
m':[0x00, 0x00, Oxec, Oxfe, Oxd6, Oxd6, Oxd6, Ox00],
n':[0x00, 0x00, Oxdc, Ox66, Ox66, OX66, OX66, OX00],
0':[0x00, 0x00, Ox7c, OXCc6, OXCc6, Oxc6, Ox7c, Ox00],
p':[0x00, 0x00, Oxdc, Ox66, Ox66, OXx7Cc, OX60, OxfO],
'q':[0x00, Oxee, Ox76, Oxcc, Oxcc, Ox7c, Ox0c, Oxle],
r':[0xe0, 0x00, Oxdc, Ox76, Ox60, Ox60, OxfO, 0x00],
s':[0x00, 0x00, 0x7e, OxcO, Ox7c, Ox06, Oxfc, Ox00],
t':[0x30, 0x30, oxfc, Ox30, 0x30, 0x36, Oxlc, 0x00],
u':[0xe0, 0x00, Oxcc, Oxcc, Oxcc, Oxcc, Ox76, Ox00],
v':[0x00, 0x00, Oxc6, Oxc6, OXxc6, Ox6C, Ox38, Ox00],
w':[0x00, 0x00, Oxc6, Oxd6, Oxd6, Oxfe, Ox6¢C, 0Ox00],
x':[0x00, 0x00, Oxc6, Ox6C, Ox38, OXx6C, OXCH, Ox00],
y':[0x00, 0x00, Oxc6, Oxc6, Oxc6, Ox7e, Ox06, Oxfc],
z':[0x00, 0x00, Ox7e, Ox4c, Ox18, Ox32, Ox7e, Ox00],
{':[ox0e, Ox18, Ox18, Ox70, 0x18, Ox18, Ox0e, 0x00],
| ':[0x18, ©x18, 0x18, Ox18, Ox18, Ox18, Ox18, 0x00],
}':[0x70, Ox18, Ox18, Ox0e, Ox18, Ox18, Ox70, 0x00],
'~':[0x76, Oxdc, Ox00, OxP0O, Ox00, Ox00, 0x00, 0x00],

eyes={
"straight’':[0x3c,0x7e,0xff,0xe7,0xe7,0xff,0x7e,0x3c],
"straightX2':[0x3c,0x7e,0xe7,0xc3,0xc3,0xe7,0x7e,0x3c],
"straightX3':[@x3c,0x66,0xc3,0x81,0x81,0xc3,0x66,0x3c],
"straightX4':[0x3c,0x42,0x81,0x81,0x81,0x81,0x42,0x3c],

322

Ml
o

www.keyestudio.com

"straightX2Leftl':[0@x3c,0x7e,0xcf,0x87,0x87,0xct,0x7e,0x3c],
"straightX2Left2':[0@x3c,0x7e,0x9f,0x0f,0x0f,0x9f,0x7e,0x3C],
"straightX2Left3':[0@x3c,0x7e,0x3f,0x1f,0x1f,0x3f,0x7e,0x3c],
"straightX2Left4':[0x3c,0x7e,0x7f,0x3f,0x3f,0x7f,0x7e,0x3c],
"straightX2Left5':[@x3c,0x7e,0xff,0x7f,0x7f,0xff,0x7e,0x3c],
'straightR2':[0@x3c,0x7e,0xe7,0xdb,0xdb,0xe7,0x7e,0x3c],
"noEyeball’:[@x3c,0x7e,0xff,Oxff,Oxff,0xff,0x7e,0x3c],
"straightBlinkl':[0x00,0x7e,0xff,0xe7,0xe7,0xff,0x7e,0x00],
"straightBlink2':[0x00,0x00,0xff,0xe7,0xe7,0xff,0x00,0x00],
"straightBlink3':[0x00,0x00,0x00,0xe7,0xe7,0x00,0x00,0x00],
"straightBlinkLine':[0x00,0x00,0x00,0xff,0xff,0x00,0x00,0x00],
'all_off':[0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00],
'upl':[0x3c,0x7e,0xe7,0xe7,0xff,Oxff,0x7e,0x3c],
'up2':[0x3c,0x66,0xe7,0xff,Oxff,Oxff,0x7e,0x3c],
"up3':[0x24,0x66,0xff,0xff,0xff,0xff,0x7e,0x3c],

'upd' :[0x24,0x7e,0xff,Oxff,Oxff,0xff,0x7e,0x3c],
"upLeft':[0x3c,0xde,0xcf,Oxff,Oxff,Oxff,0x7e,0x3c],
"upLeftl':[0Ox3c,0Ox7e,0x9f,0x9f, Oxff,0xff,0x7e,0x3C],
"upLeft2':[0x3c,0xle,Ox9f,Oxff,Oxff,0xff,0x7e,0x3C],
"upRightl':[@x3c,0x7e,0xf9,0xf9,0xff,0xff,0x7e,0x3C],
"upRight':[0x3c,0x72,0xf3,0xff,0xff,0xff,0x7e,0x3c],
"downl':[@x3c,0x7e,Oxff,0xff,0xe7,0xe7,0x7e,0x3c],
"down2':[@x3c,0x7e,Oxff,Oxff,Oxff,0xe7,0x66,0x3c],
"down3':[0x3c,0x7e,Oxff,Oxff,Oxff,0xe7,0x66,0x3c],

"down4' :[@x3c,0x7e, Oxff,Oxff,Oxff,Oxff,0x7e,0x24],
"downRight':[@x3c,0x7e,0xff,0xff,0xf9,0xf9,0x7e,0x3C],
"downRightl':[@x3c,0x7e,0xff,Oxff,Oxff,0xf3,0x72,0x3c],
"downRight2':[@x3c,0x7e,0xff,Oxff,Oxff,0xf9,0x78,0x3c],
"downLeft':[@Ox3c,0Ox7e,Oxff,Oxff,Oxff,0xcf,0x4e,0x3c],
"downLeftB':[@x3c,0Ox7e,Oxff,Oxff,0x9f,0x9f,0x7e,0x3C],
"downLeftl':[@Ox3c,0x7e,0xff,Oxff,0Oxcf,Oxcf,0x7e,0x3c],
"downLeft1Blinkl':[@x00,0x7e,0xff,0xff,0xcf,0xct,0x7e,0x00],
"downLeft1Blink2':[0@x00,0x00,0xff,0xff,0xct,0xct,0x00,0x00],
"downLeft1Blink3':[0©x00,0x00,0x00,0xff,0xct,0x00,0x00,0x00],
"downLeft2':[@x3c,0Ox7e,0xff,Oxff,0xff,0x9f,0x1le,0x3c],
"leftl':[0Ox3c,0x7e,0Oxff,0Oxcf,Oxcf,Oxff,0x7e,0x3c],
"left2':[0x3c,0x7e,0xff,0x9f,0x9f, Oxff,0x7e,0x3C],
"left3':[0x3c,0x7e,0xff,0x3f,0x3f,0xff,0x7e,0x3C],
"leftd':[0x3c,0x7e,0xff,0x7f,0x7f,0xff,0x7e,0x3C],
"rightl’':[0x3c,0x7e,0xff,0xf3,0xf3,0xff,0x7e,0x3C],
"right2':[0x3c,0x7e,0xff,0xf9,0xf9,0xff,0x7e,0x3C],
"right3':[0x3c,0x7e,0xff,0Oxfc,Oxfc,Oxff,0x7e,0x3c],
"right4’':[0x3c,0x7e,0xff,0xfe,Oxfe,Oxff,0x7e,0x3c],
"ghostl':[0x3c,0x56,0%x93,0xdb, 0xff,0xff,0xdd,0x89],

323

Ml
o

www.keyestudio.com

'ghost2':[0x38,0x7c,0x92,0x92,0xfe,Oxfe,0xfe,0xaa],

shapes={

'smile':[@x3c, Ox42, Oxa5, Ox81, Oxa5, ©x99, ©x42, ©x3c],
"smilelL':[@x3c, ©Ox42, ©Oxa9, Oxa9, Ox85, Oxb9, ©x42, ©x3c],
"empty ' :[0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00],

'all on':[exff,oxff,oxff,oxff,oxff,oxrf,oxff,oxftf],
"arrow’' :[0x18,0x24,0x42,0xff,0x18,0x18,0x18,0x18],
"invaderl':[0x18,0x3c,0x7e,0xdb,Oxff,0x24,0x5a,0xa5],
"invader2':[0x18,0x3c,0x7e,0xdb,Oxff,0x24,0x5a,0x42],
"treel':[0x18, 0x18, ©Ox3c, Ox3c, Ox7e, Oxff, Ox18, 0x18],

"treellitl':[0x18, ©x18, ©x3c, Ox3c, Ox7e, Oxff, Ox18, ox18],

"treellit2':[@x5a,0x99,0x3c,0xbd,0x7e,0xff,0x18,0x18],
"tree2':[0x18, 0x18, ©Ox3c, Ox3c, Ox7e, Ox7e, Oxff, o0x18],
"bunnyl’':[@x66, OXx66, OXx66, Oxff, Ox81, ©xa5, 0x99, Ox7e],
"bunny2':[0x66, Oxe7, Ox66, Oxff, Ox81, ©Oxa5, 0x99, Ox7e],
"bunny3':[@x66, Ox66, Oxff, Ox81, ©xa5, Ox81, ©x99, Ox7e],
"danbo’ :[0x00, Oxff, ©x81, ©xa5, Ox81, 0x81, Oxff, 0x00],
"clockl':[@x3c, ©Ox42, Ox91, ©x91, ©x9d, ©x81, ©x42, ©x3c],
"heartlF':[0x00, Ox66, Oxff, Oxff, Ox7e, Ox3c, Ox18, 0x00],
'heartl':[0x00, Ox66, ©x99, Ox81, Ox42, Ox24, Ox18, 0x00],
'heart2':[@x00, Ox66, 0x99, Ox81, Ox81, 0x42, 0x24, 0x18],
"heart2F':[0x00, Ox66, Oxff, Oxff, Oxff, Ox7e, Ox3c, 0x18],
'santaHat':[0x00, ©x3c, Ox7e, Ox4f, Oxef, Oxef, Oxef, oxof],
"santaHat2':[0x00,0x00,0x3c,0x7e,0x4f,0xef,O0xef,0xef],
'starl':[0x00,0x00,0x00,0x18,0x18,0x00,0x00,0x00],
'star2':[0x00,0x00,0x24,0x18,0x18,0x24,0x00,0x00],
'star3':[0x00,0x42,0x24,0x18,0x18,0x24,0x42,0x00],
"stard':[0x81,0x42,0x24,0x18,0x18,0x24,0x42,0x81],
'star5':[0x02,0x84,0x48,0x38,0x1c,0x12,0x21,0x40],
"star6’':[0x06,0x8c,0xd8,0x7c,0x3e,0x1b,0x31,0x60],
'star7':[0x04,0x08,0x90,0x5C,0x3a,0x09,0x10,0x20],
'star8':[0x08,0x10,0x10,0x9%e,0x79,0x08,0x08,0x10],
'star9':[0x10,0x10,0x10,0x1f,0xf8,0x08,0x08,0x08],
'starl@':[0x20,0x10,0x11,0x1le,0x78,0x88,0x08,0x04],
"starll':[0x40,0x21,0x12,0x1c,0x38,0x48,0x84,0x02],

324

Ml
o

www.keyestudio.com

Thonny - MicroPython device & /ht16k33_matrix.py @ 42:1

File Edit View Run Device Tools Help

e 0

Files |

o

[matrix_fonts.py] ‘ [ht16k33_matrix.py] 3

A ADXL345.py
2 dht.py

| [ht16k33_matrix.pyl

MicroPython device h‘

7 lcd128_32.py
7 lcd128 32 fonts.py
| # matrix fonts.py |

2 mfrc522_i2c.py
2 onewire.py

= rotary.py

7 rotary_irg_rp2.py
? soft_iic.py

2 urtc.py

This computer
[home / pi / pico /
Pico_code_MicroPython

o mfrcSZZ_conﬁg.p&

»

/

(S

(=0 ® ; B S 81}

import machine
showbytes = 0
class ht16k33_matrix:

_HT16K33 BLINK CMD = const(0x80)
_HT16K33_BLINK DISPLAYON = const(0x01)

7 _HT16K33 CMD BRIGHTNESS = const(OxE0)
8 _HT16K33 OSCILATOR ON = const(0x21)
9
N0 def __init_ (self,dt,clk,bus,addr):
3 self.addr = addr
i i) self.i2c = machine. T2C(hus.sda=machine Pin(dt) .,
4 3
Shell % ‘
S>>

Then we find matrix dot.py in the code path we saved, then

double-click > to open the code, and then click to run the code

325

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code_MicroPython/40. HT16K33 dot matrix/matrix dotpy @ 68:1 » »~ X

File Edit View Run Device Tools Help

e gt

Files ‘

MicroPython device
Ly lib
7 ADXL345.py

This computer
/home / pi / pico /
Pico_code_MicroPython

[0 36. XHT11
P14 37. DS1307 Real Time Ch
1) 38. ADXL345

[} 39. TM1650 Four digital t
[>

§v23

|} 4. button
[E5) matrix

AIAD_HH.EKJE.ML
~ matrix dot.py

I/ 41. lcd128_32

1 42. RFID RC522
) 43. Breath
?
!

I}, 44, button control LED
|1 45. Avoiding alarm

A A S~ A v

matrix dot.py

-

I T

2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi I
3 * lesson 40

4 * HT16K33 8*8 dot matrix

5 * http://www.keyestudio.com

6 T

7 import machine

[o4]

import time

9 import json

10 import matrix fonts

11 from ht16k33 matrix import htl6k33 matrix
17 ## T A Snrites httns://ouraleann

nnl Tn Make leanns _rom/ton &

4 |

Shell ¢ ‘

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 36

* HT16K33 8*8 dot matrix

* http:/ /www.keyestudio.com

import machine
import time

import json

import matrix_fonts

from ht16k33_matrix import ht16k33_matrix

326

Ml
o

www.keyestudio.com

Tool To Make Sprites https://gurgleapps.com/tools/matrix
#i2c config

clock_pin = 21

data_pin = 20

bus=0

i2c_addr_left = 0x70

use_i2c = True

def scan_for_devices():

i2c =
machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_
pin))

devices = i2c.scan()

if devices:

for d in devices:
print(hex(d))
else:

print('no i2c devices')

if use_i2c:
scan_for_devices()

left_eye = ht16k33_matrix(data_pin, clock_pin, bus,

327

Ml
o

www.keyestudio.com

i2c_addr_left)

def show_char(left):
if use_i2c:

left_eye.show_char(left)

def scroll_message(font,message="hello’',delay=0.05):
left_message ="' '+ message
right_message = message +"' '
length=Ilen(right_message)
char_range=range(length-1)
for char_pos in char_range:
right_left_char=font[right_message[char_pos]]
right_right_char=font[right_message[char_pos+1]]
left_left_char=font[left_message[char_pos]]
left_right_char=font[left_message[char_pos+1]]
for shift in range(8):
left_bytes=[0,0,0,0,0,0,0,0]
right_bytes=[0,0,0,0,0,0,0,0]
for col in range(8):

left_bytes[col]=Ileft_bytes[col] | left_left_char[col]<<shift

328

Ml
o

www.keyestudio.com

left_bytes[col]=Ileft_bytes[col] | left_right_char[col]>>8-shift;

right_bytes[col]=right_bytes[col] | right_left_char[col]<<shift

right_bytes[col]=right_bytes[col] | right_right_char[col]>>8-shift;
if use_i2c:
left_eye.show_char(left_bytes)

time.sleep(delay)

while True:
show_char(matrix_fonts.textFont1['A'])
time.sleep(1)
show_char(matrix_fonts.textFont1['B'])
time.sleep(1)
show_char(matrix_fonts.textFont1['C'])
time.sleep(1)

scroll_message(matrix_fonts.textFontl, ' Hello Worild ')

Code Explanation

329

£

www.keyestudio.com

show char(): displayed characters, for instance
show_char(matrix_fonts.textFont1['A']) shows A

scroll message(font,message="hello’,delay=0.05): scroll to display, 0.05
is the speed of the scroll, massage is character string and font is module

file.

Test Result
Wire up and run the test code. The dot matrix displays "A" for one second,
"B" for one second, "C" for one second, and then scroll to display the "Hello

World" pattern.

330

£

www.keyestudio.com

Project 41: LCD_128X32_DOT Module

4
|
1

This is a 128*32 pixel LCD module, which uses IIC communication mode and
ST7567A driver chip . At the same time, the code contains all the English letters
and common symbols of the library that can be directly called. When used, we
can also set English letters and symbols to display different text sizes in our
code. To make it easy to set up the pattern display, we also provide a mold
capture software that can convert a specific pattern into control code and then

copy it directly into the test code for use.

In the experiment, we will set up the display screen to display various English

words, common symbols and numbers.

331

£

www.keyestudio.com

LCD LCD 128*32 dot

| S

. Lo Keyestudio)
Raspberry Pi Raspberry Pi Pico 4P Dupont Micro USB
)) LCD_128X32_DO)
Pico Board*1 Expansion Board*1 Wire*1 Cable*1
T Module*1

Connection Diagram

332

Ml
o

www.keyestudio.com

ZTEXS8ZTL A

= 6 ¢ @ 3 o o

: 23 2 3

1. Run the test code:

We need to save the following code in the pico and name Icd128 32.py

Micropython (Raspberry Pi Pico)
2022/1/12 DENGFEI
lcd.Display() Can only display 94 limited characters in fonts

import machine

import time

import 1cd128 32 fonts
cursor = [0, 9]

class 1cd128 32:

def init (self,dt,clk,bus,addr):
self.addr = addr
self.i2c = machine.I2C(bus,sda=machine.Pin(dt),scl=machine.Pin(clk))
self.Init()

def WriteByte command(self, cmd):
self.reg write(0x00, cmd)

333

Ml
o

www.keyestudio.com

def WriteByte dat(self, dat):
self.reg write(0x40, dat)

def reg write(self, reg, data):

msg =

bytearray()

msg.append(data)

self.i2c.writeto_mem(self.addr, reg, msg)

def Init(self):
#self.i2c.start()

time.
self.
time.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.

sleep(0.01)
WriteByte_command(@xe2)
sleep(0.01)
WriteByte_command(@xa3)
WriteByte_command(@xa0)
WriteByte_command(@xc8)
WriteByte_command(@©x22)
WriteByte_command(©x81)
WriteByte_command(0x30)
WriteByte_command(@x2c)
WriteByte_command(@x2e)
WriteByte_command(@x2f)
Clear()

WriteByte command(@xff)
WriteByte_command(0x72)
WriteByte_command(@xfe)
WriteByte_command(@xd6)
WriteByte_command(©x90)
WriteByte_command(0x9d)
WriteByte_command(@xaf)
WriteByte_command(0x40)

def Clear(self):
for i in range(4):
self.WriteByte_ command(0xbo® + i)
self.WriteByte_ command(0x10)
self.WriteByte_ command(0x00)
for j in range(128):
self.WriteByte dat(0x00)

def Cursor(self, y, x):
if x > 17:
x = 17

334

Ml
o

www.keyestudio.com

ify > 3:

X =3
cursor[@] =y
cursor[1l] = x

def WriteFont(self, num):
for item in 1cd128 32 fonts.textFont[num]:
self.WriteByte dat(item)

def Display(self, str):
self.WriteByte command(@xb@® + cursor[0])
self.WriteByte command(@x1@ + cursor[1l] * 7 // 16)
self.WriteByte command(0x00 + cursor[1l] * 7 % 16)
for num in range(len(str)):
if str[num] == '9@":
self.WriteFont(0)
elif str[num] == "1":
self.WriteFont(1)
elif str[num] == '2":
self.WriteFont(2)
elif str[num] == '3":
self.WriteFont(3)
elif str[num] == "'4":
self.WriteFont(4)
elif str[num] == '5":
self.WriteFont(5)
elif str[num] == '6":
self.WriteFont(6)
elif str[num] == '7":
self.WriteFont(7)
elif str[num] == '8":
self.WriteFont(8)
elif str[num] == '9":
self.WriteFont(9)
elif str[num] == 'a':
self.WriteFont(10)
elif str[num] == 'b"':
self.WriteFont(11)
elif str[num] == 'c':
self.WriteFont(12)
elif str[num] == 'd":
self.WriteFont(13)
elif str[num] == 'e':
self.WriteFont(14)

335

Ml
o

www.keyestudio.com

elif str[num] == 'f':
self.WriteFont(15)
elif str[num] == 'g':
self.WriteFont(16)
elif str[num] == 'h':
self.WriteFont(17)
elif str[num] == "i':
self.WriteFont(18)
elif str[num] == "'j':
self.WriteFont(19)
elif str[num] == 'k':
self.WriteFont(20)
elif str[num] == "'1":
self.WriteFont(21)
elif str[num] == 'm':
self.WriteFont(22)
elif str[num] == 'n':
self.WriteFont(23)
elif str[num] == 'o':
self.WriteFont(24)
elif str[num] == 'p':
self.WriteFont(25)
elif str[num] == 'q":
self.WriteFont(26)
elif str[num] == 'r':
self.WriteFont(27)
elif str[num] == 's':
self.WriteFont(28)
elif str[num] == 't"':
self.WriteFont(29)
elif str[num] == 'u':
self.WriteFont(30)
elif str[num] == 'v':
self.WriteFont(31)
elif str[num] == 'w':
self.WriteFont(32)
elif str[num] == 'x':
self.WriteFont(33)
elif str[num] == 'y':
self.WriteFont(34)
elif str[num] == 'z':
self.WriteFont(35)
elif str[num] == 'A":

self.WriteFont(36)

336

Ml
o

www.keyestudio.com

elif str[num] == 'B':
self.WriteFont(37)
elif str[num] == 'C':
self.WriteFont(38)
elif str[num] == 'D':
self.WriteFont(39)
elif str[num] == "E':
self.WriteFont(40)
elif str[num] == 'F':
self.WriteFont(41)
elif str[num] == 'G":
self.WriteFont(42)
elif str[num] == 'H':
self.WriteFont(43)
elif str[num] == 'I':
self.WriteFont(44)
elif str[num] == "'J':
self.WriteFont(45)
elif str[num] == 'K':
self.WriteFont(46)
elif str[num] == "L':
self.WriteFont(47)
elif str[num] == 'M":
self.WriteFont(48)
elif str[num] == 'N':
self.WriteFont(49)
elif str[num] == '0O"':
self.WriteFont(50)
elif str[num] == 'P":
self.WriteFont(51)
elif str[num] == 'Q":
self.WriteFont(52)
elif str[num] == 'R':
self.WriteFont(53)
elif str[num] == 'S"':
self.WriteFont(54)
elif str[num] == 'T':
self.WriteFont(55)
elif str[num] == 'U':
self.WriteFont(56)
elif str[num] == 'V':
self.WriteFont(57)
elif str[num] == "W':
self.WriteFont(58)

337

Ml
o

www.keyestudio.com

elif str[num] == 'X":
self.WriteFont(59)
elif str[num] == 'Y':
self.WriteFont(60)
elif str[num] == 'Z":
self.WriteFont(61)
elif str[num] == "!":
self.WriteFont(62)
elif str[num] == ""':
self.WriteFont(63)
elif str[num] == "#':
self.WriteFont(64)
elif str[num] == '$':
self.WriteFont(65)
elif str[num] == '%":
self.WriteFont(66)
elif str[num] == '&":
self.WriteFont(67)

elif str[num] == "\'":

self.WriteFont(68)
elif str[num] == "(':
self.WriteFont(69)
elif str[num] == ")":
self.WriteFont(70)
elif str[num] == "*':
self.WriteFont(71)
elif str[num] == "+':
self.WriteFont(72)
elif str[num] == ", ":
self.WriteFont(73)
elif str[num] == '-":
self.WriteFont(74)
elif str[num] == "'/":
self.WriteFont(75)

elif str[num] == ":
self.WriteFont(76)

elif str[num] == ";":
self.WriteFont(77)
elif str[num] == '<':

self.WriteFont(78)
elif str[num] == '=":
self.WriteFont(79)

elif str[num] == "'>":
self.WriteFont(80)

338

Ml
o

www.keyestudio.com

elif str[num] == '?":
self.WriteFont(81)
elif str[num] == '@":
self.WriteFont(82)
elif str[num] == "{":
self.WriteFont(83)
elif str[num] == '|":
self.WriteFont(84)

elif str[num] == "}':
self.WriteFont(85)
elif str[num] == '~':

self.WriteFont(86)
elif str[num] == "' ":
self.WriteFont(87)
elif str[num] == ".":
self.WriteFont(88)
elif str[num] == "~":
self.WriteFont(89)
elif str[num] == "_":
self.WriteFont(90)
elif str[num] == "~ ':
self.WriteFont(91)
elif str[num] == "[':
self.WriteFont(92)
elif str[num] == "\\':
self.WriteFont(93)

elif str[num] == "]
self.WriteFont(94)

Then save the following code to pico and name it Icd128 32 fonts.py

Micropython (Raspberry Pi Pico)
Include 94 characters
textFont={

0:[0x00, Ox3E, Ox51, 0x49, 0x45,
:[0x00, 0x00, Ox42, Ox7F, 0Ox40,
:[0x00, Ox62, Ox51, 0x49, 0Ox49,
:[0x00, 0x21, Ox41, 0x49, 0Ox4D,
:[0x00, 0x18, Ox14, Ox12, OX7F,
:[0x00, ©x27, 0x45, 0x45, 0x45,
:[0x00, Ox3C, Ox4A, 0x49, 0Ox49,
:[0x00, 0x01, 0x71, Ox09, 0x05,

N ool b WN R

Ox3E,
0x00,
ox46,
0x33,
ox10,
0x39,
0x31,
0x03,

0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],

339

Ml
o

www.keyestudio.com

8:[0x00, Ox36, Ox49, Ox49, Ox49, Ox36, Ox00],
9:[0x00, Ox46, Ox49, Ox49, Ox29, Ox1E, 0x00],

10

13

16

25

28

31

34

37

40

43

46

: [0x00,
11:
12:

[0x00,
[0x00,

:[oxe0,
14:
15:

[0x00,
[0x00,

:[ox00,
17:
18:
19:
20:
21:
22:
23:
24:

[0x00,
[0x00,
[0x00,
[0x00,
[0x00,
[0x00,
[0x00,
[0x00,

:[oxe0,
26:
27

[0x00,
[0x00,

:[oxe0,
29:
30:

[0x00,
[0x00,

:[oxe0,
32:
33:

[0x00,
[0x00,

:[oxe0,
35:
36:

[0x00,
[0x00,

:[oxe0,
38:
39:

[0x00,
[0x00,

: [0x00,
41:
42:

[0x00,
[0x00,

:[oxe0,
44
45;

[0x00,
[0x00,

:[ox00,
47:
48:
49:
50:
51:

[0x00,
[0x00,
[0x00,
[0x00,
[0x00,

0x24,
Ox7F,
0x38,
0x38,
0x38,
0x08,
0x98,
Ox7F,
0x00,
0x00,
Ox7F,
0x00,
0x78,
oxe4,
0x38,
OxFC,
0x18,
oxe4,
0x48,
0x04,
ox3C,
ox1C,
ox3C,
ox44,
0x9C,
ox44,
ox7C,
Ox7F,
Ox3E,
Ox7F,
Ox7F,
Ox7F,
Ox3E,
Ox7F,
0x00,
0x20,
Ox7F,
Ox7F,
Ox7F,
Ox7F,
Ox3E,
Ox7F,

0x54,
0x28,
ox44,
ox44,
ox54,
Ox7E,
OxA4,
0x08,
0x00,
0x80,
0x10,
ox41,
0x04,
0x78,
ox44,
0x24,
0x24,
0x78,
0x54,
Ox3F,
0x40,
0x20,
0x40,
0x28,
OxAQ,
0x64,
0x12,
0x49,
ox41,
ox41,
0x49,
0x09,
ox41,
0x08,
ox41,
0x40,
0x08,
0x40,
0x02,
oxe4,
ox41,
0x09,

0x54,
ox44,
ox44,
ox44,
ox54,
0x09,
OxA4,
oxe4,
0x79,
0x88,
0x28,
Ox7F,
0x78,
oxe4,
ox44,
0x24,
0x24,
oxe4,
0x54,
ox44,
0x40,
0x40,
0x3C,
0x10,
OxAQ,
0x54,
ox11,
0x49,
ox41,
ox41,
0x49,
0x09,
0x51,
0x08,
Ox7F,
ox41,
ox14,
0x40,
oxec,
0x08,
ox41,
0x09,

0x38,
ox44,
ox44,
0x28,
ox54,
0x09,
OxA4,
oxe4,
0x00,
0x79,
ox44,
0x40,
0x04,
oxe4,
ox44,
0x24,
0x24,
oxe4,
ox54,
ox44,
ox3C,
0x20,
0x40,
0x28,
0x90,
ox4cC,
ox12,
0x49,
ox41,
ox41,
0x49,
0x09,
0x51,
0x08,
ox41,
Ox3F,
0x22,
0x40,
0x02,
0x10,
ox41,
0x09,

0x40,
0x38,
0x08,
Ox7F,
0x08,
0x02,
0x78,
0x78,
0x00,
0x00,
0x40,
0x00,
0x78,
0x78,
0x38,
0x18,
OxFC,
0x08,
0x24,
0x24,
0x40,
ox1C,
ox3C,
ox44,
ox7C,
ox44,
ox7C,
0x36,
0x22,
Ox3E,
ox41,
ox01,
0x72,
Ox7F,
0x00,
ox01,
ox41,
0x40,
Ox7F,
Ox7F,
Ox3E,
0x06,

0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],

340

Ml
o

www.keyestudio.com

52:
53:

54

57

69

75

78

81

84

87

90

93

[0x00,
[0x00,

:[oxe0,
55:
56:

[0x00,
[0x00,

:[ox00,
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:

[0x00,
[0x00,
[0x00,
[0x00,
[0x00,
[0x00,
[0x00,
[0x00,
[0x00,
[0x00,
[0x00,

:[ox00,
70:
71:
72:
73:
74:

[0x00,
[0x00,
[0x00,
[0x00,
[0x00,

:[oxe0,
76:
77

[0x00,
[0x00,

:[oxe0,
79:
80:

[0x00,
[0x00,

:[oxe0,
82:
83:

[0x00,
[0x00,

:[oxe0,
85:
86:

[0x00,
[0x00,

:[oxe0,
88:
89:

[0x00,
[0x00,

: [0x00,
91:
92:

[0x00,
[0x00,

: [0x00,
94:

[0x00,

Ox3E,
Ox7F,
0x26,
oxe1,
Ox3F,
Ox1F,
Ox7F,
ox63,
ox03,
ox61,
0x00,
0x00,
ox14,
0x24,
ox23,
0x36,
0x00,
0x00,
0x00,
0x22,
ox08,
ox40,
0x08,
0x20,
0x00,
ox40,
ox08,
ox14,
0x00,
0x02,
Ox3E,
ox08,
0x00,
0x00,
0x08,
0x00,
0x00,
oxe4,
ox08,
0x00,
Ox7F,
0x02,
0x00,

ox41,
0x09,
0x49,
ox01,
ox40,
0x20,
0x20,
ox14,
oxe4,
0x51,
0x00,
0x07,
Ox7F,
Ox2E,
0x13,
0x49,
oxe4,
ox1C,
ox41,
ox14,
0x08,
0x30,
0x08,
0x10,
0x36,
0x36,
ox14,
ox14,
ox41,
0x01,
ox41,
0x36,
0x00,
0x00,
oxe4,
0x00,
0x60,
0x02,
ox1C,
0x00,
Ox7F,
oxe4,
ox41,

0x51,
0x19,
0x49,
Ox7F,
0x40,
0x40,
0x18,
0x08,
0x78,
0x49,
Ox5F,
0x00,
0x14,
0x7B,
0x08,
0x56,
ox03,
0x22,
0x22,
Ox7F,
Ox7F,
0x10,
0x08,
0x08,
0x36,
0x36,
0x22,
ox14,
0x22,
0x59,
0x5D,
ox41,
ox77,
ox41,
0x08,
0x00,
0x60,
Ox7F,
Ox2A,
ox01,
ox41,
0x08,
ox41,

ox21,
0x29,
0x49,
ox01,
0x40,
0x20,
0x20,
ox14,
oxe4,
ox45,
0x00,
0x07,
Ox7F,
Ox2A,
ox64,
0x20,
oxe1,
ox41,
ox1C,
ox14,
ox08,
0x00,
ox08,
oxe4,
0x00,
0x00,
ox41,
ox14,
ox14,
0x05,
0x55,
0x00,
0x00,
0x36,
0x10,
0x00,
0x00,
0x02,
ox08,
0x02,
ox41,
0x10,
Ox7F,

Ox5E,
0x46,
0x32,
oxe1,
Ox3F,
Ox1F,
Ox7F,
ox63,
ox03,
ox43,
0x00,
0x00,
ox14,
ox12,
0x62,
0x50,
0x00,
0x00,
0x00,
0x22,
0x08,
0x00,
0x08,
0x02,
0x00,
0x00,
0x00,
ox14,
0x08,
0x02,
Ox5E,
0x00,
0x00,
0x08,
0x08,
0x00,
0x00,
oxe4,
0x08,
oxe4,
0x00,
0x20,
Ox7F,

0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],
0x00],

341

pv4
o

www.keyestudio.com

0o o

Thonny - MicroPython device & /lcd128_32.py @ 268:1

File Edit View Run Device Tools Help

HE O EEEOC O

Files 2 % ‘ [lcd128_32_fonts.py]
MicroPython device a § import time :
ADXL345.py ™. 9 import 1cd128 32 fonts
2 dht.py 10 cursor = [0, 0]
2 ds18x20.py 11 class lcd128_32:
2 ht16k33 matrix.py 12
@ lcd128_32.py 13 def __init_ (self,dt,clk,bus,addr):
© lcd128 32 fonts.py 14 self.addr = addr
2 matrix_fonts.py ,\5\ self.i2c = machine.I2C(bus,sda=machine.Pin(dt),
2 mfrc522_config.py 16 self.Init()
2 mfrc522_i2c.py 17
@ onewire.py 18 def WriteByte_command(self, cmd):
2 rotary.py 19 self.reg write(6x00, cmd) e
7 rotary_irq_rp2.py
A soft_iic.py Shell &
= urtc.py o
: MicroPython v1.17 on 2021-09-02; Raspberry Pi Pico with RP20
This computer = 10
/home / pi / pico / Type "help()" for more information.
Pico_code_MicroPython s>

Then we find LCD 128*32.py in the code path we saved, then double-click

Q to open the code, and then click to run the code

Thonny - /home/pi/pico/Pico_code_MicroPython/41. led128_32/1cd128_32 testpy @ 46:20

File Edit View Run Device Tools Help

#a 1O EEE0 O
Files % led128_32_test py |

MicroPython device == i ' 1 |
b1 lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
A ADXL345.py 3 * lesson 41
: | 4 * LoD 128+32
This computer = 5 * http://www.keyestudio.com
/home / pi / pico / T IR
Pico_code_MicroPython 7 import machine
< 141 lcd128 32 § import time
I;, lcd128_32 test.py | 9 import 1lcd128 32 fonts
b, 42 RFID RC532 W 10 from 1cd128 32 import lcd128 32

/

1) 43, Breath

|} 44. button control LED i 12 #i7c confin .
[} 45. Avoiding alarm
b)) 46. UV alarm Shell = ‘
b1 47, PIR alarm T -
[»1 1 48. play music : 1 EEanE SR st
D.} p I:r i kit MicroPython v1.17 on 2021-09-02; Raspberry Pi Pico with
[} 49. self-extinguishing RP2040
[} 5. Touch sensor Se S o e e
Ll 50 Eceder ool i Type "help() or more information.
Lol o [=>> =

342

Ml
o

www.keyestudio.com

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 41

* LCD 128*%32

* http:/ /www.keyestudio.com
import machine
import time
import lcd128_32_fonts

from lcd128_32 import lcd128_32

#i2c config
clock_pin = 21
data_pin = 20
bus=0
i2c_addr = 0x3f

use_i2c = True

def scan_for_devices():

i2C

machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_

343

Ml
o

www.keyestudio.com

pin))
devices = i2c.scan()
if devices:
for d in devices:
print(hex(d))
else:

print('no i2c devices')

if use_i2c:
scan_for_devices()

lcd = lcd128_32(data_pin, clock_pin, bus, i2c_addr)

Icd.Clear()

Ilcd.Cursor(0, 7)

Icd.Display("KEYES")

lcd.Cursor(1, 0)
Ilcd.Display("ABCDEFGHIJKLMNOPQR")
lcd.Cursor(2, 0)
Icd.Display("123456789+-*%/<>=$@")
lcd.Cursor(3, 0)

344

Ml
o

www.keyestudio.com

Icd.Display("%~&(){}:;'| ?,.~\\[1")

while True:
scan_for_devices()

time.sleep(0.5)

Code Explanation
Raspberry Pi Pico =
B lib

& lcd128_32.py

@ lcd128_32 _fonts.py

First, import the library

scan_for_devices(): This function is an IIC addressing function; if an IIC
device is identified, the IIC address of the device is printed, as shown in the

figure:

Shell 3

>33

0x3f

If the device is not recognized, no i2c devices will be printed out and then

report an error, as shown in the figure:

345

Ml
o

www.keyestudio.com

ile "«<satdin>™, line 40, in <modul
MY AT 38 D9 ames 1
1-EE __J-_.i__._."'/_.!___.' p LITIE ELLD

L£l1le 1cd

filic 14

. 151] ST e
£1ie 10l S£.P 11ine 2 10T

il HY r
0SError: [Errno 5] EIO

>33 -

1. led.Cursor(0, 7): The function to set cursor, that is, set the position where
the character is displayed on the lcd, the first parameter is the parameter of
the row, the second is the parameter of the column

2. lcd.Display("KEYES"): Display character content, here "KEYES" is

displayed

Test Result
Wire up and upload the test code, the 128X32LCD module will show KEYES on the
first line, ABCDEFGHIJKLMNOPQR on the second line, 123456789+-*/<>=$@ on

the third line and “%"&(){}:;'|?,.~\\[1” on the fourth line, as shown below;

346

pv4
o

www.keyestudio.com

Project 42: RFID Module

Description

347

Ml
o

www.keyestudio.com

RFIDRFID-RC522 radio frequency module adopts a Philips MFRC522
original chip to design card reading circuit, easy to use and low cost,
suitable for equipment development and card reader development and so
on.

RFID or Radio Frequency Identification system consists of two main
components, a transponder/tag attached to an object to be identified, and

a Transceiver also known as interrogator/Reader.

In the experiment, the data read by the card swipe module is 4
hexadecimal numbers, and we print these four hexadecimal numbers as
strings. For example, we read the data of the IC card below: 0x8d, Oxfe,
Ox6¢, 0x4d, and the information string displayed in the shell is 8dfe6c4d;
the data read from the keychain is: Oxbc, 0x33, 0x76, Ox6e, and the

information is displayed in the shell The string is bc33766e.

Working Principle

RFID (Radio Frequency Identification)

Radio frequency identification, the card reader is composed of a radio
frequency module and a high-level magnetic field. The Tag transponder is
a sensing device, and this device does not contain a battery. It only

contains tiny integrated circuit chips and media for storing data and

348

£

www.keyestudio.com

antennas for receiving and transmitting signals. To read the data in the tag,
first put it into the reading range of the card reader. The reader will
generate a magnetic field, and because the magnetic energy generates
electricity according to Lenz's law, the RFID tag will supply power, thereby

activating the device.

-;' Last Minute
{7 ENGINEERS.com

RFID Tag

Antenna RFID Reader/Writer

Required Components

2=

Raspberry Pi Pico | Raspberry Pi Pico Keyestudio DIY

] 4P Dupont Wire*1
Board*1 Expansion Board*1 RFID Module*1

Micro USB Cable*1 Key*1 IC Card*1

349

Ml
o

www.keyestudio.com

Connection Diagram

UARTO UART1

12c0 12c1

OOOQmﬂﬂﬂﬂmmﬂ
TR
§ 8 § 5is

Power_OuUT
RESET,

Run the test code

Find and double-click mfrc522.py and click >

File Edit View Run Device Tools Help

@sgl o

Files % mfrc522.py 3

M|CroPython device =* kRS -

B L0 lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
2 ADXL345.py * lesson 42

¥ rfid re522 test
* http://www.keyestudio.com

1}

This computer
/home / pi / pico /

{]

Pico_code_MicroPython import machine
by 41. lcd128 32 import time
=l 4) from mfrc522_i2c import mfrc522

addr = Ax?8 o

/1 45. Avoiding alarm : §
/ 46. UV alarm Shell 5¢

Pl 3

>) 44. button control LED

[+)

R

b1y 47. PIR alarm | |~ -l
) 48. play music

1) 49. Self-extinguishing

P10 5. Touch sensor

I

) 50. Encoder control RGB
v | P> v

Before running the code, we save the following code to pico, import the

350

Ml
o

www.keyestudio.com

module, and name it mfrc522 config.py: (also in the library file folder we

provide)

class Uid:

size =0

Number of bytes in the UID. 4, 7 or 10.

uidByte = [0,0,0,0,0,0,0,0,0,0]

sak =0

The SAK (Select acknowledge) byte returned from the PICC

after successful selection.

class mfrc522Config(Uid):
MFRC522 registers. Described in chapter 9 of the datasheet.

PCD_Register

Page ©: Command and status

0x00 #reserved for future use

CommandReg = Ox01 #starts and stops command execution

ComIEnReg = Ox02 #enable and disable interrupt request control bits

DivIEnReg = 0x03 #enable and disable interrupt request control bits

ComIrgReg = O0x04 #interrupt request bits

DivIrgReg = Ox05 #interrupt request bits

ErrorReg = Ox06 #error bits showing the error status of the last command executed

StatuslReg = Ox07 #communication status bits

Status2Reg = Ox08 #receiver and transmitter status bits

FIFODataReg = Ox09 #input and output of 64 byte FIFO buffer

FIFOLevelReg = OxOA #number of bytes stored in the FIFO buffer

WaterLevelReg = 0x0B #level for FIFO underflow and overflow warning

ControlReg = Ox0C #miscellaneous control registers

BitFramingReg = 0Ox@D #adjustments for bit-oriented frames

CollReg = OXOE #bit position of the first bit-collision detected on the RF
interface

OxOF #reserved for future use

Page 1: Command

0x10 #reserved for future use

ModeReg = 0x11 #defines general modes for transmitting and receiving

TxModeReg = 0x12 #defines transmission data rate and framing

RxModeReg = 0x13 #defines reception data rate and framing

TxControlReg = 0x14 #controls the logical behavior of the antenna driver pins TX1
and TX2

TxASKReg = Ox15 #controls the setting of the transmission modulation

TxSelReg = 0x16 #elects the internal sources for the antenna driver

RxSelReg = Ox17 #selects internal receiver settings

RxThresholdReg = 0x18 #selects thresholds for the bit decoder

351

Ml
o

www.keyestudio.com

DemodReg = 0x19 #defines demodulator settings

Ox1A #reserved for future use

Ox1B #eserved for future use

MfTxReg = Ox1C #controls some MIFARE communication transmit parameters
MfRxReg = 0x1D #controls some MIFARE communication receive parameters
Ox1E #reserved for future use

SerialSpeedReg = Ox1F #selects the speed of the serial UART interface

Page 2: Configuration
0x20 reserved for future use

CRCResultRegH = 0x21 #shows the MSB and LSB values of the CRC calculation

CRCResultRegL = 0x22 #

0x23 #reserved for future use

ModWidthReg = 0x24 #controls the ModWidth setting?

0x25 #reserved for future use

RFCfgReg = Ox26 #onfigures the receiver gain

GsNReg = Ox27 #selects the conductance of the antenna driver pins TX1 and TX2
for modulation

CWGsPReg = 0x28 #defines the conductance of the p-driver output during periods
of no modulation

ModGsPReg = 0x29 #defines the conductance of the p-driver output during periods
of modulation

TModeReg = Ox2A #defines settings for the internal timer

TPrescalerReg = 0x2B #the lower 8 bits of the TPrescaler value. The 4 high bits are

in TModeReg.

TReloadRegH = 0x2C #efines the 16-bit timer reload value
TReloadReglL = Ox2D #

TCounterValueRegH = Ox2E #shows the 16-bit timer value
TCounterValueRegL = Ox2F #

Page 3: Test Registers

0x30 #reserved for future use

TestSellReg = Ox31 #general test signal configuration
TestSel2Reg = Ox32 #eneral test signal configuration
TestPinEnReg = Ox33 #enables pin output driver on pins D1 to D7
TestPinValueReg = 0x34 #defines the values for D1 to D7 when it is used as an I/O bus
TestBusReg = Ox35 #shows the status of the internal test bus
AutoTestReg = 0x36 #controls the digital self test

VersionReg = Ox37 #shows the software version

AnalogTestReg = 0x38 #controls the pins AUX1 and AUX2
TestDAC1Reg = 0x39 #defines the test value for TestDAC1
TestDAC2Reg = Ox3A #defines the test value for TestDAC2
TestADCReg = Ox3B #shows the value of ADC I and Q channels

0x3C #reserved for production tests

352

Ml
o

www.keyestudio.com

0x3D #reserved for production tests
Ox3E #reserved for production tests
Ox3F #reserved for production tests

MFRC522 commands. Described in chapter 10 of the datasheet.
PCD_Command

PCD_Idle = Ox00 #no action, cancels current command execution

PCD_Mem = Ox01 #stores 25 bytes into the internal buffer

PCD_GenerateRandomID = 0x02 #generates a 10-byte random ID number

PCD_CalcCRC = Ox03 #activates the CRC coprocessor or performs a self test

PCD_Transmit = Ox04 #transmits data from the FIFO buffer

PCD_NoCmdChange = Ox07 #no command change, can be used to modify the CommandReg
register bits without affecting the command, for example, the PowerDown bit

PCD_Receive = Ox08 #activates the receiver circuits

PCD_Transceive = Ox0C #transmits data from FIFO buffer to antenna and

automatically activates the receiver after transmission
PCD_MFAuthent OxOE #performs the MIFARE standard authentication as a reader
PCD_SoftReset OXOF #resets the MFRC522

MFRC522 RxGain[2:0] masks, defines the receiver's signal voltage gain factor (on the
PCD).

Described in 9.3.3.6 / table 98 of the datasheet at
http://www.nxp.com/documents/data_sheet/MFRC522.pdf

PCD_RxGain

RxGain_18dB = Ox00 << 4 #000b - 18 dB, minimum

RxGain_23dB = Ox01 << 4 #001b - 23 dB

RxGain_18dB_2 = Ox02 << 4 #010b - 18 dB, it seems 010b is a duplicate for 000b
RxGain_23dB_2 = Ox03 << 4 #011b - 23 dB, it seems 011b is a duplicate for 001b
RxGain_33dB = Ox04 << 4 #1eob - 33 dB, average, and typical default
RxGain_38dB = Ox05 << 4 #101b - 38 dB

RxGain_43dB = Ox06 << 4 #11eb - 43 dB

RxGain_48dB = Ox07 << 4 #111b - 48 dB, maximum

RxGain_min = Ox00 << 4 #00eb - 18 dB, minimum, convenience for RxGain_18dB
RxGain_avg = Ox04 << 4 #100b - 33 dB, average, convenience for RxGain_33dB
RxGain_max = Ox07 << 4 #111b - 48 dB, maximum, convenience for RxGain_48dB

Commands sent to the PICC.
The commands used by the PCD to manage communication with several PICCs (ISO 14443-3,

Type A, section 6.4)

PICC_CMD_REQA = Ox26 #REQuest command, Type A. Invites PICCs in state IDLE
to go to READY and prepare for anticollision or selection. 7 bit frame.

PICC_CMD_WUPA = 0x52 #Wake-UP command, Type A. Invites PICCs in state IDLE
and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame.

PICC_CMD _CT = Ox88 #Cascade Tag. Not really a command, but used during anti

353

Ml
o

www.keyestudio.com

collision.
PICC_CMD_SEL_CL1
PICC_CMD_SEL_CL2
PICC_CMD_SEL_CL3

0x93 #Anti collision/Select, Cascade Level 1
0x95 #Anti collision/Select, Cascade Level 2
0x97 #Anti collision/Select, Cascade Level 3

PICC_CMD_HLTA = 0x50 #HalLT command, Type A. Instructs an ACTIVE PICC to go
to state HALT.
The commands used for MIFARE Classic (from

http://www.nxp.com/documents/data_sheet/MF1S503x.pdf, Section 9)
Use PCD_MFAuthent to authenticate access to a sector, then use these commands to
read/write/modify the blocks on the sector.
The read/write commands can also be used for MIFARE Ultralight.
PICC_CMD_MF_AUTH_KEY_A
PICC_CMD_MF_AUTH_KEY_B

0x60 #Perform authentication with Key A

0x61 #Perform authentication with Key B

PICC_CMD_MF_READ = Ox30 #Reads one 16 byte block from the authenticated sector
of the PICC. Also used for MIFARE Ultralight.
PICC_CMD_MF_WRITE = OxAQ #Writes one 16 byte block to the authenticated sector

of the PICC. Called "COMPATIBILITY WRITE" for MIFARE Ultralight.

PICC_CMD_MF_DECREMENT = OxCO #Decrements the contents of a block and stores the result
in the internal data register.

PICC_CMD_MF_INCREMENT = 0xC1l #Increments the contents of a block and stores the result
in the internal data register.

PICC_CMD_MF_RESTORE = OxC2 #Reads the contents of a block into the internal data
register.

PICC_CMD_MF_TRANSFER = OxBO #Writes the contents of the internal data register to
a block.

The commands used for MIFARE Ultralight (from

http://www.nxp.com/documents/data_sheet/MFOICUl.pdf, Section 8.6)
The PICC_CMD_MF_READ and PICC_CMD_MF_WRITE can also be used for MIFARE Ultralight.
PICC_CMD_UL_WRITE = OxA2 #Writes one 4 byte page to the PICC.

MIFARE constants that does not fit anywhere else
MIFARE Misc

MF_ACK = OXA #The MIFARE Classic uses a 4 bit ACK/NAK. Any other value
than OxA is NAK.
MF_KEY_SIZE = 6 #A Mifare Cryptol key is 6 bytes.

PICC types we can detect. Remember to update PICC GetTypeName() if you add more.
PICC_Type

PICC_TYPE_UNKNOWN =0

PICC_TYPE_ISO 14443 4 1 #PICC compliant with ISO/IEC 14443-4
PICC_TYPE_ISO_18092 2 #PICC compliant with ISO/IEC 18092 (NFC)
PICC_TYPE_MIFARE_MINI 3 #MIFARE Classic protocol, 320 bytes
PICC_TYPE_MIFARE_1K 4 #MIFARE Classic protocol, 1KB

PICC_TYPE_MIFARE_4K 5 #MIFARE Classic protocol, 4KB

354

Ml
o

www.keyestudio.com

PICC_TYPE_MIFARE_UL
PICC_TYPE_MIFARE_PLUS
PICC_TYPE_TNP3XXX

Procedure
ICC_TYPE_NOT_COMPLETE

6 #MIFARE Ultralight or Ultralight C
7 #MIFARE Plus

8 #0nly mentioned in NXP AN 10833 MIFARE Type Identification

255 #SAK indicates UID is not complete.

Return codes from the functions in this class. Remember to update GetStatusCodeName()
if you add more.

StatusCode

STATUS_OK = 1 #Success

STATUS_ERROR = 2 #Error in communication
STATUS_COLLISION 3 #Collission detected
STATUS_TIMEOUT 4 #Timeout in communication.
STATUS_NO_ROOM 5 #A buffer is not big enough.

STATUS_INTERNAL_ERROR = 6 #Internal error in the code. Should not happen ;-)
STATUS_INVALID

STATUS_CRC_WRONG
STATUS_MIFARE_NACK

7 #Invalid argument.
8 #The CRC_A does not match
9 #A MIFARE PICC responded with NAK.

Size of the MFRC522 FIFO
FIFO_SIZE = 64 #The FIFO is 64 bytes.

uid = Uid

Then save the following code to pico and name it soft _iic.py

from machine import Pin
import time

class softIIC:

def init (self, scl , sda_, addr_):
self.addr = addr_
self.scl = scl_
self.sda = sda_

def IIC start(self):
Pin_scl = Pin(self.scl, Pin.OUT, value=1) # create output pin
Pin_sda = Pin(self.sda, Pin.OUT, value=1) # create output pin
#Pin_sda.value(1)
#Pin_scl.value(1)

355

Ml
o

www.keyestudio.com

time.sleep_us(5)
#time.sleep(1)
Pin_sda.value(9)
time.sleep_us(5)
Pin_scl.value(9)
#time.sleep(1)

def IIC stop(self):
Pin_scl = Pin(self.scl, Pin.OUT, value=0)
Pin_sda = Pin(self.sda, Pin.OUT, value=0)
#Pin_scl.value(®@)
#Pin_sda.value(®@)
time.sleep_us(5)
Pin_scl.value(1)
Pin_sda.value(1)
time.sleep_us(5)

def IIC master_ack(self):
Pin_scl = Pin(self.scl, Pin.OUT, value=0)
Pin_sda = Pin(self.sda, Pin.OUT, value=0)
#Pin_scl.value(®@)
#Pin_sda.value(®@)
time.sleep_us(5)

Pin_scl.value(1)
time.sleep_us(5)
Pin_scl.value(9)
#Pin_sda.value(1)

def IIC master notack(self):
Pin_scl = Pin(self.scl, Pin.OUT, value=0)
Pin_sda = Pin(self.sda, Pin.OUT, value=1)
#Pin_scl.value(®@)
#Pin_sda.value(1)
time.sleep_us(5)
Pin_scl.value(1)
time.sleep_us(5)
Pin_scl.value(9)

def IIC slave ack(self):

create output pin
create output pin

create output pin
create output pin

create output pin
create output pin

356

Ml
o

www.keyestudio.com

i=0
Pin_scl = Pin(self.scl, Pin.OUT, value=0) # create output pin
Pin_sda = Pin(self.sda, Pin.IN, Pin.PULL_UP) # create input pin

Pin_scl.value(1)
time.sleep_us(5)
while Pin_sda.value() == 1:
time.sleep_us(1)
i=1i+1
if i>20:
while 1 :
print("IIC slave device not ack")
time.sleep(1)
#return

def IIC read byte(self):

dat = 0
Pin_scl = Pin(self.scl, Pin.OUT, value=0) # create input pin
Pin_sda = Pin(self.sda, Pin.IN, Pin.PULL_UP) # create input pin

for i in range(8):
Pin_scl.value(9)
time.sleep_us(3)
Pin_scl.value(1)
time.sleep_us(2)
#print(Pin_sda.value())

if Pin_sda.value() == 1:
dat = dat<<1 | 1
else:
dat = dat<«<1
time.sleep_us(5)
return dat

def IIC write byte(self, dat):
Pin_scl = Pin(self.scl, Pin.OUT, value=0) # create output pin
Pin_sda = Pin(self.sda, Pin.OUT, value=0) # create output pin
for i in range(8):
if ox80 & dat == 0x80:
Pin_sda.value(1)
#print(1)
else:
Pin_sda.value(9)
#print(0)
Pin_scl.value(1)

357

Ml
o

www.keyestudio.com

time.sleep_us(5)

Pin_scl.value(@)

time.sleep_us(5)

dat = dat<«<1
#print("-------------o oo - ")

def Read(self, _adr, _reg):
self.IIC_start()
self.IIC write byte(_adr<<1)
self.IIC_slave_ack()
#print("-------------- 1)
self.IIC_write byte(_reg)
self.IIC_slave_ack()
self.IIC_stop()
#print("-------------- 2")
self.IIC_start()
self.IIC_write_byte((_adr<<1)|1)
self.IIC_slave_ack()
#print("-------------- 3")
dat = self.IIC read_ byte()
self.IIC_master_notack()
self.IIC_stop()
return dat

def Write(self, adr, reg, _dat):
self.IIC start()
self.IIC write byte(_adr<<1)
self.IIC_slave_ack()

self.IIC write byte(_reg)
self.IIC_slave_ack()

self.IIC write byte(dat)
self.IIC_slave_ack()
self.IIC stop()

Then save the following code to pico and name it mfrc522 i2c.py

from machine import Pin
import time
from mfrc522_config import mfrc522Config

358

Ml
o

www.keyestudio.com

from soft_iic import softIIC

class mfrc522(mfrc522Config,softIIC):

def init (self, scl , sda_, addr_):
Invoke the parent class's constructor
softIIC. init (self, scl , sda_, addr)

Writes a byte to the specified register in the MFRC522 chip.
The interface is described in the datasheet section 8.1.2.
def PCD_WriteRegister(self,
_reg, #The register to write to. One of the PCD_Register enums.
_dat #The value to write.
):
self.Write(self.addr, reg, _dat)

Writes a number of bytes to the specified register in the MFRC522 chip.
The interface is described in the datasheet section 8.1.2.
def PCD_WriteRegister_(self,

reg, #The register to write to. One of the PCD_Register enums.
count, #The number of bytes to write to the register

1st #The values to write. Byte array.

):

self.IIC start()
self.IIC_write byte(self.addr<<1)
self.IIC_slave_ack()

self.IIC write byte(reg)
self.IIC_slave_ack()

for i in range(count):
self.IIC write byte(lst[i])
self.IIC slave_ack()

self.IIC_stop()

Reads a byte from the specified register in the MFRC522 chip.
The interface is described in the datasheet section 8.1.2.
def PCD_ReadRegister(self, _reg): # The register to read from. One of the
PCD_Register enums.
return self.Read(self.addr, reg)
End PCD_ReadRegister()

359

Ml
o

www.keyestudio.com

Reads a number of bytes from the specified register in the MFRC522 chip.
The interface is described in the datasheet section 8.1.2.
self.PCD_ReadRegister (self.FIFODataReg, n, backData, rxAlign)
def PCD_ReadRegister (self,
reg, # The register to read from. One of the PCD_Register
enums.
count, # The number of bytes to read
values, # Byte array to store the values in.
rxAlign = @ # Only bit positions rxAlign..7 in values[@] are
updated.

if count ==

return
self.IIC_start()
self.IIC_write_byte(self.addr<<1)
self.IIC slave_ ack()
#print("-------------- 1")
self.IIC write byte(reg)
self.IIC_slave_ack()
self.IIC_stop()
#print("-------------- 2")
self.IIC_start()
self.IIC_write_byte((self.addr<<1)|1)
self.IIC_slave_ack()
#print("-------------- 3")

for i in range(count):
if i == 0 and rxAlign != @: # Only update bit positions rxAlign..7 in
values[9]
Create bit mask for bit positions rxAlign..7
mask = @
for i in range(rxAlign, 8):
mask |= (1<<i)

Read value and tell that we want to read the same address again.
value = self.IIC read byte()
Apply mask to both current value of values[@] and the new data in value.
values[@] = (values[i] & ~mask) | (value & mask)

else: # Normal case
values[i] = self.IIC read_byte()

if i < count - 1:
self.IIC _master_ack()
else:

360

Ml
o

www.keyestudio.com

self.IIC_master_notack()
self.IIC_stop()
#print(values)
End PCD_ReadRegister()

def PCD_Init(self):
self.PCD_Reset()

When communicating with a PICC we need a timeout if something goes wrong.

f _timer = 13.56 MHz / (2*TPreScaler+l) where TPreScaler =
[TPrescaler Hi:TPrescaler Lo].

TPrescaler_ Hi are the four low bits in TModeReg. TPrescaler Lo is TPrescalerReg.

self.PCD_WriteRegister(self.TModeReg, ©x80) # TAuto=1; timer starts
automatically at the end of the transmission in all communication modes at all speeds
self.PCD_WriteRegister(self.TPrescalerReg, OxA9) # TPreScaler =

TModeReg[3..0]:TPrescalerReg, ie Ox0A9 = 169 => f_timer=40kHz, ie a timer period of 25@s.
self.PCD_WriteRegister(self.TReloadRegH, ©x03) # Reload timer with Ox3E8 = 1000,
ie 25ms before timeout.
self.PCD_WriteRegister(self.TReloadReglL, OXES8)

self.PCD_WriteRegister(self.TxASKReg, 0x40) # Default 0x00. Force a 100 % ASK
modulation independent of the ModGsPReg register setting

self.PCD_WriteRegister(self.ModeReg, ©x3D) # Default Ox3F. Set the preset
value for the CRC coprocessor for the CalcCRC command to ©x6363 (ISO 14443-3 part 6.2.4)

self.PCD_AntennaOn() # Enable the antenna driver pins TX1 and
TX2 (they were disabled by the reset)

End PCD_Init()

Performs a soft reset on the MFRC522 chip and waits for it to be ready again.
def PCD_Reset(self):

Issue the SoftReset command.

self.PCD_WriteRegister(self.CommandReg, self.PCD_SoftReset)

time.sleep(1)

if self.PCD_ReadRegister(self.CommandReg) & (1<<4):
print("Reset error!")

Turns the antenna on by enabling pins TX1 and TX2.
After a reset these pins are disabled.
def PCD_AntennaOn(self):

value = self.PCD_ReadRegister(self.TxControlReg)

361

Ml
o

www.keyestudio.com

#print("AntennalOn data:’
if value & 0x03 != 0x03:

self.PCD_WriteRegister(self.TxControlReg, value | 0x@3)
#End PCD_AntennaOn()

+ str(value))

Turns the antenna off by disabling pins TX1 and TX2.
def PCD_AntennaOff(self):
self.PCD_ClearRegisterBitMask(self.TxControlReg, 0x03)

Sets the bits given in mask in register reg.
def PCD_SetRegisterBitMask(self,

reg, # The register to update. One of the
PCD_Register enums.

mask # The bits to set.

):

tmp = self.PCD_ReadRegister(reg)
self.PCD _WriteRegister(reg, tmp | mask) # set bit mask
End PCD_SetRegisterBitMask()

Clears the bits given in mask from register reg.
def PCD_ClearRegisterBitMask(self,
reg, # The register to update. One of the PCD_Register
enums.
mask # The bits to clear.
):
tmp = self.PCD_ReadRegister(reg)
self.PCD_WriteRegister(reg, tmp & (~mask)) #clear bit mask
End PCD_ClearRegisterBitMask()

Use the CRC coprocessor in the MFRC522 to calculate a CRC_A.
#
@return STATUS_OK on success, STATUS_ ??? otherwise.
def PCD_CalculateCRC(self,
data, #In: Pointer to the data to transfer to the FIFO for CRC
calculation.
length, #In: The number of bytes to transfer.
result #0Out: Pointer to result buffer. Result is written to
result[0..1], low byte first.
):
self.PCD_WriteRegister(self.CommandReg, self.PCD_Idle) # Stop any active

362

Ml
o

www.keyestudio.com

command.

self.PCD_WriteRegister(self.DivIrgReg, ©0x04) # Clear the CRCIRq
interrupt request bit

self.PCD_SetRegisterBitMask(self.FIFOLevelReg, 0x80) # FlushBuffer = 1,
FIFO initialization

self.PCD_WriteRegister (self.FIFODataReg, length, data) # Write data to the
FIFO

self.PCD_WriteRegister(self.CommandReg, self.PCD_CalcCRC) # Start the
calculation

Wait for the CRC calculation to complete. Each iteration of the while-loop takes
17.73@s.

while True:
n = self.PCD_ReadRegister(self.DivIrqReg) # DivIrgReg[7..0] bits are: Set2
reserved reserved MfinActIRq reserved CRCIRq reserved reserved

if (n & 0x04): # CRCIRqg bit set - calculation done
break
if (--i == 9): # The emergency break. We will

eventually terminate on this one after 89ms. Communication with the MFRC522 might be down.
return self.STATUS_ TIMEOUT
self.PCD_WriteRegister(self.CommandReg, self.PCD _Idle) # Stop calculating CRC
for new content in the FIFO.

Transfer the result from the registers to the result buffer
result[@] = self.PCD_ReadRegister(self.CRCResultRegl)
result[1] = self.PCD_ReadRegister(self.CRCResultRegH)

return self.STATUS_OK

End PCD_CalculateCRC()

Executes the Transceive command.
CRC validation can only be done if backData and backLen are specified.
#
@return STATUS_OK on success, STATUS_??? otherwise.
def PCD_TransceiveData(self,
sendData, # Pointer to the data to transfer to the FIFO.
sendLen, # Number of bytes to transfer to the FIFO.
backData, # NULL or pointer to buffer if data should be read back
after executing the command.
backLen, # In: Max number of bytes to write to *backData. Out:
The number of bytes returned.
validBits, # In/Out: The number of valid bits in the last byte.
@ for 8 valid bits. Default NULL.
rxAlign, # In: Defines the bit position in backData[@] for the
first bit received. Default @.

363

Ml
o

www.keyestudio.com

checkCRC # In: True => The last two bytes of the response is
assumed to be a CRC_A that must be validated.
):
waitIRq = 0x30
return self.PCD_CommunicateWithPICC(self.PCD_Transceive, waitIRq, sendData,
sendLen, backData, backLen, validBits, rxAlign, checkCRC)
End PCD_TransceiveData()

Transfers data to the MFRC522 FIFO, executes a command, waits for completion and
transfers data back from the FIFO.
CRC validation can only be done if backData and backlLen are specified.

#
@return STATUS_OK on success, STATUS_??? otherwise.
result = self.PCD_TransceiveData(buffer, bufferUsed, responseBuffer,

responselLength, tLB, rxAlign, 0)
def PCD_CommunicateWithPICC(self,

command, # The command to execute. One of the
PCD_Command enums.
waitIRq, # The bits in the ComIrqReg register that
signals successful completion of the command.
sendData, # Pointer to the data to transfer to the FIFO.
sendLen, # Number of bytes to transfer to the FIFO.
backData, # NULL or pointer to buffer if data should
be read back after executing the command.
backLen, # In: Max number of bytes to write to
*backData. Out: The number of bytes returned.
validBits, # In/Out: The number of valid bits in the last
byte. @ for 8 valid bits.
rxAlign, # In: Defines the bit position in backData[@]
for the first bit received. Default ©.
checkCRC # In: True => The last two bytes of the
response is assumed to be a CRC_A that must be validated.
):
txLastBits = validBits[@] if validBits != None else ©
bitFraming = (rxAlign << 4) + txLastBits # RxAlign = BitFramingReg[6..4].

TxLastBits = BitFramingReg[2..0]

self.PCD_WriteRegister(self.CommandReg, self.PCD_Idle) # Stop any active
command.

self.PCD_WriteRegister(self.ComIrgqReg, Ox7F) # Clear all seven
interrupt request bits

self.PCD_SetRegisterBitMask(self.FIFOLevelReg, 0x80) # FlushBuffer = 1,

FIFO initialization

364

Ml
o

www.keyestudio.com

self.PCD_WriteRegister_ (self.FIFODataReg, sendLen, sendData) # Write sendData to
the FIFO

self.PCD_WriteRegister(self.BitFramingReg, bitFraming) # Bit adjustments
self.PCD_WriteRegister(self.CommandReg, command) # Execute the
command
if command == self.PCD_Transceive:
self.PCD_SetRegisterBitMask(self.BitFramingReg, ©x890) # StartSend=1,

transmission of data starts

Wait for the command to complete.
In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically
starts when the PCD stops transmitting.
Each iteration of the do-while-loop takes 17.86€s.
i = 2000
while True:
n = self.PCD_ReadRegister(self.ComIrqReg) #ComIrqReg[7..0] bits are: Setl
TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq
if n & waitIRq:
break
if n & Ox01:
return self.STATUS_ TIMEOUT
if --i ==
return self.STATUS_ TIMEOUT

Stop now if any errors except collisions were detected.
errorRegValue = self.PCD_ReadRegister(self.ErrorReg) # ErrorReg[7..0] bits are:
WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr
if errorRegValue & 0x13: # BufferOvfl ParityErr
ProtocolErr
return self.STATUS_ERROR

If the caller wants data back, get it from the MFRC522.
if backData != None and backLen != None :
n = self.PCD_ReadRegister(self.FIFOLevelReg) # Number of bytes in the FIFO
if n> backLen[0]:
return self.STATUS_NO_ROOM
backLen[@] = n # Number of bytes returned
Note: Use list mutable types in Python
self.PCD_ReadRegister_(self.FIFODataReg, n, backData, rxAlign) # Get received
data from FIFO
#print("backData:")
#print(backData)
_validBits = self.PCD_ReadRegister(self.ControlReg) & 0x07 # RxLastBits[2:0]
indicates the number of valid bits in the last received byte. If this value is @@@b, the

365

Ml
o

www.keyestudio.com

whole byte is valid.
if validBits != None:
validBits[@] = _validBits

Tell about collisions
if errorRegValue & 0x08: # collErr
return self.STATUS_COLLISION

Perform CRC_A validation if requested.
if backData != None and backLen != None and checkCRC != @:
In this case a MIFARE Classic NAK is not OK.
if backLen[@] == 1 and _validBits[@] == 4:
return self.STATUS_MIFARE_NACK
We need at least the CRC_A value and all 8 bits of the last byte must be received.
if backLen[@] < 2 or _validBits != @:
return self.STATUS_ CRC_WRONG
Verify CRC_A - do our own calculation and store the control in controlBuffer.
controlBuffer = [0, 0]
n = self.PCD_CalculateCRC(backData[@], backLen[@] - 2, controlBuffer[0])
if n != self.STATUS OK:
return n
if (backData[backLen[@] - 2] != controlBuffer[@]) or (backData[backLen[O] -
1] !'= controlBuffer[1]):
return self.STATUS_ CRC_WRONG
return self.STATUS OK;
End PCD_CommunicateWithPICC()

Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and
prepare for anticollision or selection. 7 bit frame.

Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT
- probably due do bad antenna design.

#

@return STATUS_OK on success, STATUS_ ??? otherwise.

def PICC_RequestA(self,

bufferATQA, # The buffer to store the ATQA (Answer to request) in

bufferSize # Buffer size, at least two bytes. Also number of bytes
returned if STATUS_OK.

):
cmd = [self.PICC_CMD_REQA]

return self.PICC _REQA or WUPA(cmd, bufferATQA, bufferSize)
End PICC_RequestA()

366

Ml
o

www.keyestudio.com

Transmits REQA or WUPA commands.
Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT
- probably due do bad antenna design.
#
@return STATUS_OK on success, STATUS_??? otherwise.
def PICC _REQA or WUPA(self,
command, # The command to send - PICC_CMD_REQA or PICC_CMD_WUPA
bufferATQA, # The buffer to store the ATQA (Answer to request)
in
bufferSize # Buffer size, at least two bytes. Also number of bytes
returned if STATUS_OK.
):
if bufferATQA == None or bufferSize[@] < 2: # The ATQA response is 2 bytes long.
return self.STATUS_NO_ROOM
self.PCD_ClearRegisterBitMask(self.CollReg, ©x80) # ValuesAfterColl=1 => Bits
received after collision are cleared.
validBits = [7] # For REQA and WUPA we need the short frame format - transmit only
7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0]
status = self.PCD_TransceiveData(command, 1, bufferATQA, bufferSize, validBits, 0,
0)
if status != self.STATUS OK:
return status
if bufferSize[@] != 2 or validBits[@] != @:
return self.STATUS_ERROR
return self.STATUS_OK
End PICC_REQA or_WUPA()

Transmits SELECT/ANTICOLLISION commands to select a single PICC.

Before calling this function the PICCs must be placed in the READY(*) state by calling
PICC RequestA() or PICC_WakeupA().

On success:

- The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to
state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.)

- The UID size and value of the chosen PICC is returned in *uid along with the
SAK.

#

A PICC UID consists of 4, 7 or 10 bytes.
Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three
iterations are used:

UID size Number of UID bytes Cascade levels Example of PICC
e R —— S —— ===============
single 4 1 MIFARE Classic

double 7 2 MIFARE Ultralight

367

Ml
o

www.keyestudio.com

triple 10 3 Not currently in use?
#
@return STATUS_OK on success, STATUS_??? otherwise.
def PICC Select(self,
uid, # Pointer to Uid struct. Normally output, but can also be
used to supply a known UID.
validBits # The number of known UID bits supplied in *uid. Normally
0. If set you must also supply uid->size.
):
uidComplete = False
selectDone = False
useCascadeTag = False
cascadelevel = 1

result = 0

count = @

index = ©

uidIndex = © # The first index in uid->uidByte[] that is used
in the current Cascade Level.

currentLevelKnownBits = 0 # The number of known UID bits in the current Cascade
Level.

buffer = [0,0,0,0,0,0,0,0,0] # The SELECT/ANTICOLLISION commands uses a 7 byte
standard frame + 2 bytes CRC_A

bufferUsed = 0 # The number of bytes used in the buffer, ie the
number of bytes to transfer to the FIFO.

rxAlign = © # Used in BitFramingReg. Defines the bit position

for the first bit received.

txLastBits = © # Used in BitFramingReg. The number of valid bits
in the last transmitted byte.

responseBuffer = [0]

responselLength = [0]

Description of buffer structure:

Byte ©: SEL Indicates the Cascade Level: PICC_CMD_SEL CL1,
PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3

Byte 1: NVB Number of Valid Bits (in complete command, not
just the UID): High nibble: complete bytes, Low nibble: Extra bits.

Byte 2: UID-data or CT See explanation below. CT means Cascade Tag.

Byte 3: UID-data

Byte 4: UID-data

Byte 5: UID-data

Byte 6: BCC Block Check Character - XOR of bytes 2-5

Byte 7: CRC_A

Byte 8: CRC_A

The BCC and CRC_A is only transmitted if we know all the UID bits of the current

Cascade Level.

368

Ml
o

www.keyestudio.com

#
Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID
contents and cascade levels)

UID size Cascade level Byte2 Byte3 Byted4 Byteb
S =======z===== ===== ===== ===== =====
4 bytes uide uidl uid2 uid3
7 bytes CcT uide uidl uid2
2 uid3 uid4 uid5 uidé6
10 bytes 1 CcT uide uidl uid2
cT uid3 uid4 uid5
3 uidé6 uid7 uid8 uid9

Sanity checks
if validBits > 80:
return self.STATUS_INVALID

Prepare MFRC522
self.PCD_ClearRegisterBitMask(self.CollReg, 0x80) # ValuesAfterColl=1 => Bits
received after collision are cleared.

Repeat Cascade Level loop until we have a complete UID.
uidComplete = False
while uidComplete == False:
Set the Cascade Level in the SEL byte, find out if we need to use the Cascade
Tag in byte 2.

if cascadelevel == 1:
buffer[@] = self.PICC_CMD SEL CL1
uidIndex = ©

useCascadeTag = validBits and uid.size > 4 # When we know that the UID
has more than 4 bytes

elif cascadelevel == 2:
buffer[@] = self.PICC_CMD _SEL CL2
uidIndex = 3

useCascadeTag = validBits and uid.size > 7 # When we know that the UID
has more than 7 bytes
elif cascadelevel ==
buffer[0] = self.PICC_CMD_SEL_CL3

uidIndex = 6
useCascadeTag = False # Never used in CL3.
else:

return self.STATUS_INTERNAL_ERROR

How many UID bits are known in this Cascade Level?
currentLevelKnownBits = validBits - (8 * uidIndex)

369

Ml
o

www.keyestudio.com

if currentLevelKnownBits < ©:
currentLevelKnownBits = ©

Copy the known bits from uid->uidByte[] to buffer[]
index = 2 # destination index in buffer[]
#print(useCascadeTag);
if useCascadeTag:
index = index+1
buffer[index] = self.PICC_CMD_CT
The number of bytes needed to represent the known bits for this level.
bytesToCopy = 1 if currentLevelKnownBits % 8 > © &else © #
(currentLevelKnownBits % 8 ? 1 : @)
bytesToCopy = currentlLevelKnownBits // 8 + bytesToCopy
if bytesToCopy:
maxBytes = 3 if useCascadeTag else 4 # maxBytes = useCascadeTag ? 3 : 4
if bytesToCopy > maxBytes:
bytesToCopy = maxBytes
for i in range(bytesToCopy):
index = index+1
buffer[index] = uid.uidByte[uidIndex + 1i]
Now that the data has been copied we need to include the 8 bits in CT in
currentLevelKnownBits
if useCascadeTag:
currentLevelkKnownBits = currentLevelKnownBits + 8

Repeat anti collision loop until we can transmit all UID bits + BCC and receive
a SAK - max 32 iterations.
selectDone = False
while selectDone == False:
Find out how many bits and bytes to send and receive.
if currentLevelKnownBits >= 32: # All UID bits in this Cascade Level are
known. This is a SELECT.
Serial.print(F("SELECT: currentLevelKnownBits="));
Serial.println(currentLevelKnownBits, DEC);
buffer[1] = 6x70 # NVB - Number of Valid Bits: Seven whole bytes
Calculate BCC - Block Check Character
buffer[6] = buffer[2] ~ buffer[3] ~ buffer[4] ~ buffer[5]
Calculate CRC_A
tmpBuffer = [buffer[7], buffer[8]]
result = self.PCD_CalculateCRC(buffer, 7, tmpBuffer)
buffer[7] = tmpBuffer[0]
buffer[8] = tmpBuffer[1]

if result != self.STATUS OK:

370

Ml
o

www.keyestudio.com

return result
txLastBits =0 # @ => All 8 bits are valid.
bufferUsed = 9
Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed

after tx)

responseBuffer = [0].copy()

responseBuffer[@] = buffer[6]

responseBuffer = responseBuffer + buffer[7:]

responseLength[@] = 3

bufferFlag = 6

else: # This is an ANTICOLLISION.

Serial.print(F("ANTICOLLISION: currentLevelKnownBits="));
Serial.println(currentLevelKnownBits, DEC);

txLastBits = currentLevelKnownBits % 8

count = currentLevelKnownBits // 8 # Number of whole bytes
in the UID part.

index = 2 + count # Number of whole
bytes: SEL + NVB + UIDs

buffer[1] = (index << 4) + txlLastBits # NVB - Number of
Valid Bits

bufferUsed = 1 if txLastBits else ©

bufferUsed

index + bufferUsed

responseBuffer = [0].copy()
Store response in the unused part of buffer

responseBuffer[@] = buffer[index]
responseBuffer = responseBuffer + buffer[index+1:]
responseLength[@] = len(buffer) - index

bufferFlag = index

Set bit adjustments

rxAlign = txLastBits # Having a seperate variable is overkill.
But it makes the next line easier to read.

self.PCD_WriteRegister(self.BitFramingReg, (rxAlign << 4) + txLastBits)
RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]

#Transmit the buffer and receive the response.
tLB = [txLastBits]
result = self.PCD TransceiveData(buffer, bufferUsed, responseBuffer,
responselLength, tLB, rxAlign, 0)
for i in range(bufferFlag, bufferFlag+responselLength[0]):
buffer[i] = responseBuffer[i-bufferFlag]

371

Ml
o

www.keyestudio.com

if result == self.STATUS_COLLISION: # More than one PICC in the field =>
collision.
result = self.PCD ReadRegister(CollReg) # CollReg[7..0] bits are:
ValuesAfterColl reserved CollPosNotValid CollPos[4:9]
if result & 0x20:
return self.STATUS_COLLISION # Without a valid collision position
we cannot continue
collisionPos = result & Ox1F # Values ©-31, © means bit 32.
if collisionPos ==
collisionPos = 32
if collisionPos <= currentLevelKnownBits: # No progress - should not
happen
return self.STATUS_ INTERNAL_ERROR
Choose the PICC with the bit set.
currentLevelKnownBits = collisionPos
count = (currentLevelKnownBits - 1) % 8 # The bit to modify
index = 1 if count else @
index = 1 + (currentLevelkKnownBits / 8) + index # First byte is index

buffer[index] = buffer[index] | (1 << count)
elif result != self.STATUS OK:
return result
else: # STATUS_OK
if currentlLevelKnownBits >= 32: # This was a SELECT.
selectbDone = True # No more anticollision
We continue below outside the while.
else: # This was an ANTICOLLISION.
We now have all 32 bits of the UID in this Cascade Level
currentLevelkKnownBits = 32
Run loop again to do the SELECT.
End of while (!selectDone)

We do not check the CBB - it was constructed by us above.
Copy the found UID bytes from buffer[] to uid->uidByte[]
index = 3 if buffer[2] == self.PICC CMD CT else 2 # source index in buffer|]
bytesToCopy = 3 if buffer[2] == self.PICC_CMD CT else 4
for i in range(bytesToCopy):
uid.uidByte[uidIndex + i] = buffer[index]
index = index+1

Check response SAK (Select Acknowledge)
if responselLength[@] != 3 or txLastBits != @: # SAK must be exactly 24 bits (1

byte + CRC_A).

372

Ml
o

www.keyestudio.com

return self.STATUS_ERROR

Verify CRC_A - do our own calculation and store the control in buffer[2..3]
- those bytes are not needed anymore.

CRCbuffer = [buffer[2]]

CRCbuffer = CRCbuffer + buffer[3:]

result = self.PCD_CalculateCRC(responseBuffer, 1, CRCbuffer)

buffer[2] = CRCbuffer[0]

buffer[3] = CRCbuffer[1]

if result != self.STATUS OK:
return result

if (buffer[2] != responseBuffer[1l]) or (buffer[3] != responseBuffer[2]):
return self.STATUS_CRC_WRONG

if responseBuffer[0] & 0x04: # Cascade bit set - UID not complete yes
cascadelevel = cascadelevel+l

else:
uidComplete = True
uid.sak = responseBuffer[0]

End of while (!uidComplete)

Set correct uid->size
uid.size = 3 * cascadelevel + 1
return self.STATUS_OK

End PICC Select()

Returns true if a PICC responds to PICC_CMD_REQA.
Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored.
#
@return bool
def PICC IsNewCardPresent(self):
bufferATQA = [0, 9]
bufferSize = [len(bufferATQA)]
result = self.PICC_RequestA(bufferATQA, bufferSize)
return result == self.STATUS_OK or result == self.STATUS_COLLISION
End PICC_IsNewCardPresent()

Simple wrapper around PICC_Select.

Returns true if a UID could be read.

Remember to call PICC IsNewCardPresent(), PICC RequestA() or PICC WakeupA() first.
The read UID is available in the class variable uid.

#

373

pv4
o

www.keyestudio.com

@return

bool

def PICC ReadCardSerial(self):

result
return

= self.PICC Select(self.uid, @)
(result == self.STATUS_OK)

End PICC_ReadCardSerial()

Show details of PCD - MFRC522 Card Reader details.
def ShowReaderDetails(self):
v = self.PCD_ReadRegister(self.VersionReg)
version = str(v)
if v == 0x91:

version = version + " = v1.0"
elif v == 0x92:

version = version + " = v2.0"
else:

version = version + "unknown"
print("MFRC522 Software Version:" + version)

We can see the modules we saved under mycropython device, that is, in

pico

Thonny - MicroPython device & /mfre522_i2c.py @ 582:1

File Edit View Bun Device Tools Help

*u0 0 o

Files 3¢ ‘

[soft_iic.py | = | [mfrc522_config.py] | [mfrc522_iZc.py]

MicroPython device |E i

from machine import Pin

dht.py
. ds18x20.py

A ADXL345.py

. ht16k33_matrix.py
' lcd128_32.py
lcd128_32 fonts.py
' matrix_fonts.py

import time
from mfrc522 config import mfrc522Config
from soft _iic import softIIC

class mfrc522(mfrc522Config, softIIC):

~ Oy U0 = W=

o

. mfrc522_config.py

=]

. onewire.py

ST T MRS S MR TR R T e 1

. rotary.py
? rotary irg
= soft_iic.py
2 urtc.py

This computer

mifrcs522 i2c.pv \

p2.py

def __init_ (self, scl_, sda_, addr_):

+ 1

10 soffiIC._;init__{self; écl_, sdé;,.aadr_)

-

i

-

/ home / pi / pica / Type "help()'
Pico_code_MicroPython S5

4

374

Ml
o

www.keyestudio.com

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 42

* rfid rc522 test

* http:/ /www.keyestudio.com
import machine
import time

from mfrc522_i2c import mfrc522

#i2c config
addr = 0x28
scl=5

sda =4

rc522 = mfrc522(scl, sda, addr)
rc522.PCD_Init()
rc522.ShowReaderDetails()

MFRC522 Card Reader details

Show details of PCD -

375

Ml
o

www.keyestudio.com

while True:
if rc522.PICC_IsNewCardPresent():
#print("Is new card present!")
if rc522.PICC_ReadCardSerial() == True:
print("Card UID:")
print(rc522.uid.uidByte[0 : rc522.uid.size])

#time.sleep(1)

Code Explanation

Raspberry Pi Pico

[L lib
& mfrc522_config.py
& mfrc522_2cpy
& softiic.py

First import the module of RFID522,

mfrc522 config.py; this is a configuration file that defines some
parameters and commands

mfrc522 i2c.py; Initialization and read and write functions

Soft iic.py; It is the bottom-level read and write function of software 12C.

We use the io port to simulate 12C here.

Test Result

376

£

www.keyestudio.com

When we make the IC card close to the RFID module, the information will

be printed out, as shown in the figure below.

Shell 3¢ |

| MERL9ZZ SOLCWALE VELS1ON:Llat = Ve.U -
Card UID: '
[29, 75, 135, 90]
Card UID:
[29, 75, 135, 90]
Card UID:
[76, 115, 76, 99]
Card UID:
[76, 115, 76, 99]

5. Comprehensive Experiments

The previous projects are related to single sensor or module. In the
following part, we will combine various sensors and modules to create

some comprehensive experiments to perform special functions.

377

Ml
o

www.keyestudio.com

Project 43: Breathing LED

Overview

A “breathing LED" is a phenomenon where an LED's brightness smoothly
changes from dark to bright and back to dark, continuing to do so and
giving the illusion of an LED "breathing. This phenomenon is similar to a
lung breathing in and out. So how to control LED’ s brightness? We need

to take advantage of PWM.

378

Ml
o

www.keyestudio.com

Components

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio
White LED
Modul e*1

3P Dupont
Wire*1

Micro USB Cab|e*1

Connection Diagram

s @) G

LD

UARTO UART1

GP21

GP20

Run the test code:

Ue

Double-click Breath.py, and click > to run the code

o s
4;‘.‘ :

9 = i
@

Power_OUT

fritzing

379

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code_MicroPython/43. Breath/Breath.py @ 24:21

File Edit View Run Device Tools Help

%[O o

Files ¢ ‘ \ Breath.py ‘
MicroPython device =7 ' T
>[4 lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
2 ADXL345.py 3 * lesson 43
2 4 * Breath
This computer = 5 * http://www.keyestudio.com
/ home / pi / pico / ol !
Pico_code MicroPython 7 import machine
bl 41. Icd128 32 5 import time
b 42. RFID RC522 9
< [J) 43. Breath 10 pwm = machine.PWM(machine.Pin(15))
11 pwn.freq(1000)
-1} 44. button contro B ” 12 >v
[11 45. Avoiding alarm
bl 46. UV alarm Shell
Bl 47. PIR alarm T =
1y 48. play music Bulisn i 3 19109 (: . pi P
11 49. Self-extinguishing - : =
I |4 5. Touch sensor -)
I [}, 50. Encoder control RGB ik ' —— |
o |25 =
Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 38
* Breath
* http:/ /www.keyestudio.com
import machine

import time

pwm = machine.PWM(machine.Pin(15))
pwm.freq(1000)

380

Ml
o

www.keyestudio.com

duty =0
direction = 1
while True:
duty += direction
if duty > 255:
duty = 255
direction = -1
elif duty < O:
duty =0
direction = 1
pwm.duty_ul6(duty * duty)

time.sleep(0.01)

Code Explanation

The larger the set duty cycle, the brighter the LED will be, with a maximum of
65535. The duty increases from 0 to 255 at the beginning, with an increase of 1,
and delay in 10 milliseconds for each time, the LED on the module will gradually

become brighter.

After PWM is 255*255, i starts to decrease from 255 to 0, decreasing by 1 each

381

£

www.keyestudio.com

time, and delaying 10 milliseconds each time, the LED on the module gradually
gets dark. Then it gradually becomes brighter, cycle alternately, just like the
human breathes.

We can change the delayed time in the code. There are two ways:

Change the step length or reduce the delayed time.

The step length is supposed to divided by 255, for instance direction = -2 or

direction = 2.

Test Result
Run the test code, the LED on the module gradually gets dimmer then

brighter, cyclically, like human breathe

382

Ml
o

www.keyestudio.com

Project 44: Button-controlled LED

Overview
In this lesson, we will make an extension experiment with a button and an
LED. When the button is pressed and low levels are output, the LED will

light up; when the button is released, the LED will go off. Then we can

control a module with another module.

383

Ml
o

www.keyestudio.com

Components

) Raspberry Pi Keyestudio Keyestudio)
Raspberry Pi)) 3P Dupont Micro USB
) Pico Expansion Purple LED DIY Button)
Pico Board*1 Wire*2 Cable*1
Board*1 Modul e*1 Modul e*1

Connection Diagram

] —; g
. - 8
. T I I
5 . m
Power_OUT

RESET,

fritzing

Run the test code:

Double-click button control LED.py and click € to run the test code.

384

pv4
o

www.keyestudio.com

Thonny - /home/pi/pica/Pico_code MicroPytho..ton control LED/bution control LED.py @ 22:21 » & X

File Edit View Run Device Tools Help

o K o

Files % button control LED.py |
MicroPython device =° i 1
b0 lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
A ADXL345.py 3 * lesson 44
= 4 * button control LED

This computer = 5 * http://www.keyestudio.com
/home / pi / pico / .
Pico_code_MicroPython 7 from machine import Pin
b) 41.lcd128_32 g import time
(), 42. RFID RC522
[>: 43. Breath 10 butten = Pin(16, Pin.IN)
= [} 44. button control LED 11 LED = Pin(15, Pin.OUT)

|* button control LED.pyl # 17 touch = False .
1) 45. Avoiding alarm S —
b)) 46. UV alarm \SheiEH ‘
b0 47. PIR alarm T a
I») 48. play music Y “_.__I--_i_?'_ on 2021 "-"_ -““_ "_"'r‘ . "'_'“ Pic “_._-_-._1. |
1} 49. Self-extinguishing - o = =
-1 5. Touch sensor : o .
b1 50. Encoder control RGB i >>> 8 B hit= L I !

Test Code
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 39
* button control LED
* http:/ /www.keyestudio.com
from machine import Pin

import time

button = Pin(16, Pin.IN)

385

Ml
o

www.keyestudio.com

LED = Pin(15, Pin.OUT)

touch = False

def toggle_handle(pin):
global touch

touch = not touch

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle_handle)

while True:
LED.value(touch)

time.sleep(0.01)

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle_handle):

trigger mode is when high levels change into low levels, the trigger interrupts

toggle_handle: when entering the interrupt mode, the on and off of the LED

can be controlled.

Test Result

386

Ml
o

www.keyestudio.com

Run the test code and press the button, LED will light up; if the button is

pressed again, the LED will go out.

Code Explanation

Set |0 ports according to connection diagram and configure pins mode

attachlInterrupt(digitalPinToInterrupt(button), toggle_handle,
FALLING)

The trigger mode is when a high level becomes a low level. When the trigger
interrupts, the interrupt function will be activated.

toggle_handle: when entering the interrupt mode, the on and off of the LED

can be controlled.

Test Result

Upload the code wire up and power up with a USB cable. When the button

is pressed, the LED will light up; when pressed again, the LED will go off

387

Ml
o

www.keyestudio.com

Project 45: Alarm Experiment

Overview

In the previous experiment, we control an output module though an input
modaule. In this lesson, we will make an experiment that the active buzzer

will emit sounds once an obstacle appears.

Components

388

Ml
o

www.keyestudio.com

et
) Keyestudio)
) Raspberry Pi Keyestudio 3P)
Raspberry Pi)) Obstacle] Micro USB
. Pico Expansion . Active Dupont
Pico Board*1 Avoidance) Cable*1
Board*1 Buzzer*1 Wire*2
Sensor*1

Connection Diagram

UARTO
s
REMOVE
SEAL
AFTER
WASHING

Run the test code

sweik =
IGND
swoio il 5
H
1
LI

5V GND

Power_OUT

RESET,

fritzing

Click Avoiding alarm.py and double-click the code, and click > to run the test

code

389

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code_MicroPython/45. Avoiding alarm/Avoiding alarmpy @ 7:1 ~ »~ x

| File Edit View Run Device Tools Help

o K (

Files 52 Avoiding alarm.py ‘

MicroPython device et ' 1

b0 lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
ADXL345.py 3 * lesson 45

= 4 * Avoiding alarm

This computer = 5 % http://www.keyestudio.com

/home / pi / pico / By '’

Pico_code_MicroPython 7 [from machine import Pin

b 41. lcd128 32 8 import time

b)) 42. RFID RC522 9

b[) 43. Breath 10 buzzer = Pin(16, Pin.OUT)

b) 44. button control LED 11 AEN0r = Pin(15, Pin.IN)

= [}/ 45. Avoiding alarm - 17 while True: .
I = Avoiding alarm,p)I —

Bl 46. UV alarm 1\ Shell 2 ‘

b1l 47. PIR alarm s B

[0 48. play music “

[} 49. self-extinguishing

Py 5. Touch sensor

1) 50. Encoder control RGB

Test Code
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 45
* Avoiding alarm
* http:/ /www.keyestudio.com
from machine import Pin

import time

buzzer = Pin(16, Pin.OUT)

sensor = Pin(15, Pin.IN)

390

Ml
o

www.keyestudio.com

while True:
buzzer.value(not(sensor.value()))

time.sleep(0.01)

Code Explanation
When an obstacle is detected, sensor.value() will return a low level signal.
So when an obstacle is detected, the GP16 connected to the buzzer pin will

output a high level signal, the buzzer will emit sounds.

Test Result
Run the test code. The active buzzer will emit sound if detecting obstacles;

otherwise, it won't emit sound

Code Explanation
Set |0 ports according to connection diagram then configure pins mode
The value is 0 when pressing the button, So, we can determine the key

value(0) through if (item == 0) and make the buzzer beep.

Test Result

391

£

www.keyestudio.com

Upload the test code, if the obstacle is detected, the active buzzer will

chime; if not, it won’ t beep

Project 46: Ultraviolet Alarm

Description

We can use a UV sensor to control the buzzer to achieve the effect of UV

alarm.

Required Components

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio
ultraviolet

Sensor*1

Keyestudio
Active

Buzzer*1

3P Dupont
Wire*x2

Micro USB
Cable*1

392

Ml
o

www.keyestudio.com

Connection Diagram

43zzna-v

UARTO UARTI [} 9 INIHSYM
3v3 w3 < 3 S d3ldv
8 = avas

GND

' 00000000000C LU

-
B
SWCLK -

GND

12101AR110

 90000000C—-—~—-"

Run the test code

Find and double-click UV_alarm.py and cIickﬁ

File Edit View Run Device Tools Help

%800 o

Files % UV _alarm.py %

[

1]

MicroPython device

b0 lib * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
2 ADXL345.py Ll * lesson 46
5| * UV _alarm
This computer = * http://www.keyestudio.com
/ home / pi / pico / .
Pico_code_MicroPython from machine import Pin
b[) 41. lcd128_32 import time
P[4 42. RFID RC522
b 1), 43. Breath buzzer = Pin(3, Pin.OUT)
I [)) 44. button control LED L1 sensor = machine.ADC(26)
> 1) 45. Avoiding alarm = ’v
= |4 46. UV alarm ;
B[l 47. PIR alarm T -
1) 48. play music
11 49. Self-extinguishing
I). 5. Touch sensor
I}, 50. Encoder control RGB

o === il

393

Ml
o

www.keyestudio.com

Test Code
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 41
* UV_alarm
* http:/ /www.keyestudio.com
from machine import Pin

import time

buzzer = Pin(3, Pin.OUT)

sensor = machine.ADC(26)

while True:
analogVal = sensor.read_ul16()
print(analogVal)
if analogVal > 1000:
buzzer.value(1)
else:
buzzer.value(0)

time.sleep(0.5)

394

£

www.keyestudio.com

Code Explanation
The code settings in the experiment are similar to the previous
experiments. This time, the module we input is used as an analog sensor.

By setting a threshold, the alarm exceeds the threshold.

Test Result
Wire up and run the test code. When detecting ultraviolet rays through he
ultraviolet sensor and reaching the strength we set, the active buzzer will

emit sound

[shell % |

PR T

224
240
240
08
1344
2448
1008
2152
1552

395

pv4
o

www.keyestudio.com

Project 47: Intrusion Detection

Description

In this experiment, we use a PIR motion sensor to control an active buzzer

to emit sounds and the onboard LED to flash rapidly.

Required Components

396

Ml
o

www.keyestudio.com

Raspberry Pi | Keyestudi | Keyestud

Raspberry Micro
Pico oDIYPIR| ioDIY | 3P Dupont
Pi Pico USB
Expansion Motion Active Wire*2
Board*1 Cable*1
Board*1 Sensor*1 | Sensor*1

Connection Diagram

Power_OUT

PIR motion

fritzing

Run the test code

Find and double-click PIR alarm.py and cIick@

397

pv4
o

www.keyestudio.com

Thonny - /fhome/pi/pico/Pico_code MicroPython/47. PIR alarm/PIR alarm.py @ 8:13

i File Edit View Run Device Tools Help

i[O

MicroPython device

b lib
@ ADXL345.py

This computer
[home / pi / pico /
Pico_code_MicroPython

[41. lcd128 32

1 42. RFID RC522

| 43, Breath

44. button control LED
45. Avoiding alarm

46. UV alarm

“ PIR alarm.py
1 48. play music \
1 49. Self-extinguishing

) 5. Touch sensor

), 50. Encoder control RGB

1 v v v wvwvw
HEEEEE

v vy vV

-

o

PIR alarm.py =

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi
* lesson 47

* PIR alarm

* http://www.keyestudio.com

import machine
import utime

sensor_pir = machine.Pin(15, machine.Pin.IN, machil
led = machine.Pin{25, machine.Pin.OUT)
huzzer = machine Pin{16. macrhine_ Pin_ 0IT)

—
N O W BN

4 4

Shell ¢ ‘

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 42

* PIR alarm

* http:/ /www.keyestudio.com

import machine

import utime

sensor_pir

machine.Pin(15,

machine.Pin.IN,

398

Ml
o

www.keyestudio.com

machine.Pin.PULL_DOWN)
led = machine.Pin(25, machine.Pin.OUT)

buzzer = machine.Pin(16, machine.Pin.OUT)

def pir_handler(pin):
utime.sleep_ms(100)
if pin.value():
print("Warning! Intrusion detected! ")
buzzer.value(1)
for i in range(20):
led.toggle()

utime.sleep_ms(100)

sensor_pir.irq(trigger=machine.Pin.IRQ_RISING,

handler=pir_handler)

while True:
led.toggle()
buzzer.value(0)

utime.sleep(2)

399

£

www.keyestudio.com

Code Explanation
sensor_pir.irq(trigger=machine.Pin.IRQ_RISING,
handler=pir_handler): low levels change into high levels. pir_handler is the

interrupt function which can make the buzzer emit and LED flash

Test Result

After programming, the LED flashes slowly, the detector starts to work, and
the interrupt trigger mode is IRQ_RISING. When there is an intrusion, the
output level of the PIR changes from 0 to 1, the pir_handler() function will

be called, the buzzer will emit sound, and the LED will flash quickly.

400

Ml
o

www.keyestudio.com

Project 48: Speaker Module

Introduction

We learned about controlling the speaker module to make sounds, play
beats and adjust its volume. In fact, each song is a combination of specific
beats and tones (frequencies). In this experiment, we use this speaker
module to play a song.

The frequency of each tone is shown below.

Bass:

ey 1r 2 3% A& 5 & T

Note

401

£

www.keyestudio.com

A 221 248 278 294 330 371 416

B 248 278 294 330 371 416 467

C 131 147 165 175 196 221 248

D 147 165 175 196 221 248 278

E 165 175 196 221 248 278 312

F 175 196 221 234 262 294 330

G 196 221 234 262 294 330 371

Midrange :

Key 1 2 3 4 5 6 7

Note

A 441 495 556 589 661 724 833

B 495 556 624 661 724 833 935

C 262 294 330 350 393 441 495

402

£

www.keyestudio.com

Treble:

Key

Note

294

330

350

393

882

990

525

589

661

330

350

393

441

990

1112

589

661

700

350

393

441

495

1112

1178

661

700

786

393

441

495

556

1178

1322

700

786

882

441

495

556

624

1322

1484

786

882

990

495

556

624

661

1484

1665

882

990

1112

556

624

661

724

1665

1869

990

1112

1248

403

£

www.keyestudio.com

F 700 786 882 935 1049 1178 1322

G 786 882 990 1049 1178 1322 1484

Beats are the time delay for each note. The larger the number, the longer
the delay time. A note without a line in the spectrum is a beat, with a delay
of 1s. while a beat with an underline is 1/2 of a beat without a line, with a
delay of 0.5s, and a beat with two underlines is 1/4 of a beat without a line,
with a delay of 0.25s. The 1/8 of a beat is with a delay of 0.125s.

We will take Happy Birthday Song as an example.

Components

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio 8002b
Audio Power
Amplifie*1

3P Dupont Wire*1

Micro USB Cab |e*1

Connection Diagram

404

£

www.keyestudio.com

Run the test code

SWCLK

GND.

Swpio [§
R :

Power_QUT

RESET,

fritzing

Find and double-click play music.py and click >

File Edit View Run Device

Files i

MicroPython device

B L lib

This computer

1]

ADXL345.py

/ home / pi / pico /
Pico_code_MicroPython

b

BRI R (B REORECORE RE 5E
& fEAEASEE s s S

¢
/

47.

48

= play music.py

49,
5. Touch sensor
50.
51
52.
53.
54,
55.
56.

PIR alarm
play music

Self-extinguishing

Encoder control RGB
adjust the light
Smart window

sound-controlled light

Flame alarm
smoke alarm
breathalyzer

Tools Help

o

play music.py %

[|

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi
* lesson 48

* play music

* http://www.keyestudio.com

from machine import Pin, PWM
from utime import sleep
buzzer = PWM(Pin(15))

tones = {
"M 267

Shell 3¢ |

>>>

405

Ml
o

www.keyestudio.com

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 43
* play music

* http:/ /www.keyestudio.com

from machine import Pin, PWM
from utime import sleep

buzzer = PWM(Pin(15))

tones = {

"D1":
"D2":
"D3":
"D4":
"D5":
"D6":

llD7ll:

IIM1":
llM2":

IIM3":

262,
293,
329,
349,
392,
440,
494,
523,
586,
658,

406

Ml
o

www.keyestudio.com

"M4": 697,

"M5": 783,

"M6": 879,

"M7": 987,

"H1": 1045,
"H2": 1171,
"H3": 1316,
"H4": 1393,
"H5": 1563,
"H6": 1755,
"H7": 1971
>

song = [" D5",ll D5ll,ll D6"," D5ll,llM 1"," D7",
1] D5",ll D5ll,ll D6"," D5ll,llM 2","M 1",
1] D5",ll D5ll,llM5","M3ll,llM 1"," D7ll,ll D6ll,

"M4ll,llM4","M3ll,llM 1","M2ll,llM 1"

durt = [0.25, 0.25, 0.5, 0.5, 0.5, 1,
0.25, 0.25, 0.5, 0.5, 0.5, 1,
0.25, 0.25, 0.5, 0.5, 0.5, 0.5, 0.5,

407

Ml
o

www.keyestudio.com

0.25, 0.25, 0.5, 0.5, 0.5, 1

1
def playtone(frequency):
buzzer.duty_u16(1000)
buzzer.freq(frequency)
def bequiet():
buzzer.duty_u16(0)
def playsong(mysong):
for i in range(len(mysong)):
playtone(tones[mysong[i]])
sleep(durt[i])
bequiet()
playsong(song)

Code Explanation
We list frequencies of all D keys. Then list the frequencies and beats
according to the musical notation. The beat we use is 500ms and can be

adjusted. The corresponding beat are looped to become a song.

408

Ml
o

www.keyestudio.com

Test Result
Connect the components according to the connection diagram and run the

test code, the audio power amplifier module will play a birthday song.

409

Ml
o

www.keyestudio.com

Project 49: Extinguishing Robot

Description

Today we will use Arduino simulation to build an extinguishing robot that
will automatically sense the fire and start the fan. In this project we will
learn how to build a very simple robot using pico, (detecting flames with a
flame sensor, blowing out candles with a fan) can teach us basic concepts
about robotics. Once you understand the basics below, you can build more

complex robots.

Components Required

| S

410

Ml
o

www.keyestudio.com

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

130
Motor*1

Flame

Sensor*1

4P Dupont
Wire*2

Micro USB
Cable*1

Connection Diagram

Run the test code:

fritzing

Double-click Self-extinguishing.py, and click > to run the test code.

411

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code_MicroPytho. elf-extinguishing/Self-extinguishing.py @ 29:1 v & x

File Edit View Run Device Tools Help

s d o

Files 2 ‘ Self-extinguishing.py ‘

L4
»

MicroPython device \
By lib
2 ADXL345.py

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi
* lesson 49

* Self-extinguishing

*

This computer

/ home / pi / pico /
Pico_code_MicroPython
15 47. PIR alarm

P10 48. play music _

[)._49. Self-extinguishin]

| # Self-extinguishing.py I 11 INA = Pin(20, Pin.OUT)
[5. Touch sensor \‘ 17 TNR = Pin(21. Pin_0IIT) o
| 50. Encoder control RGB

http://www.keyestudio.com

from machine import Pin
import time

=
Lo I o o BRSO W O = Y0

4

I

L e
) 51. adjust the light Shdtx‘
)i 52. Smart window T 7S
|/ 53. sound-controlled light
L 54. Flame alarm
L 55. smoke alarm
|} 56. breathalyzer

A R v L A A

-l |2 —

Test Code
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 49
* Self-extinguishing
* http:/ /www.keyestudio.com
from machine import Pin

import time

#two pins of motors

INA = Pin(20, Pin.OUT)

412

Ml
o

www.keyestudio.com

INB = Pin(21, Pin.OUT)

flame_A = machine.ADC(26)

while True:

value = flame_A.read_ul6()

print(value)

if value < 30000:
#start
INA.value(0)
INB.value(1)

else:
#stop
INA.value(0)
INB.value(0)

time.sleep(0.1)

Code Explanation

In the code, we set the threshold value to 30000. When the analog value detected
by the flame sensor is lower than the threshold value, the fan will be
automatically turned on; otherwise, it will be turned off. For the driving method of

the fan, please refer to the 130 Motor.

413

Ml
o

www.keyestudio.com

Test Result

Wire up and upload the test code, the shell shows the flame value. When this

value is less than 30000, the fan will works to blow out the fire. Basically, the

flame value can be set by yourself.

Shell % |

62271 ™
62271

62287

5057

4129

4817

3824

414

pv4
o

www.keyestudio.com

Project 50: Rotary Encoder

Introduction

In this lesson, we will control the LED on the RGB module to show different
colors through a rotary encoder.

When designing the code, we need to divide the obtained values by 3 to
get the remainders. The remainder is 0 and the LED will become red. The
remainder is 1, the LED will become green. The remainder is 2, the LED will

turn blue.

Components

415

Ml
o

www.keyestudio.com

Keyestudio
Raspberry Pi Pico Keyestudio
Raspberry Pi Common
Expansion Rotary Encoder
Pico Board*1 Cathode RGB
Board*1 Module*1
Module*1

5P Dupont Micro USB
4P Dupont Wire*1
Wire*1 Cable*1

Connection Diagram

—

cnof) cno
RGB LED OQOUDﬂooﬂﬁomor
SPIO sPn s

vec

SW
GND

Rotary encoder

416

pv4
o

www.keyestudio.com

Run the test code:

Double-click Encoder control RGB.py, and click > to run the test code.

Thonny - /home/pi/pico/Pico._code_MicroPytho..er control RGB/Encoder control BGBpy @ 42:1 » »~ X

File Edit View Run Device Tools Help

e SRR (> o

Files ‘ Encoder control RGB.py ‘
MicroPython device =° . B & |
b lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi l
4 ADXL345.py 3 * lesson 50
o 4 * Encoder control RGB
This computer = 5 * http://www.keyestudio.com
/home / pi/ pico / by "'’
Pico_code_MicroPython 7 import time
< & from rotary irq rp2 import RotaryIRQ
|.=, Encolercanaal RGB'F’I 9 from machine import Pin, PWM
b 1) 51. adjust the light 16
b1} 52. Smart window \}\ pwm_r = P"'N{P%N{g))
b} 53. sound-controlled light . nwm a = PWM({Pin(10)) .
Pl 54. Flame alarm
[} 55. smoke alarm Shell ‘
b1} 56. breathalyzer i -
Iy 57. rainbow
[1) 58. Ultrasonic radar
1) 59. IR control LED
Bl 6. Avoiding

Test Code
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 44
* Encoder control RGB

* http:/ /www.keyestudio.com

417

Ml
o

www.keyestudio.com

import time

from rotary_irq_rp2 import RotaryIRQ

from machine import Pin, PWM

pwm_r = PWM(Pin(9))
pwm_g = PWM(Pin(10))

pwm_b = PWM(Pin(11))

pwm_r.freq(1000)
pwm_g.freq(1000)
pwm_b.freq(1000)

def light(red, green, blue):
pwm_r.duty_ulé6(red)
pwm_g.duty_ul6(green)
pwm_b.duty_ul6(blue)

SW=Pin(20,Pin.IN,Pin.PULL_UP)

r = RotaryIRQ(pin_num_clk=18,
pin_num_dt=19,
min_val=0,

reverse=False,

418

Ml
o

www.keyestudio.com

range_mode=RotaryIRQ.RANGE_UNBOUNDED)

while True:

val = r.value()

print(val%3)

if val%3 == 0:
light(65535, 0, 0)

elif val%?3 ==
light(0, 65535, 0)

elif val%?3 ==
light(0, 0, 65535)

time.sleep(0.1)

Code Explanation

In the experiment, we set the val to the remainder of Encoder Count
divided by 3. Encoder Count is the value of the encoder. Then we can set
pin 9(red), 10(green) and 11(blue) according to remainders.

Colors of LED can be controlled by remainders.

419

pv4
o

www.keyestudio.com

Test Result
Wire up, run the code and open the serial monitor. Rotate the knob of the

rotary encoder to display the reminders, which can control colors of LED.

Shell 3¢ |

s

OkEREFNMONO KK

Project 51: Rotary Potentiometer

420

Ml
o

www.keyestudio.com

Introduction

In the previous courses, we did experiments of breathing light and
controlling LED with button. In this course, we do these two experiments
by controlling the brightness of LED through an adjustable potentiometer.
The brightness of LED is controlled by PWM values, and the range of
analog values is the same as the PWM' s, from 0 to 65535.

After the code is set successfully, we can control the brightness of the LED

on the module by rotating the potentiometer.

Required Components

Raspberry Pi) Keyestudio
. . Keyestudio)
Raspberry Pi Pico p | Rotary 3P Dupont Micro USB
urple
Pico Board*1 Expansion LE;;1 Potentiomete Wire*2 Cable*1
Board*1 r*1

Connection Diagram

421

£

www.keyestudio.com

o
o
-~
=
=
5
=
]
=
]
-

fritzing

Run the test code:

| File Edit View Run Device Tools Help

‘ﬂ%éﬂ o

Files % | | adjust the light py 3¢ |

1

MicroPython device

by lib * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
7 ADXL345.py [* lesson 51
M| * adjust the light

This computer = * http://www.keyestudio.com

/home / pi / pico / - R

Pico_code_MicroPython / import machine

b)) 50. Encoder control RGB 8 import utime

+ |4 51. adjust the light E

= adjust the light.py potentiometer = machine.ADC(26)

b)) 52, Smart window

b[J 53. sound-controlled ligh > num = machine PWM(machine Pin(15)) "

P 1) 54. Flame alarm e

b)) 55. smoke alarm Shell 3¢

[} 56. breathalyzer piig i a

-1} 57. rainbow

-1} 58. Ultrasonic radar

-1} 59. IR control LED

1) 6. Avoiding

Mg |

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

Double-click adjust the light.py, and click > to run the test code.

422

Ml
o

www.keyestudio.com

* lesson 45
* adjust the light

* http:/ /www.keyestudio.com

import machine

import utime

potentiometer = machine.ADC(26)

pwm = machine.PWM(machine.Pin(15))
pwm.freq(1000)

while True:
pot_value = potentiometer.read_ul16()
pwm.duty_ul6(pot_value)

utime.sleep(0.1)

Code Explanation

It is easy to control the brightness of the LED light by a potentiometer.

Here we can find that MicroPython unifies the value range of the ADC

423

£

www.keyestudio.com

between 0 and 65535, and assigns values directly, which is simple and

convenient.

Test Result
Run the test code and turn the potentiometer on the module to adjust the

brightness of the LED on the LED module.

424

pv4
o

www.keyestudio.com

Project 52: Smart Windows

Description

In life, we can see all kinds of smart products, such as smart home. Smart
homes include smart curtains, smart windows, smart TVs, smart lights, and
more. In this experiment, we use a steam sensor to detect rainwater, and

then achieve the effect of closing and opening the window by a servo.

Required Components

. Lo Keyestudio .
Raspberry Pi Raspberry Pi Pico 3P Dupont Micro USB
. . Steam Servo*1)
Pico Board*1 Expansion Board*1 Wire*1 Cab | e*1
Sensor*1

425

Ml
o

www.keyestudio.com

Connection Diagram

UARTO UARTI

1w Vs

B . L00oDCs aooooom

SPIO
cp13

P
GpPI0

V3

2c1

Py -
B o i o
LT =]
o .
oannamac =
. bt bbb _dPP N
o o a o

fritzing

Run the test code

Find and double-click button control LED.py and click >

426

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code_MicroPython/52. Smart window/Smart_window.py @ 37:58 ~ » X

File Edit View Run Device Tools Help

K o

Files ‘ Smart_window.py ‘
MicroPython device == 10 I il |
bl lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi ||| |
2 ADXL345.py 3 * lesson 52 |
~ 4 * Smart window
This computer = 5 * http://www.keyestudio.com
/ home / pi / pica / ol '
Pico_code_MicroPython 7 import utime
[} 50. Encoder control RGB g from ma':h]}ne :!-mPort Pin
b)) 51. adjust the light 9 from machine import PWM
- 10

11 pwm = PWM(Pin(9))#5

17 mwm. Ffreals50Y#70ms nerinad z:n the freniencv = H
1 4

(B

J 53, sound-controllead
L 54. Flame alarm
L 55. smoke alarm
|} 56. breathalyzer
4 57. rainbow
I
¢
?

“hon v1.17 on 2021-09-02; Raspberry Pi Pico with

' 58. Ultrasonic radar
4 59. IR control LED
I} 6. Avoiding

R v v A

- BEes il

Test Code
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 46
* Smart_window
* http:/ /www.keyestudio.com
import utime
from machine import Pin

from machine import PWM

427

Ml
o

www.keyestudio.com

pwm = PWM(Pin(9))#the pin of the servo is connected to GP9
pwm.freq(50)#20ms, frequency is 50Hz

sensor = machine.ADC(26)#ADCO

The duty cycle corresponding to the angle

0° ----2.5%----1638

45° ----5%----3276

90° ----7.5%----4915

135° ----10%----6553

180° ----12.5%----8192

Take consideration into errors , set duty cycle in the range of
1000~9000, then rotate 0~180°

angle_0 = 1638

angle_90 = 4915

angle_180 = 8192

while True:
value = sensor.read_ul6()
print(value)
if value > 2000:

pwm.duty_ul6(angle_0)

428

£

www.keyestudio.com

utime.sleep(0.5)
else:
pwm.duty_ul6(angle_180)

utime.sleep(0.5)

Code Explanation

We can control a servo to rotate by a threshold

Test Result
Wire up and run the test code. When the sensor detects a certain amount

of water, the servo rotates to achieve the effect of closing or opening

windows.

429

Ml
o

www.keyestudio.com

Project 53: Sound Activated Light

- JEale

Introduction

In this lesson, we will make a smart sound activated light using a sound
sensor and an LED module. When we make a sound, the light will
automatically turn on; when there is no sound, the lights will automatically
turn off. How it works? Because the sound-controlled light is equipped with
a sound sensor, and this sensor converts the intensity of external sound
into a corresponding value. Then set a threshold, when the threshold is

exceeded, the light will turn on, and when it is not exceeded, the light will

430

Ml
o

www.keyestudio.com

go out.

Components

o
Raspberry | Raspberry | Keyestudio | Keyestudio

3P Dupont | MicroUSB
Pi Pico Pi Pico Sound White LED

Wire*2 Cable*1
Board*1 Shield*1 Sensor*1 Module*1

Connection Diagram

auoydosdiy

pv4
o

www.keyestudio.com

Run the Test Code:

Double-click sound-controlled lights.py and clock > to run the test code.

Thonny - /home/pi/pico/Pico_code MicroPytha.. rolled lights/sound-controlled lights.py @ 23.5 ~» ~ X

File Edit View Run Device Tools Help

00 o

4

This computer 5
/home / pi / pico / 6
7

8

Files 2 ‘ \ sound-controlled lights.py ‘
MicroPython device == ! 1
b lib = * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
7 ADXL345.py * lesson 53
i * sound-controlled lights
= *

http://www.keyestudio.com

Pico_code_MicroPython

I 11 50. Encoder control RGB

B[51. adjust the light 9 _
) 52. Smart window 10 MicroPhone = machine.ADC(26)
~

I, 53. sound-controlled light])])
|.=‘ e el Iightq . 17 led = machine Pin{15 _machine_Pin_0IIT) B

/| 54, Flame alarm ‘7

. 55. smoke alarm Khem@ ‘

| 56. breathalyzer e B

© 57. rainbow

|4 58. Ultrasonic radar

I, 59. IR control LED

. 6. Avoiding

import machine
import time

v v W v OV W W
HEEEEEE

Test Code
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 47
* sound-controlled lights

* http:/ /www.keyestudio.com

432

Ml
o

www.keyestudio.com

import machine

import time

MicroPhone = machine.ADC(26)

led = machine.Pin(15,machine.Pin.OUT)

while True:
value = MicroPhone.read_ul16()
print(value)
if value > 5000:
led.value(1)
time.sleep(3)
else:
led.value(0)

time.sleep(0.1)

Code Explanation
We set the analog threshold value to 5000. If more than 5000, LED will be

on 3s; on the contrary, it will be off.

Test Result

433

£

www.keyestudio.com

Run the test code, the shell monitor displays the corresponding volume
value. When the analog value of sound is greater than 5000, the LED on the

LED module will light up, otherwise it will go off.

Shell 3¢ |

720
384

1072
448

10242

Project 54: Fire Alarm

Description
In this experiment, we will make a fire alarm system. Just use a flame sensor

to control an active buzzer to emit sounds.

434

Ml
o

www.keyestudio.com

Required Components

(i«

A-BUZZER .

Raspberry Pi Pico Raspberry Pi Pico Expansion | Keyestudio DIY Eg keyestudio DIY

Board*1 Board*1 Active Buzzer*1 Flame Sensor*1
= — Q=
Micro USB Cable*1 3P Dupont Wire*1 4P Dupont Wire*1

Connection Diagram
¥3azznag-v

UARTO UARTI 0o 0 0 009 9002 @

Vs Vs = 5 s 5.5 1 INIHSVM
d3ldv
avas

GND

00000000 aaAAAR: . , 5

ey .

~ power_our 1 " I
RESET,

fritzing

Run the test code

Find and double-click Flame_alarm.py and cIickﬁ

435

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code_MicroPython/54. Flame alarm/Flame_alarm.py @ 20:20 ~ »~ x

File Edit View Run Device Tools Help

0|0 o

Files ‘ \ Flame_alarm.py ‘
MicroPython device =° i ! N
b lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi |
ADXL345.py 3 * lesson 54
2 4 * Flame_alarm
This computer = 5 * http://www.keyestudio.com
[home / pi / pico / By '
Pico_code_MicroPython 7 from machine import Pin
B [) 50. Encoder control RGB ¢ import time
b} 51. adjust the light 9
b)) 52. Smart window 10 buzzer = Pin(3, Pin.0UT)
I> |} 53. sound-controlled light 1% sensor = Pin(22, Pin.IN)
< [m ‘ 17 }v
I “ Flame_alarm.py |
I>1) 55. smoke alarm Shell
1>}, 56. breathalyzer T =
-1} 57. rainbow 17 on 2021.0 i v Pi Pia o
I} 58. Ultrasonic radar a o - .
>4 59. IR control LED i e s
I} 6. Avoiding o
Test Code
m

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 48
* Flame_alarm

* http:/ /www.keyestudio.com

from machine import Pin

import time

buzzer = Pin(3, Pin.OUT)

436

Ml
o

www.keyestudio.com

sensor = Pin(22, Pin.IN)

while True:
analogVal = sensor.value()
print(analogVal)
if analogVal ==
buzzer.value(1)
else:
buzzer.value(0)

time.sleep(0.5)

Code Explanation
This flame sensor uses an analog pin and a digital pin. When a flame is
detected, the digital pin outputs a low level. In this experiment we will use

the digital port.

Test Result
Wire up, run the test code and power on. The sensor detects the flame, and
the external active buzzer will emit sounds, otherwise the active buzzer will

not emit sounds.

437

£

www.keyestudio.com

Project 55: Smoke Alarm

438

Ml
o

www.keyestudio.com

Description
In this experiment, we will make a smoke alarm by a TM16504-Digit segment

module, a gas sensor and an active buzzer.

Required Components

Keyestudio
TM16504-Digit
Segment Module*1

Raspberry Pi Pico Raspberry Pi Pico Expansion | Keyestudio Active
Board*1 Board*1 Buzzer*1

— R

keyestudio Analog . . .
3P Dupont Wire*1 4P Dupont Wire*2 | Micro USB Cable*1
Gas Senso*1

Connection Diagram

439

Ml
o

www.keyestudio.com

¥3azzng-v

aqny |eybig-y

3 § 3 3 &8 =3

ONIHSYM
ENEL

uuuuu
8 g

fritzing

Run the test code

Find and double-click smoke _alarm.py and click >

File Edit View Bun Device Tools Help

00 o

Files 2 smoke_alarm.py % |

(|

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi
* lesson 55

* smoke alarm

* http://www.keyestudio.com

[

m

MicroPython device

Ly lib
A ADXL345.py

I

This computer
/home / pi / pico /

Pico_code_MicroPython 7 from machine import Pin
< [J_55. smoke alarm & import time
#, smoke_alarm.py | .
,II 56. breathalyzer I 16 mg2 = machine.ADC(26)
J\ 57. rainbow 11 buzzer = Pin(3, Pin.0UT)
4 58. Ultrasonic radar i L }.
) 59, IR control LED : ;
/1 6. Avoiding Shell 3 .

}, 60. heat abstractor

4 61. Intelligent access cor
4 62. Comprehensive expe
4 7. Line tracking sensor

4 8. Photo Interrupt

R ™ e e v A~ S
A

v |>>> ~

440

Ml
o

www.keyestudio.com

Test Code
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 49
* smoke_alarm
* http:/ /www.keyestudio.com
from machine import Pin

import time

mq2 = machine.ADC(26)
buzzer = Pin(3, Pin.OUT)
definitions for TM1650
ADDR_DIS = 0x48 #mode command

ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST =0
BRIGHT_TYPICAL = 2

BRIGHTEST =7

on =1

441

Ml
o

www.keyestudio.com

off =0

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6¢c,0x6e]

DIG = [0x6e,0x6c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15
dioPin = 14
clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):
global clk,dio
for i in range(8):
if(wr_data & 0x80 == 0x80):
dio.value(1)
else:

dio.value(0)

442

Ml
o

www.keyestudio.com

clk.value(0)
time.sleep(0.0001)
clk.value(1)
time.sleep(0.0001)
clk.value(0)
wr_data <<=1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
time.sleep(0.0001)
dio.value(0)

return

def ack():
global clk,dio
dy=0
clk.value(0)
time.sleep(0.0001)

dio = Pin(dioPin, machine.Pin.IN)

443

Ml
o

www.keyestudio.com

while(dio.value() == 1):
time.sleep(0.0001)
dy +=1
if(dy>5000):
break
clk.value(1)
time.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, machine.Pin.OUT)

return

def stop():
global clk,dio
dio.value(0)
clk.value(1)
time.sleep(0.0001)
dio.value(1)

return

def displayBit(bit, num):
global ADDR_DIS

if(num > 9 and bit > 4):

444

Ml
o

www.keyestudio.com

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
if(DOT[bit-1] == 1):
writeByte(NUM[num] | 0x80)
else:
writeByte(NUM[num])
ack()
stop()

return

def clearBit(bit):
if(bit > 4):
return

start()

445

Ml
o

www.keyestudio.com

writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()

stop()

start()
writeByte(DIG[bit-1])
ack()

writeByte(0x00)

ack()

stop()

return

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

return

def setMode(segment = 0):
global DisplayCommand

DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

446

Ml
o

www.keyestudio.com

return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff

return

def displayDot(bit, OnOff):
if(bit > 4):
return
if(OnOff == 1):
DOT[bit-1] = 1;
else:
DOT[bit-1] = 0;

return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):

clearBit()

447

Ml
o

www.keyestudio.com

return

def ShowNum(num): #0~9999

displayBit(1,num%10)

if(num < 10):
clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)

clearBit(4)

if(num > 999 and num < 10000):

displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

InitDigitalTube()

448

Ml
o

www.keyestudio.com

while True:
value = mq2.read_ul6()//16
print(value)
ShowNum(value)
if value > 1000:
buzzer.value(1)
else:
buzzer.value(0)

time.sleep(0.1)

Code Explanation

Define an integer variable val to store the analog value of the smoke sensor, and
then we display the analog value in the four-digit digital tube, and then set a

threshold, and when the threshold is reached, the buzzer will sound.

Test Result
Run the test code, wire up and power on. When the concentration of

combustible gas exceeds the standard, the active buzzer module will give

449

£

www.keyestudio.com

an alarm, and the four-digit digital tube will display the concentration

value.

Description

In the last experiment, we made a smoke alarm. In this experiment, we
combine the active buzzer, the MQ-3 alcohol sensor, and a four-digit

digital tube to test the alcohol concentration through the alcohol sensor.

450

Ml
o

www.keyestudio.com

Then, the concentration to control the active buzzer alarm and the
four-digit digital tube to display the concentration. So as to achieve the

simulation effect of alcohol detector.

Components Required

@] ‘.
Raspberry Pi Pico Raspberry Pi Pico Expansion) Keyestudio TM1650
Active Buzzer o
Board*1 Board*1 4-Digit Module*1
keyestudio Alcohol)))
3P Dupont Wire*1 4P Dupont Wire*2 | Micro USB Cable*1

Sensor*1

Connection Diagram

SEAL
AFTER
WASHING

oyooy

aqny |enbia-v

a0 80 0
uuuuuu
I3 33:2884¢89%¢8§
@8 2383338 3% 3

ano
394
5 oI
e 212

nnnnn
T T g3z

5 38 O

451

Ml
o

www.keyestudio.com

Run the test code

Find the breathalyzer.py and double-click the code and click @

Thenny - /home/pi/pico/Pico_code_MicroPython/56. breathalyzer/breathalyzerpy @ 186:1 v & x
File Edit View Run Device Tools Help

¥ 1

Files i ‘

MicroPython device \
Iy lib
2 ADXL345.py

1]
-

|
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi
* lesson 56

* breathalyzer

This computer * http://www.keyestudio.com

/ home / pi / pico / = .

Pico_code_MicroPython from machine import Pin

1
un W M

~lh b B

b} 55. smoke alarm 8 imPOrt time
< |4 _56. breathalyzer 9
| breathalyzer.py | 10 mg3 = machine.ADC(26)
b [} 57. rainbow 11 buzzer = Pin(3, Pin.0UT)
I) 58. Ultrasonic radar B 12 # definitions f TM1R5 .
1) 59. IR control LED A—
b)) 6. Avoiding Shell 2 ‘

1) 60. heat abstractor =
[0 61. Intelligent access cor ' ' ' ' ' : : ' ' ' ' | ' '
[} 62. Comprehensive expe
14 7. Line tracking sensor
[l 8. Photo Interrupt

- | >>>

Code Explanation
Define an integer variable val to store the analog value of the alcohol
sensor, then we display the analog value in the four-digit display module

and set a threshold.

Test Result

Wire up according to the wiring diagram and run the test code. When
different alcohol concentrations are detected, the active buzzer module

will alarm, and the four-digit digital display will show the concentration

452

£

www.keyestudio.com

value.

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 56
* breathalyzer
* http:/ /www.keyestudio.com
from machine import Pin

import time

mq3 = machine.ADC(26)
buzzer = Pin(3, Pin.OUT)
definitions for TM1650

ADDR_DIS = 0x48 #mode command

453

Ml
o

www.keyestudio.com

ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST =0
BRIGHT_TYPICAL = 2

BRIGHTEST =7

on =1

off =0

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6¢c,0x6e]

DIG = [0x6e,0x6c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15
dioPin = 14
clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

454

Ml
o

www.keyestudio.com

def writeByte(wr_data):
global clk,dio

for i in range(8):

if(wr_data & 0x80 == 0x80):

dio.value(1)
else:

dio.value(0)
clk.value(0)
time.sleep(0.0001)
clk.value(1)
time.sleep(0.0001)
clk.value(0)
wr_data <<=1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
time.sleep(0.0001)

dio.value(0)

455

Ml
o

www.keyestudio.com

return

def ack():
global clk,dio
dy=0
clk.value(0)
time.sleep(0.0001)
dio = Pin(dioPin, machine.Pin.IN)
while(dio.value() == 1):
time.sleep(0.0001)
dy +=1
if(dy>5000):
break
clk.value(1)
time.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, machine.Pin.OUT)

return

def stop():
global clk,dio

dio.value(0)

456

Ml
o

www.keyestudio.com

clk.value(1)
time.sleep(0.0001)
dio.value(1)

return

def displayBit(bit, num):

global ADDR_DIS

if(num > 9 and bit > 4):
return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

if(DOT[bit-1] == 1):
writeByte(NUM[num] | 0x80)

else:

writeByte(NUM[num])

457

Ml
o

www.keyestudio.com

ack()

stop()

return

def clearBit(bit):

if(bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()
stop()

return

458

Ml
o

www.keyestudio.com

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff

return

def displayDot(bit, OnOff):
if(bit > 4):
return
if(OnOff == 1):
DOT[bit-1] = 1;
else:

DOT[bit-1] = 0;

459

Ml
o

www.keyestudio.com

return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):
clearBit()

return

def ShowNum(num): #0~9999

displayBit(1,num%10)

if(num < 10):
clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):

displayBit(2,num//10%10)

460

Ml
o

www.keyestudio.com

displayBit(3,num//100%10)

clearBit(4)

if(num > 999 and num < 10000):

displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

InitDigitalTube()

while True:
value = mq3.read_ul6()//16
print(value)
ShowNum(value)
if value > 3000:
buzzer.value(1)
else:
buzzer.value(0)

time.sleep(0.1)

461

pv4
o

www.keyestudio.com

Project 57: 6812 Colorful LED

Description

We learned how to use the 6812 RGB module, we knew that this module
can light up each LED through a pin. In this experiment, we will control the
RGB module to display different colors. (Note: do not look directly at the

LEDs for a long time to avoid damage to our eyes.)

Required Components

462

Ml
o

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi
Pico Shield*1

Keyestudio
6812 RGB
Module*1

3P Dupont
Wire*1

MicroUSB
Cable*1

Connection Diagram

=2}
=
perd
LX)
A
@
m
-
m
o

Run the test code:

DEBUG

fritzing

Double-click 6812.py and click @ to run the test code

463

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code MicroPython/57. rainbow/6812.py @ 102:1

File Edit View Run Device Tools Help
ey o
Files 3 ‘ \ 6812.py ‘

-

MicroPython device == ey ' I
b lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi

2 ADXL345.py u 3 * lesson 57

= 4 * SK6812 RGB
This computer = 5 % http://www.keyestudio.com
/ home / pi / pico / BE '
Pico_code_MicroPython 7 # Example using PIO to drive a set of WS2812 LEDs.
4 55. smoke alarm 8 . .
1) S6. breathalyzer 9 1import array, time
160 from machine import Pin

— I} 57. rainbow
e Y
4 58. Ultrasonic radd
/' 59. IR control LED
I\ 6. Avoiding Shell ‘

|} 60. heat abstractor T a
¢

?

'l

?

11 import rp2
12 o
4 &

) 61. Intelligent access cor
|| 62. Comprehensive expe
l, 7. Line tracking sensor
I 8. Photo Interrupt

R L L A A v

- |>>> il

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 50
* SK6812 RGB

* http://www.keyestudio.com

Example using PIO to drive a set of WS2812 LEDs.

import array, time

from machine import Pin

464

Ml
o

www.keyestudio.com

import rp2

Configure the number of WS2812 LEDs.
NUM_LEDS =4
PIN_NUM =15

brightness = 0.2

@rp2.asm_pio(sideset_init=rp2.PI10.0UT_LOW,
out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=24)
def ws2812():

T1=2

T2=5

T3=3

wrap_target()

label("bitloop")

out(x, 1) .side(0) [T3-1]

jmp(not_x, "do_zero") .side(1) [T1-1]

jmp("bitloop") .side(1) [T2-1]

label("do_zero")

nop() .side(0) [T2-1]

wrap()

465

Ml
o

www.keyestudio.com

Create the StateMachine with the ws2812 program, outputting on
pin
sm = rp2.StateMachine(0, ws2812, freq=8_000_000,

sideset_base=Pin(PIN_NUM))

Start the StateMachine, it will wait for data on its FIFO.

sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.

ar = array.array("I", [0 for _ in range(NUM_LEDS)])

HEBBHHEH BB BB BB H BB B R BB B HBE BB R R BB R B B R HE TR H
HEBBHHEB BB HBRBHBERBH BB B HBE BB R R TR H
def pixels_show():
dimmer_ar = array.array("I", [0 for _ in range(NUM_LEDS)])
for i,c in enumerate(ar):
r = int(((c >> 8) & OxFF) * brightness)
g = int(((c >> 16) & OxFF) * brightness)
b = int((c & OxFF) * brightness)
dimmer_ar[i] = (g<<16) + (r<<8) + b

sm.put(dimmer_ar, 8)

466

Ml
o

www.keyestudio.com

time.sleep_ms(10)

def pixels_set(i, color):

ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]

def color_chase(color, wait):
for i in range(NUM_LEDS):
pixels_set(i, color)
time.sleep(wait)
pixels_show()

time.sleep(0.2)

def wheel(pos):
Input a value 0 to 255 to get a color value.
The colours are a transitionr-g-b - back tor.
if pos < 0 or pos > 255:
return (0, 0, 0)
if pos < 85:
return (255 - pos * 3, pos * 3, 0)
if pos < 170:
pos -= 85

return (0, 255 - pos * 3, pos * 3)

467

Ml
o

www.keyestudio.com

pos -= 170

return (pos * 3, 0, 255 - pos * 3)

def rainbow_cycle(wait):
for j in range(255):
for i in range(NUM_LEDS):
rc_index = (i * 256 // NUM_LEDS) + j
pixels_set(i, wheel(rc_index & 255))
pixels_show()

time.sleep(wait)

BLACK = (0, 0, 0)

RED = (255, 0, 0)

YELLOW = (255, 150, 0)

GREEN = (0, 255, 0)

CYAN = (0, 255, 255)

BLUE = (0, 0, 255)

PURPLE = (180, 0, 255)

WHITE = (255, 255, 255)

COLORS = (BLACK, RED, YELLOW, GREEN, CYAN, BLUE, PURPLE,

WHITE)

468

Ml
o

www.keyestudio.com

print("chases")
for color in COLORS:

color_chase(color, 0.05)

print("rainbow")

rainbow_cycle(0)

Code Explanation
color _chase(color, wait): show color

rainbow cycle(0): show the rainbow effect

Test Result
Wire up, run the test code. Then the four lamp beads will display flowing
lights, showing black, red, yellow, green, blue, blue, purple and white and

a rainbow light effect.

469

£

www.keyestudio.com

Project 58: Ultrasonic Radar

File Edit Sketch Tools Help

© RADAR BEST

Gust MEES A B LT Distance?2 cm

Description

470

£

www.keyestudio.com

We know that bats use echoes to determine the direction and the location
of their preys. In real life, sonar is used to detect sounds in the water. Since
the attenuation rate of electromagnetic waves in water is very high, it
cannot be used to detect signals, however, the attenuation rate of sound
waves in the water is much smaller, so sound waves are most commonly
used underwater for observation and measurement.In this experiment, we
will use a speaker module, an RGB module and a 4-digit tube display to

make a device for detection through ultrasonic.

Required Components

) Keyes brick) . .
) Raspberry Pi Keyestudio Audio | Keyestudio DIY
Raspberry Pi)) HC-SR04
. Pico Expansion . Power Common Cathode
Pico Board*1 Ultrasonic o
Board*1 Amplifier* RGB Module *1

Sensor*1

471

Ml
o

www.keyestudio.com

o | S

Keyestudio DIY
TM1650 4-Digit

)) Micro USB
4P Dupont Wire*3 | 3P Dupont Wire*1
Segment

Cable*1
Display*1

Connection Diagram

000UOOCO0000000

2y 2
. &
= . .
4-Digital Tube ano (B ono e 9 8
& 3 3 d

Power_OUT
RESET,

SV GNI

fritzing
Run the test code:

Double-click Ultrasonic radar.py, and click > to run the test code.

472

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code_MicroPytho.... Ultrasonic radar/Ultrasonic radarpy @ 232:5 ~ »~ x

File Edit View Bun Device Tools Help

e gt o

Files i ‘ Ultrasonic radar py ‘
MicroPython device =" ik 1
b lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
? ADXL345.py Bl 3 * lesson 58
= 4 * Ultrasonic radar

This computer = 5 % http://www.keyestudio. com
/ home / pi/ pica / Bl """
Pico_cade_MicroPython 7 from machine import Pin, PWM
-1} 55. smoke alarm 8 import utime
b1l 56. breathalyzer 9 : = B
bl 57. rainbow 10 | # definitions for
- |J\ 58. Ultrasonic radar 11 ADDR DIS = 0x48 1 comm

,:/ Ultrasonic radar.py . 17 ADDR KFY = (x49 #reard kev valine rcommand }v
1Y 59. IR control LED ‘
[} 6. Avoiding N\ Shell %
I [)) 60. heat abstractor T -
Il 61. Intelligent access cor
Il 62. Comprehensive expe
[} 7. Line tracking sensor
1) 8. Photo Interrupt

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 51
* Ultrasonic radar

* http:/ /www.keyestudio.com

from machine import Pin, PWM

import utime

definitions for TM1650

473

Ml
o

www.keyestudio.com

ADDR_DIS = 0x48 #mode command

ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST =0
BRIGHT_TYPICAL = 2

BRIGHTEST =7

off =0

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6¢c,0x6e]

DIG = [0x6e,0x6¢c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15
dioPin = 14
clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

474

Ml
o

www.keyestudio.com

DisplayCommand = 0

def writeByte(wr_data):
global clk,dio
for i in range(8):
if(wr_data & 0x80 == 0x80):
dio.value(1)
else:
dio.value(0)
clk.value(0)
utime.sleep(0.0001)
clk.value(1)
utime.sleep(0.0001)
clk.value(0)
wr_data <<=1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)

utime.sleep(0.0001)

475

Ml
o

www.keyestudio.com

dio.value(0)

return

def ack():
global clk,dio
dy=0
clk.value(0)
utime.sleep(0.0001)
dio = Pin(dioPin, machine.Pin.IN)
while(dio.value() == 1):
utime.sleep(0.0001)
dy +=1
if(dy>5000):
break
clk.value(1)
utime.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, machine.Pin.OUT)

return

def stop():

global clk,dio

476

Ml
o

www.keyestudio.com

dio.value(0)
clk.value(1)
utime.sleep(0.0001)
dio.value(1)

return

def displayBit(bit, num):

global ADDR_DIS

if(num > 9 and bit > 4):
return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

if(DOT[bit-1] == 1):
writeByte(NUM[num] | 0x80)

else:

477

Ml
o

www.keyestudio.com

writeByte(NUM[num])
ack()

stop()

return

def clearBit(bit):

if(bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()
stop()

return

478

Ml
o

www.keyestudio.com

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+0OnOff

return

def displayDot(bit, OnOff):
if(bit > 4):
return
if(OnOff == 1):
DOT[bit-1] = 1;

else:

479

Ml
o

www.keyestudio.com

DOT[bit-1] = 0;

return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):
clearBit()

return

def ShowNum(num): #0~9999

displayBit(1,num%10)

if(num < 10):
clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):

480

Ml
o

www.keyestudio.com

displayBit(2,num//10%10)
displayBit(3,num//100%10)

clearBit(4)

if(num > 999 and num < 10000):

displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

pwm_r = PWM(Pin(9))
pwm_g = PWM(Pin(10))

pwm_b = PWM(Pin(11))

pwm_r.freq(1000)
pwm_g.freq(1000)
pwm_b.freq(1000)

def light(red, green, blue):
pwm_r.duty_ulé6(red)
pwm_g.duty_ul6(green)
pwm_b.duty_ul6(blue)

ultrasonic ranging, unit: cm

481

Ml
o

www.keyestudio.com

def getDistance(trigger, echo):
produce 10us square waves
trigger.low() #preserve a short a low level to secure a high level:
utime.sleep_us(2)
trigger.high()
utime.sleep_us(10)#pull up high levels, wait for 10ms and set low
levels

trigger.low()

while echo.value() == 0: #build a while loop to detect pins are 0 or
not, record the current time
start = utime.ticks_us()
while echo.value() == 1: #build a while loop to detect pins are 1 or
not, record the current time
end = utime.ticks_us()
d = (end - start) * 0.0343 / 2 #travelling time x sound speed(343.2
m/s, 0.0343cm for each ms), double distance is divided by 2

returnd

set pins
trigger = Pin(20, Pin.OUT)

echo = Pin(19, Pin.IN)

482

Ml
o

www.keyestudio.com

buzzer = PWM(Pin(16))

def playtone(frequency):
buzzer.duty_u16(1000)

buzzer.freq(frequency)

def bequiet():
buzzer.duty_u16(0)

main program
InitDigitalTube()
while True:
distance = int(getDistance(trigger, echo))
ShowNum(distance)
if distance <= 10:
playtone(880)
utime.sleep(0.1)
bequiet()
light(65535, 0, 0)
elif distance <= 20:

playtone(532)

483

Ml
o

www.keyestudio.com

utime.sleep(0.2)

bequiet()

light(0, 0, 65535)
else:

light(0, 65535, 0)

Code Explanation
We set sound frequency and light color by adjusting different distance
range.

We can adjust the distance range in the code.

Test Result

Wire up according to the connection diagram upload the run the code and
power up. When the ultrasonic sensor detects different distances, the
buzzer will produce different frequencies of sound, the RGB will show
different colors, and the measured distances are displayed on the 4-digit

tube display.

484

£

www.keyestudio.com

Project 59: IR Remote Control

Introduction

In the previous experiments, we learned to turn on or turn off the LED,

485

Ml
o

www.keyestudio.com

adjust the brightness of a light through PWM, and how to use the infrared

receiver module. So in this experiment, we use an infrared remote control

to control an LED module.

When we receive a value, we set the PWM value by the corresponding

button value, thus you can adjust the brightness. Control the LED to turn

on or turn off is in the same way. If we want to use the same button to

control the LED to turn on or turn off, we can achieve it through the code.

Components

Raspberry Pi Pico
Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY
Purple LED Module*1

Keyestudio DIY IR
Receiver*1

2 ¥©0O0 ()
10000

F¥000 [

-

Micro USB Cable*1

IR Remote Control*1

3P Dupont Wire*2

Connection Diagram

486

Ml
o

www.keyestudio.com

cet [0 <r 1N -
Lnuu cazu

SPI0 spn

N1

2 11
k]
o mu
Power_OUT

Ir receiver

fritzing

Run the test code:

Double-click IR control LED.py, and click > to run the code

Tools Help

o

| IR control LED.py '

This computer
/home / pi / pico / i !

http://www.keyestudio.com

]

MicroPython device = vl
b lib * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
@ ADXL345.py o * lesson 59
| | * IR control LED
= | i *

Pico_code_MicroPython 7 import time

b [l 55. smoke alarm & from machine import Pin

[} 56. breathalyzer . .

b)) 57. rainbow 10 led = Pin(14, Pin.OUT)

b [) 58. Ultrasonic radar I ird = Pin(16,Pin.IN)

<~ [._59 IR rontral LED . % .

“ IR control LED.py | "

/I 6. Avoiding Shell .
} 60. heat abstractor : e =

L 61. Intelligent access cor
4 62. Comprehensive expe
4 7. Line tracking sensor

4 8. Photo Interrupt

A A R S v

487

Ml
o

www.keyestudio.com

Test Code
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 52
* IR control LED
* http:/ /www.keyestudio.com
import time

from machine import Pin

led = Pin(14, Pin.OUT)

ird = Pin(16,Pin.IN)

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2":
"LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":
"LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5":
"LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":
"LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8":
"LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":

"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

488

Ml
o

www.keyestudio.com

"o": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up":
"LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":
"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":
"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok":
"LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

R "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#":

"LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):
wait =1
complete = 0
seq0 =[]
seql =[]

while wait ==
if ird.value() ==
wait=0
while wait == 0 and complete ==
start = time.ticks_us()
while ird.value() ==

ms1l = time.ticks_us()

489

Ml
o

www.keyestudio.com

diff = time.ticks_diff(ms1,start)
seq0.append(diff)
while ird.value() == 1 and complete ==
ms2 = time.ticks_us()
diff = time.ticks_diff(ms2,ms1)
if diff > 10000:
complete =1

seql.append(diff)

code — nn

for val in seql.:

if val < 2000:
if val < 700:
code +="L"
else:
code += "H"

print(code)
command = ""
for k,v in act.items():
if code ==
command = k

if command ==

490

Ml
o

www.keyestudio.com

command = code

return command

flag = False
while True:

& global flag

command = read_ircode(ird)

print(command, end ="
print(flag,end =" ")
if command == "Ok":
if flag == True:
led.value(1)
flag = False
print("led on")
else:
led.value(0)
flag = True
print("led off")

time.sleep(0.1)

")

491

£

www.keyestudio.com

Code Explanation
We define a boolean variable. There are two boolean variables. true (true)

or false (false), boolean flag = true.

2. When we press the OK button, the value of infrared reception is 64. At
this time, we need to set a boolean variable flag. When the flag is true
(true), the LED is turned on, and when it is false (false), the LED is turned off
and turned on. After the LED is on and set it to false. We press the OK key,
the LED will be off.

Test Result

Wire up, upload the test code and open the Shell monitor. Press the OK

button of the remote, the LED will be on; press it again, the LED will be off.

| Shell 3¢ |

|
| >»>

b

Ok False led off
Ck True led on
0k False led off
0k True 1led on
Ck False led off
0k True 1led on
0k False led off

492

£

www.keyestudio.com

Project 60: Heat Dissipation Device

Description

We will use a temperature sensor and some modules to make a smart
cooling device in this experiment. When the ambient temperature is higher
than a certain value, the motor is turned on, thereby reducing the ambient
temperature and achieving the heat dissipation effect. Then display the

temperature value in the four-digit segment display.

Required Components

493

Ml
o

www.keyestudio.com

Raspberry Pi Pico
Board*1

Raspberry Pi Pico Expansion
Board*1

keyestudio 130
Motor*1

Keyestudio
TM1650 4-Digit
Segment Display*1

e @
D=

18820
Temperature

—

a0 =

Keyestudio 18B20

Temperature Sensor*1

3P Dupont Wire*1

4P Dupont Wire*2

Micro USB Cable*1

Connection Diagram

aqny |enbig-¢

aunesadwal
[114: 38

2@

fritzing

494

pv4
o

www.keyestudio.com

Run the test code

Find and double-click heat_abstractor.py and click >

Thonny - /home/pi/pico/Pico_code_MicroPython/60. heat abstractor/heat_abstractorpy @ 5:29 ~ ~ x

File Edit View Run Device Tools Help

e gt o

Files 3¢ ‘ heat_abstractor.py ‘
MicroPython device =k R :
b lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
ADXL345.py 3 * lesson 60
e 4 * heat abstractor

This computer = 5 * http://www.keyestudio. con
/home / pi / pico / e
Pico_code MicroPython 7 import machine, onewire, dsl18x20, time
1) 55. smoke alarm 8
b1} 56. breathalyzer 9 ds_pin = machine.Pin(3)
Py 57. rainbow 10
b[jl 58. Ultrasonic radar 11 ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds pin
b[) 59. IR control LED) 12 .
B L1 6. Avoiding
= |} 60. heat abstractor Shell =¢ ‘

I", heat_abstractor.py |‘. -
1 61, Intelligent access cor ™ . A
1) 62. Comprehensive expe & 2
14 7. Line tracking sensor T
) 8. Photo Interrupt = L

w v

Test Code

* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 53
* heat_abstractor

* http:/ /www.keyestudio.com

import machine, onewire, ds18x20, time

495

Ml
o

www.keyestudio.com

ds_pin = machine.Pin(3)

ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin))

roms = ds_sensor.scan()

#two pins of the motor

INA = machine.Pin(20, machine.Pin.OUT)
INB = machine.Pin(21, machine.Pin.OUT)
definitions for TM1650

ADDR_DIS = 0x48 #mode command

ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST =0
BRIGHT_TYPICAL = 2

BRIGHTEST =7

on =1

off =0

number:0~9

496

Ml
o

www.keyestudio.com

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6¢c,0x6e]

DIG = [0x6e,0x6c¢c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15
dioPin = 14
clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):
global clk,dio
for i in range(8):
if(wr_data & 0x80 == 0x80):
dio.value(1)
else:
dio.value(0)
clk.value(0)
time.sleep(0.0001)

clk.value(1)

497

Ml
o

www.keyestudio.com

time.sleep(0.0001)
clk.value(0)
wr_data <<=1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
time.sleep(0.0001)
dio.value(0)

return

def ack():
global clk,dio
dy=0
clk.value(0)
time.sleep(0.0001)
dio = machine.Pin(dioPin, machine.Pin.IN)
while(dio.value() == 1):
time.sleep(0.0001)

dy +=1

498

Ml
o

www.keyestudio.com

if(dy>5000):
break
clk.value(1)
time.sleep(0.0001)
clk.value(0)
dio = machine.Pin(dioPin, machine.Pin.OUT)

return

def stop():
global clk,dio
dio.value(0)
clk.value(1)
time.sleep(0.0001)
dio.value(1)

return

def displayBit(bit, num):
global ADDR_DIS
if(num > 9 and bit > 4):
return
start()

writeByte(ADDR_DIS)

499

Ml
o

www.keyestudio.com

ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
if(DOT[bit-1] == 1):
writeByte(NUM[num] | 0x80)
else:
writeByte(NUM[num])
ack()
stop()

return

def clearBit(bit):
if(bit > 4):
return
start()
writeByte(ADDR_DIS)
ack()

writeByte(DisplayCommand)

500

Ml
o

www.keyestudio.com

ack()

stop()

start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()

stop()

return

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

def displayOnOFF(OnOff = 1):

501

Ml
o

www.keyestudio.com

global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff

return

def displayDot(bit, OnOff):
if(bit > 4):
return
if(OnOff == 1):
DOT[bit-1] = 1;
else:
DOT[bit-1] = 0;

return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):
clearBit()

return

def ShowNum(num): #0~9999

502

Ml
o

www.keyestudio.com

displayBit(1,num%10)

if(num < 10):
clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)

clearBit(4)

if(num > 999 and num < 10000):

displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

InitDigitalTube()

print(‘Found DS devices: ', roms)

while True:

503

Ml
o

www.keyestudio.com

ds_sensor.convert_temp()
time.sleep_ms(750)
for rom in roms:
value = ds_sensor.read_temp(rom)
print(value)
ShowNum(int(value))
if value > 28:
INA.value(0)
INB.value(1)
else:
INA.value(0)

INB.value(0)

Code Explanation

The setting of variables and the storage of detection values are the same as
what we learned earlier. We also set a temperature threshold and control
the rotation of the motor when the threshold is exceeded, and then we use

the digital tube to display the temperature value.

Test Result

Wire up and run the test code. We can see the temperature of the current

504

pv4
o

www.keyestudio.com

environment (unit is Celsius) on the four-digit segment display, as shown

in the figure below. If this value exceeds the value we set, the fan will rotate

to dissipate heat.

Project 61: Intelligent Entrance Guard System

Description

In this project, we use the RFID522 card swiping module and the servo to
set up an intelligent access control system. The principle is very simple.We

use RFID522 swipe card module, an IC card or key card to unlock

505

Ml
o

www.keyestudio.com

Required Components

C

Raspberry Pi Pico Raspberry Pi Pico Expansion

Key*1 IC Card*1
Board*1 Board*1

o | S

Keyestudio RFID

Servo*1 4P Dupont Wire*1 | Micro USB Cable*1
Modul e*1

Connection Diagram

o

, £5o~00000000000-.

Power_OUT
RESET,

fritzing

Run the code:

Find Intelligent access control.py and double-click it and click > to run the

506

pv4
o

www.keyestudio.com

code

Thonny - /home/pi/pico/Pico_code_MicroPytho..ss control/Intelligent access control.py @ 54 :1

File Edit View Run Device Tools Help
Files x Intelligent access control.py % ‘

MicroPython device =< i ! o
b1l lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
2 ADXL345.py 3 * lesson 61
: 4 * Intelligent access control
This computer = 5 * http://www.keyestudio.com
/home / pi / pico / b
Pico_code_MicroPython 7 from machine import Pin, PWM
() 55. smoke alarm 4 import time
b[)\ 56. breathalyzer 9 from mfrc522 i2c import mfrc522
It 57. rainbow 10
I [} 58. Ultrasonic radar 11 pwm = PWM(Pin(10))
b} 59. IR control LED i owm . frea(50) =

I} 6. Avoiding

[60. heat abstractor Shell ‘

— [} 61. Intelligent access cor | |~
I", Intelligent access cont

Il 62. Comprehensive expe

It 7. Line tracking sensor

I |1, 8. Photo Interrupt

Test Code

/*
* * Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 54
* Intelligent access control

* http:/ /www.keyestudio.com

507

Ml
o

www.keyestudio.com

*/

#include <Servo.h>
#include <Wire.h>

#include <MFRC522_12C.h>
MFRC522 mfrc522(0x28);
Servo myservo;

String rfid_str = "";

void setup() {
Serial.begin(9600);
Wire.begin();
mfrc522.PCD_Init();
myservo.attach(10);//the digital port 10 of the servo
myservo.write(0);//initial angle is 0 degree

delay(500);

void loop() {
if (! mfrc522.PICC_IsNewCardPresent() | | !
mfrc522.PICC_ReadCardSerial()) {
delay(50);

return;

508

Ml
o

www.keyestudio.com

}

rfid_str = "";//characters string clear up
Serial.print(F("Card UID:"));
for (byte i = 0; i < mfrc522.uid.size; i++) {// save UID
rfid_str = rfid_str + String(mfrc522.uid.uidByte[i], HEX); //save
characters string
!/ Serial.print(mfrc522.uid.uidByte[i] < 0x10?" 0" : " ");
!/ Serial.print(mfrc522.uid.uidByte[i], HEX);
b
Serial.printin(rfid_str);
if (rfid_str == "8dfe6c4d" | | rfid_str == "bc33766e") {
myservo.write(180);
delay(500);

Serial.printin(" open the door!");

Code Explanation
In the previous experiment, our card swipe module has tested the
information of IC card and key. Then we use this corresponding

information to control the door.

509

£

www.keyestudio.com

Test Result

Upload the test code, wire up and power up with a USB cable, open the
shell and set the baud rate to 9600; the shell displays information.

When we use the IC card or blue key to swipe the card, the shell displays
the card information and "open the door", as shown in the figure below,

the servo rotates to the corresponding angle to simulate opening the door.

P ~
& com7s = |

| _Send

Card UID:8dfebcdd
open the door!
Card UID:bc33766e

open the door! |

m

-

[¥] Autosero 11 | | Show timestamp | Hewline + | 9600 baud - Clear output
LS

510

£

www.keyestudio.com

Project 62: Comprehensive Experiment

Introduction

We did a lot of experiments, and for each one we needed to re-upload the

code, so can we achieve different functions through an experiment? In this

experiment, we will use an external button module to achieve different

functions.

Components Required

Raspberry Pi
Pico Board*1

Raspberry Pi
Pico Expansion
Board*1

Keyestudio DIY
Purple LED
Modu | e*1

Keyestudio
Button Module*1

Keyestudio
Rotary
Encoder*1

Keyestudio
Obstacle
Avoidance

Sensor*1

511

Ml
o

www.keyestudio.com

scL.
g E
;

Y
DXL345 . -

Keyestudio IR

Receiver*1

Keyestudio DIY
Joystick
Modul e*1

keyes brick
HC—SR04

Ultrasonic

sensor *1

Keyestudio
DIYCommon
Cathode RGB
Module *1

Keyestudio
XHT11
Temperatur
e and
Humidity
Sensor

*1

Keyestudio
ADXL345
Acceleration

Sensor*1

a o

Micro USB
Cab le*1

3PDupont Wire*é6

4PDupont Wire*3

5PDupont Wire*1

Remote
Control*1

Connection Diagram

512

Ml
o

www.keyestudio.com

)1

— 11
(—
— mE

Ir receiver

ADXL345

Humidity
temperature

Run the test code

Find the Comprehensive experiment.py, double-click the code and click >

513

pv4
o

www.keyestudio.com

Thonny - /home/pi/pico/Pico_code_MicroPytho..ment/Comprehensive experniment.py @ 187 :22 ~» ~ X

File Edit View Run Device Tools Help

s JRER(>) o

Files ‘ Comprehensive experiment.py ‘
MicroPython device =7 i ;
bl lib 2 * Keyestudio 42 in 1 Starter Kit for Raspberry Pi
ADXL345.py 3 * lesson 62
: 4 * Comprehensive experiment

This computer = 5 * http://www.keyestudio.com
/home / pi / pico / B '
Pico_code_MicroPython 7 from machine import Pin, PWM
b4 55. smoke alarm & import time
) 56. breathalyzer 9 import random
B[} 57. rainbow 10 import dht
b i 58. Ultrasonic radar 11 from ADXL345 import adx1345
b1 59. IR control LED : 12 R
11 6. Avoiding
Bl) 60, heat abstractor Shell 32
k) 61. Intelligent access cor | | -
— | 62. Comprehensive expe . ;

I", Comprehensive experi = ' : = 2 2 S =H
>0 7. Line tracking sensor
I» |1 8. Photo Interrupt K, s = AL

o | 2> Il

Test Code'"’
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 62
* Comprehensive experiment
* http:/ /www.keyestudio.com
from machine import Pin, PWM
import time
import random
import dht

from ADXL345 import adxi345

514

Ml
o

www.keyestudio.com

scl = Pin(21)
sda = Pin(20)
bus =0

snsr = adxI345(bus, scl, sda)

pwm_r = PWM(Pin(2))
pwm_g = PWM(Pin(3))

pwm_b = PWM(Pin(4))

pwm_r.freq(1000)
pwm_g.freq(1000)
pwm_b.freq(1000)

pin = machine.Pin(19, machine.Pin.OUT, machine.Pin.PULL_DOWN)

xht = dht.DHT11(pin)

potentiometer = machine.ADC(28)
button = Pin(16, Pin.IN)

led = PWM(Pin(14))
led.freq(1000)

ird = Pin(11,Pin.IN)

515

Ml
o

www.keyestudio.com

B = machine.Pin(22, machine.Pin.IN)
X = machine.ADC(26)

Y = machine.ADC(27)

avoid = Pin(0, Pin.IN)

Set Ultrasonic Pins

trigger = Pin(6, Pin.OUT)

echo = Pin(7, Pin.IN)

def light(red, green, blue):
pwm_r.duty_ul6(red)
pwm_g.duty_ul6(green)
pwm_b.duty_ul6(blue)

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2":

"LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":

"LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5":

"LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":

"LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8":

"LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":

"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

516

Ml
o

www.keyestudio.com

"o": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up":
"LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":
"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":
"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok":
"LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

R "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#":

"LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):
wait =1
complete = 0
seq0 =[]
seql =[]

while wait ==
if ird.value() ==
wait=0
while wait == 0 and complete ==
start = time.ticks_us()
while ird.value() ==

ms1l = time.ticks_us()

517

Ml
o

www.keyestudio.com

diff = time.ticks_diff(ms1,start)
seq0.append(diff)
while ird.value() == 1 and complete ==
ms2 = time.ticks_us()
diff = time.ticks_diff(ms2,ms1)
if diff > 10000:
complete =1

seql.append(diff)

code — nn

for val in seql.:

if val < 2000:
if val < 700:
code +="L"
else:
code += "H"

print(code)
command = ""
for k,v in act.items():
if code ==
command = k

if command ==

518

Ml
o

www.keyestudio.com

command = code

return command

ultrasonic ranging, unit: cm
def getDistance(trigger, echo):

produce 10us square waves

trigger.low() #preserve a short a low level to secure a high level:
time.sleep_us(2)

trigger.high()

time.sleep_us(10)#pull up high levels, wait for 10ms and set low
levels

trigger.low()

while echo.value() == 0: #Create a while loop to detect whether
the echo pin is 0, and record the current time
start = time.ticks_us()
while echo.value() == 1: #build a while loop to detect pins are 0 or
not, record the current time
end = time.ticks_us()
d = (end - start) * 0.0343 / 2 #travelling time x sound speed(343.2

m/s, 0.0343cm for each ms), double distance is divided by 2

519

Ml
o

www.keyestudio.com

returnd

keys = 0

nums =0

print(keys % 8)

def toggle_handle(pin):
global keys
keys +=1

print(keys % 7)

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle_handle)

def showRGB():
R = random.randint(0,65535)
G = random.randint(0,65535)
B = random.randint(0,65535)
light(R, G, B)

time.sleep(0.3)

def showxht11():

print("temperature : {3

humidity

520

Ml
o

www.keyestudio.com

{3} %".format(xht.temperature, xht.humidity))

time.sleep(1)

def IRreceive():
command = read_ircode(ird)

print(command)

def showJoystick():
B_value = B.value()
X_value = X.read_u16()
Y_value = Y.read_ul16()
print("button:",end =" ")
print(B_value,end =" ")
print("X:", end =" ")
print(X_value,end =" ")
print("Y:",end =" ")
print(Y_value)

time.sleep(0.1)

def adjustLight():
pot_value = potentiometer.read_ul16()

print(pot_value)

521

Ml
o

www.keyestudio.com

led.duty_ul6(pot_value)

time.sleep(0.1)

def showAvoid():
if avoid.value() ==
print("There are obstacles")
else:
print("All going well™)

time.sleep(0.1)

def showDistance():
distance = getDistance(trigger, echo)
print("The distance is : {:.2f} cm".format(distance))

time.sleep(0.1)

def showADXL345():
X,Y,z = snsr.readXYZ()
print('x:',x,'y:",y,'z:",z,'uint:mg")

time.sleep(0.1)

while True:

nums = keys % 8 #remainderis0123456and?7

522

Ml
o

www.keyestudio.com

if nums == 0: #Display RGB
showRGB()

elif nums == 1: #Displays the value of infrared reception
IRreceive()

elif nums == 2: #Display temperature and humidity
showxht11()

elif nums == 3: #Display joystick value
showloystick()

elif nums == 4: #potentiometer to adjust led
adjustLight()

elif nums == 5: #Display obstacle information
showAvoid()

elif nums == 6: #Display ultrasonic ranging value
showDistance()

elif nums == 7: #Display ultrasonic ranging value

showADXL345()

Code Explanation

1. Calculate how many times the button is pressed, divide it by 8, and get
the remainder which is 0, 1 2, 3, 4, 5, 6 and 7. According to different

remainders, construct five unique functions to control the experiment and

523

£

www.keyestudio.com

realize different functions.

2. We add dht and adx|345 library files in this project.

Test Result
Connect the wires according to the wiring diagram, use the USB to power
on, and run the test code. At the beginning, the number of keys is 0, the

remainder is 0, and the four lamp beads on the RGB module flash with

random colors.

524

Ml
o

www.keyestudio.com

| Shell 3¢ |

[E3]
b\ xe5"’

adx1345 found

83

adx1345 found

a

Press the button, the RGB stops flashing, press once, the remainder is 1. If we

point at IR receiver with the infrared remote control and press the button,the

serial monitor will display as follows.

Shell ¥
0k
Up

Left

Right
Down

Press a key twice, the time of pressing buttons is 2 and the remainder is 2.

Read temperature and humidity values. As shown below;

Note: we need to press any a key, because the IR reception function waits

for signals

| Shell 3¢ |
e

2
Ck

temperature :
temperature :
temperature :
temperature :
temperature :

22.
22.
22.
22.
22.

[==] == B Vo i V= X]

gddad

humidity :
humidity :
humidity :
humidity:
humidity :

47 .
Ao
47 .
A7
47 .

R

[2R I R

525

Ml
o

www.keyestudio.com

Press a key again, the time of pressing buttons is 3 and the remainder is 3.

Read digital values at x, y and z axis of the joystick module. As shown

below;
Shell ¥
button: 1 X: 32503 Y: 33848 =
button: 1 X: 32487 ¥: 33848
button: 1 X: 32471 Y: 34024
button: 1 X: 32487 Y: 33816
button: 1 X: 32471 ¥: 393¢
button: 1 X: 32487 Y: 272
button: 0 X: 324533 Y: 272
button: 0 X: 32503 Y: 288

Press the key for the fourth time, the remainder is 4. Then the
potentiometer can adjust the PWM value at the GP14 port to control LED

brightness of the purple LED

Shell 3¢

7713

12034
17156
22117
25830
28166
29911
31855

Press the key for the fifth time, the remainder is 5. Then the obstacle

avoidance sensor can detect obstacles, as shown below;

526

Ml
o

www.keyestudio.com

Shell ¥

211
211
a1l

There are obstacles
There are cbstacles
There are obstacles
There arese ckhstacles
There are obstacles

Press the key for the sixth time, the remainder is 6. Then the ultrasonic

sensor can detect distance away from obstacles, as shown below;

Shell ¥

The
The
The
The
The
The
The
The

distance
distance
distance
distance
distance
distance
distance
distance

is
is
is
is

=
i O

is

is
is

T.23

W

.58
.08

NS

¢ 12.67 cm
212019 om
t10.46 cm
P B.T1

cm
<
CIm
<
cm

Press the key for seventh time and the remainder is 7. The shell will print

out the acceleration value

Shell 3

1a3.
85,
138
19
175
Fi5-
210.

b Il = I < R ¥ e

[T T o 5 B Y e e Y
woon
=1 &

R R T R

[R L RV |

7 uint:mg
3 uint:mg
971.1 uint:mg

: 947.7 uint:mg

5z GaT.
T2 963.
60001 =:
e

0 z: 943
30001 =z:
5 =z: 92A.

L2001 uint:mg

951.6 uint:mg
2 uint:mg

Press the key for eighth time and the remainder is 0. Then the RGB will flash.

If you press keys incessantly, remainders will change in loop way. So does

527

Ml
o

www.keyestudio.com

functions.

6. Resources

https://fs.keyestudio.com/KS3024

528

https://fs.keyestudio.com/KS0470

	1.Description
	2.Kit
	3. Preparations
	3.1 Tools needed for the Raspberry Pi system
	3.1.1 Install Software Tools
	3.1.2 Raspberry Pi Imager

	3.2 Install Raspberry Pi OS on Raspberry Pi
	3.3 Raspberry Pi Pico
	3.4 Using MicroPython
	Download and burn firmware
	Go to the official website to download the UF2 fil
	Install Thonny
	Add Modules

	3.5 Keyestudio Raspberry Pico IO Shield

	4. Projects
	Project 1: Lighting up LED
	Project 2: Traffic Lights Module
	Project 3: Laser Sensor
	Project 4: Button Sensor
	Project 5: Capacitive Sensor
	Project 6: Obstacle Avoidance Sensor
	Project 7: Line Tracking Sensor
	Project 8: Photo Interrupter
	Project 9: Tilt Module
	Project 10: Collision Sensor
	Project 11: Hall Sensor
	Project 12: Reed Switch Module
	Project 13: PIR Motion Sensor
	Project 14: Active Buzzer
	Project 15: 8002b Audio Power Amplifier
	Project 16: 130 Motor
	Project 17: RGB Module
	Project 18: Potentiometer
	Project 19: Steam Sensor
	Project 20: Sound Sensor
	Project 21: Photoresistor
	Project 22: NTC-MF52AT Thermistor
	Project 23: Thin-film Pressure Sensor
	Project 24: Flame Sensor
	Project 25: MQ-2 Gas Sensor
	Project 26: MQ-3 Alcohol Sensor
	Project 27: Five-key AD Button Module
	Project 28: Joystick Module
	Project 29: Ultraviolet Sensor
	Project 30: SK6812 RGB Module
	Project 31: Rotary Encoder
	Project 32: Servo Control
	Project 33: Ultrasonic Sensor
	Project 34: IR Receiver Module
	Project 35: DS18B20 Temperature Sensor
	Project 36: XHT11 Temperature and Humidity Sensor
	Project 37: DS1307 Clock Module
	Project 38: ADXL345 Acceleration Sensor
	Project 39: TM1650 4-Digit Tube Display
	Project 40: HT16K33_8X8 Dot Matrix Module
	Project 41: LCD_128X32_DOT Module
	Project 42: RFID Module

	5. Comprehensive Experiments
	Project 43: Breathing LED
	Project 44: Button-controlled LED
	Project 45: Alarm Experiment
	Project 46: Ultraviolet Alarm
	Project 47: Intrusion Detection
	Project 48: Speaker Module
	Project 49: Extinguishing Robot
	Project 50: Rotary Encoder
	Project 51: Rotary Potentiometer
	Project 52: Smart Windows
	Project 53: Sound Activated Light
	Project 54: Fire Alarm
	Project 55: Smoke Alarm
	Project 56: Alcohol Sensor
	Project 57: 6812 Colorful LED
	Project 58: Ultrasonic Radar
	Project 59: IR Remote Control
	Project 60: Heat Dissipation Device
	Project 61: Intelligent Entrance Guard System
	Project 62: Comprehensive Experiment

	6. Resources

