
1

www.keyestudio.com

Keyestudio Raspberry Pi Pico 42 in 1 Sensor Kit

1. Description

The Keyestudio Raspberry Pi Pico 42 in 1 sensor kit mainly contains 37

2

www.keyestudio.com

commonly used sensors/modules, a Raspberry Pi Pico board, a Raspberry

Pi Pico expansion board and Dupont wires.

The 42 sensors and modules are fully compatible with the Raspberry Pi

Pico shield. You only need to stack the Raspberry Pi Pico board onto the

Raspberry Pi Pico shield, and hook up them with Dupont wires, which is

simple and convenient.

To make you master the electronic knowledge, detailed tutorials

(Micropython), schematic diagrams, wiring methods and test code are

included. Through these projects, you will have a better understanding

about programming, logic and electronics.

2. Kit

Picture Name QTY

1
Keyestudio Purple LED

Module
1

2
Keyestudio Common

Cathode RGB Module
1

3

www.keyestudio.com

3
Keyestudio Traffic

Lights Module
1

4
Keyestudio Active

Buzzer
1

5
Keyestudio 8002b

Audio Power Amplifier
1

6
Keyestudio Button

Module
1

7 Keyestudio Tilt Sensor 1

8
Keyestudio PIR Motion

Sensor
1

9
Keyestudio Obstacle

Avoidance Sensor
1

4

www.keyestudio.com

10
Keyestudio 6812 RGB

Module
1

11

Keyestudio

NTC-MF52AT

Thermistor

1

12
Keyestudio

Photoresistor
1

13
Keyestudio Sound

Sensor
1

14
Keyestudio

Rotary Potentiometer
1

15 Keyestudio IR Receiver 1

16
Keyestudio Reed

Switch Sensor
1

5

www.keyestudio.com

17
Keyestudio Rotary

Encoder Module
1

18
Keyestudio Joystick

Module
1

19
Keyestudio HT16K33

8X8 Dot Matrix Module
1

20
Keyestudio TM1650

4-Digit Tube Display
1

21
Keyestudio Thin-film

Pressure Sensor
1

22
Keyestudio DS1307

Clock Sensor
1

23
Keyestudio SR01

Ultrasonic Sensor
1

24 9G 90° Servo 1

6

www.keyestudio.com

25
Keyestudio Capacitive

Sensor
1

26
Keyestudio Photo

Interrupter
1

27 Keyestudio Hall Sensor 1

28
Keyestudio Flame

Sensor
1

29
Keyestudio line

Tracking Sensor
1

30
Keyestudio Analog Gas

Sensor
1

31

Keyestudio XHT11

Temperature and

Humidity Sensor

1

7

www.keyestudio.com

32
Keyestudio 18B20

Temperature Sensor
1

33 keyestudio 130 Motor 1

34 Fan 1

35
Keyestudio Laser

Module
1

36
Keyestudio Steam

Sensor
1

37
Keyestudio Ultraviolet

Sensor
1

38
Keyestudio RFID

Module
1

8

www.keyestudio.com

39
Keyestudio Collision

Sensor
1

40
Keyestudio Alcohol

Sensor
1

41

Kyestudio

LCD_128X32_DOT

Module

1

42
5-Channel AD Button

Module
1

43
DXL345 Acceleration

Module
1

44 Raspberry Pi Pico Board 1

45

Keyestudio Raspberry

Pico IO Expansion

Board

1

9

www.keyestudio.com

46

Keyestudio JMFP-4

17-Key Remote

Control(without

batteries)

1

47 USB Cable 1

48 F-F Dupont Wire 1

49 White Card 1

50 ABS RFID Key 1

10

www.keyestudio.com

3. Raspberry Pi Pico & Arduino IDE

3.1 Raspberry Pi Pico

At the end of January 2021, the Raspberry Pi Foundation launched the

Raspberry Pi Pico, which received a lot of attention due to its

high-performance and low-cost.

The size of Pico is 21mm *51mm, which is similar to Arduino Nano

Raspberry Pi Pico is a low-cost, high-performance microcontroller board

with flexible digital interfaces. It integrates the RP2040 microcontroller chip

11

www.keyestudio.com

designed by Raspberry Pi, with dual-core Arm Cortex M0+ processor

running up to 133 MHz, embedded 264KB of SRAM and 2MB of on-board

Flash memory, as well as 26 multi-function GPIO pins. For software

development, either Raspberry Pi's C/C++ SDK, or the MicroPython is

available. In this tutorial, we will use MicroPython.

The bare board does not come with pins and you need to solder yourself.

This is a well-made board that can also be used as an SMD component and

soldered directly to a printed circuit board.

12

www.keyestudio.com

The most predominant feature on the board is the microUSB connector at

one end. This is used both for communication and to supply power to the

Pico. An on-board LED is mounted next to the microUSB connector, it is

internally connected to GPIO pin 25. It’s worthwhile to note that this is the

only LED on the entire Pico board.

The BOOTSEL pushbutton switch is mounted a bit down from the LED, it

allows you to change the boot mode of the Pico so that you can load

MicroPython onto it and perform drag-and-drop programming.

At the bottom of the board, you’ll see three connections, these are for a

serial Debug option that we won’t be exploring here.

13

www.keyestudio.com

In the center of the board is the brains of the whole thing, the RP2040 MCU,

which is capable of supporting up to 16MB of off-chip Flash memory,

although in the Pico there is only 4MB.

 Dual-core 32-bit Arm Cortex M0+ processor

 Runs at 48MHz, but can be overclocked to 133MHz

 30 GPIO pins

 Can support USB Host or Device mode

 8 Programmable I/O(PIO) state machines

The Pico is a 3.3V logic device, however, it can be powered with a range of

power supplies thanks to a built-in voltage converter and regulator.

14

www.keyestudio.com

GND: Ground connection. 8 grounding wires plus an additional one on the

3-pin Debug connector. They are square as opposed to rounded like the

other connections.

VBUS: This is the power from the microUSB bus, 5 V. If the Pico is not being

powered by the microUSB connector then there will be no output here.

VSYS: This is the input voltage, which can range from 2 to 5V. The on-board

voltage converter will change it to 3.3V for the Pico.

3V3: This is a 3.3V output from the Pico’s internal regulator. It can be used

to power additional components, providing you keep the load under

300ma.

3V3_EN: You can use this input to disable the Pico’ s internal voltage

regulator, which will shut off the Pico and any components powered by it.

RUN: It can enable or disable the RP2040 microcontroller, it can also reset

it.

15

www.keyestudio.com

There are 26 exposed GPIO connections on the Raspberry Pi Pico

board.They are laid out pretty-well in order, with a“gap”between GP22 and

GP26 (those“missing”pins are used internally). All these pins have multiple

functions, and you can configure up to 16 of them for PWM. There are two

I2C buses, two UARTs, and two SPI buses, these can be configured to use a

wide variety of GPIO pins.

The Pico has three Analog-to-Digital Converters, they are ADC0-GP26,

ADC1-GP27, ADC2-GP28, and plus ADC-VREF converter used internally for

an on-board temperature sensor. Note: The ADCs have a 12-bit resolution.

However, the Micropython has scaled the 12-bit resolution into a 16-bit

resolution, which means that we will receive ADC values from 0 to 65535.

16

www.keyestudio.com

The microcontroller’s working voltage is 3.3V, indicating that 0

corresponds to 0V and 65535 corresponds to 3.3V.

You can also provide an external precision voltage-reference on the

ADC_VREF pin. One of the grounds, the ADC_GND on pin 33 is used as a

ground point for that reference.

Raspberry Pi Pico Configuration

Dual-core Arm Cortex-M0 + @ 133MHz

2 × SPI, 2 × I2C, 2 × UART

264KB of SRAM, and 2MB of on-board Flash memory

16 PWM channels

QSPI bus controller, supporting up to 16 MB of

external Flash memory

USB 1.1 with host and device support

DMA controller

8 × Programmable I/O (PIO) state machines for

custom peripheral support

30 GPIO pins, 4 of which can optionally be used as

analog inputs

Drag-and-drop programming using mass storage over

USB

17

www.keyestudio.com

Pin out

Raspberry Pi did release a ton of technical documentation, plus a great

guide called Get Started with MicroPython on Raspberry Pi Pico. It ’ s

available in softcover, and as a PDF download as well. For more information,

please refer to:

https://www.raspberrypi.com/products/raspberry-pi-pico/

4. Install Arduino IDE and Driver

(1) Installing Arduino IDE

18

www.keyestudio.com

When you get control board, you need to download Arduino IDE and driver

firstly.

You could download Arduino IDE from the official website:

https://www.arduino.cc/, click the SOFTWARE on the browse bar, click

“DOWNLOADS”to enter download page, as shown below:

There are two versions of IDE for WINDOWS system. You can choose

between the installer (.exe) and the Zip file. For installer, it can be directly

downloaded, without the need of installing it manually. However, for Zip

package, you will need to install the driver manually.

https://www.arduino.cc/

19

www.keyestudio.com

Click JUST DOWNLOAD.

20

www.keyestudio.com

(2) Setting Arduino IDE

Click icon，and open Arduino IDE.

A- Used to verify whether there is any compiling mistakes or not.

B- Used to upload the sketch to your Arduino board.

C- Used to create shortcut window of a new sketch.

D- Used to directly open an example sketch.

E- Used to save the sketch.

F- Used to send the serial data received from board to the serial monitor.

Set pico environment: (https://github.com/earlephilhower/arduino-pico)

Select(File) → (Preferences)

21

www.keyestudio.com

Copy the following URL in the Additional Boards Manager URLs page

https://github.com/earlephilhower/arduino-pico/releases/download/glob

al/package_rp2040_index.json

https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json
https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json

22

www.keyestudio.com

Click OK and return the mange page.

Select (Tools)→ (Board) → (Board Manager)

Enter pico in the searching bar, as shown below.

Then click Install.

23

www.keyestudio.com

The IDE is installed.

Then return the main page to select (Tools) → (Board) → Raspberry Pi

RP2040 Boards(1.9.6) → Raspberry Pi Pico

Select the development board and the port connected to Pico.

24

www.keyestudio.com

We can make on-board LED show changes of light brightness:

Select(File)→ (Examples)→ rp2040→ Fade.

25

www.keyestudio.com

26

www.keyestudio.com

How to upload the test code

(1) Power off the Pi Pico board

(2) Press and hold the white BOOTSEL button on the development board,

then interface a power supply via a USB cable.

(3) Click to upload and compile.

(4) Wait until the "Compiling sketch..." is compiled, and the following

prompt message appears "Uploading...", then release the BOOTSEL button

27

www.keyestudio.com

(5) Release the BOOTSEL button if the information box shows

“Uploading...”. The code won’t be uploaded successfully until“Done

uploading.”appears

After uploading the test code, select the corresponding port and click

upload directly. Then you can see that the LED on the development board

become from dark to bright, then from bright to dark, like human breathe.

(3) Add Libraries

Right-click Arduino and enter libraries folder of Arduino

Then copy libraries you need in the libraries of Arduino.

(4) Keyestudio Raspberry Pico IO Shield

Description

28

www.keyestudio.com

The Keyestudio Raspberry Pico IO shield is designed for Raspberry Pi Pico. No

soldering is required. To make the connection easier, interfaces on the shield have

silkscreen.

On the shield, G, V and S represent GND, the VCC interface (3.3V) and digital

ports or analog ports.

The shield comes with pin headers with 2.54mm spacing, a reset button, a PWR

power indicator and four LEGO position holes.

Additionally, it boasts a variety of communication interfaces as I2C, UART, SPI,

analog IO and digital IO, and a power supply port(6.5-12V).

Specification：

Output current: ≦500mA

DC input voltage: 6.5 - 12V

Output voltage: DC 3.3V/5V

Ambient temperature(recommended): -10°C ~ 50°C

Dimensions: 45.339MM *83.617MM

Pin pitch: 2.54mm

Schematic Diagram

29

www.keyestudio.com

Pinout

As shown below, stack the Raspberry Pi Pico board onto the Raspberry Pi

Pico shield.

30

www.keyestudio.com

31

www.keyestudio.com

5. Projects

There are 42 sensors and modules in this kit. Next, we will analyze and

introduce how they work step by step. Interface sensors with the Raspberry

Pi Pico board and the Pico shield, run test codes and observe experimental

phenomenon.

Note: please wire up components according to the given connection

diagrams.

Project 1: Lighting up LED

Overview

In this project, we will make an experiment to light up the white LED

module. The high and low levels can be controlled by programming, then

the state of the LED can be controlled.

32

www.keyestudio.com

Working Principle

The two circuit diagrams are given. The left one is wrong wiring-up

diagram. Why? Theoretically, when the S terminal outputs high levels, LED

will receive the voltage and light up.

Due to limitation of IO ports of Pico board, weak current can’t make LED

brighten.

The right one is correct wiring-up diagram. GND and VCC are powered up.

When the S terminal is a high level, the triode Q1 will be connected and

LED will light up(note: current passes through LED and R3 to reach GND by

VCC not IO ports). Conversely, when the S terminal is a low level, the triode

Q1 will be disconnected and LED will go off.

The triode Q1 is equal to a switch and R1 and R3 stand for limited resistors

which can curb the size of current to prevent from burning out

components

33

www.keyestudio.com

Components

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Expansion

Board*1

Keyestudio

Purple LED

Module*1

3P

Dupont

Wire*1

Micro

USB

Cable*1

Wiring Diagram

Test Code

Code 1：

34

www.keyestudio.com

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 1.1

* LED

* http://www.keyestudio.com

*/

void setup() {

pinMode(0, OUTPUT);//set GP0 pins to OUTPUT

digitalWrite(0, HIGH); //output high levels, light up

}

void loop() {

}

Code 2：
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 1.2
* Blink
* http://www.keyestudio.com

*/
int ledPin = 0; //define LED pin as GP0
void setup() {

pinMode(ledPin, OUTPUT);//set mode to OUTPUT
}

void loop() {
digitalWrite(ledPin, HIGH); //output high levels，light up
delay(1000);//delay in 1000ms
digitalWrite(ledPin, LOW); //output low levels, go off
delay(1000);//delay in 1000ms

}

Code Explanation

35

www.keyestudio.com

Machine module is indispensable, we will use import machine or from

machine import... to program pico with microPython.

time.sleep() function is used to set delayed time, as time.sleep(0.01),

which means, the delayed time is 10ms.

1. led = Pin(0, Pin.OUT)，created a pin example and we name led.

0 is indicative of connected pin GP0，Pin.OUT represents output mode，

can use .value() to output high levels (3.3V)led.value(1) or low levels

(0V)led.value(0)。

import machine is used to import modules. When creating pins examples,

it will change into led = machine.Pin(0, machine.Pin.OUT)

2. while True is loop function，

It means that sentences under this function will loop unless True changes

into False. For the function while，led.value(1), outputs high levels to the

pin 0; then LED lights up. Then the delayed function time.sleep(1) will wait

for 1s. When led.value(0) output low levels to the pin 0, the LED will go off，

and the function time.sleep(1) will wait for 1s, cyclically, and LED will flash.

Test Result

Code 1: upload the code and power on, the purple LED on the module will

36

www.keyestudio.com

light up

Code 2: upload the code and power on, the purple LED will flash with the

interval of 1s.

Project 2: Traffic Light Module

Overview

In this lesson, we will learn how to control multiple LED lights and simulate

the operation of traffic lights.

37

www.keyestudio.com

Traffic lights are signal devices positioned at road intersections, pedestrian

crossings, and other locations to control flows of traffic.

In this kit, we will use the traffic light module to simulate the traffic light.

Working Principle

In previous lesson, we already know how to control an LED. In this part, we

only need to control three separated LEDs. Output high levels to the signal

R(3.3V), then the red LED will be on.

Components

38

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Shield*1

Keyestudio DIY

Traffic Lights

Module*1

5P Dupont Wire

*1

Micro USB

Cable*1

Wiring Diagram

Test Code
/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 2

* Traffic_Light

* http://www.keyestudio.com

*/

int greenPin = 12; //the green LED is connected to GP12

int yellowPin = 13; //the yellow LED is connected to GP13

39

www.keyestudio.com

int redPin = 14; //the red LED is linked with GP14

void setup() {

//set pins of the LED to OUTPUT

pinMode(greenPin, OUTPUT);

pinMode(yellowPin, OUTPUT);

pinMode(redPin, OUTPUT);

}

void loop() {

digitalWrite(greenPin, HIGH); //light up the green LED

delay(5000); //delay in 5s

digitalWrite(greenPin, LOW); //turn off the green LED

for (int i = 1; i <= 3; i = i + 1) { //run three times

digitalWrite(yellowPin, HIGH); //light up the yellow LED

delay(500); //delay in 0.5s

digitalWrite(yellowPin, LOW); //turn off the yellow LED

delay(500); //delay in 0.5s

}

digitalWrite(redPin, HIGH); //light up the LED

delay(5000); //delay in 5s

digitalWrite(redPin, LOW); //turn off the red LED

}

Code Explanation

We use the function for(). for (int i = 1; i <= 3; i = i + 1) represents the variable

i adds 1 fir each time from 1 to 3.

The function for (int i = 255; i >= 0; i = i - 1) indicates that i reduces by 1 each

time. When i<0, exit the for() loop and execute 256 times

40

www.keyestudio.com

Test Result

Upload the code, the green LED will be on for 5s then off, the yellow LED

will flash for 3s then go off and the red one will be on 5s then off.

Project 3: Laser Sensor

Description

Lasers are widely used to cut, weld, surface treat, and more on specific materials.

The energy of the laser is very high. The toy laser pointer may cause glare to the

41

www.keyestudio.com

human eye, and it may cause retinal damage for a long time. my country also

prohibits the use of laser to illuminate the aircraft.

Working Principle

The laser head sensor module is mainly composed of a laser head with a

light-emitting die, a condenser lens, and a copper adjustable sleeve.

We can see the circuit schematic diagram of this module which is very similar to

the LED we have learned. They are all driven by triodes. A high-level digital signal

is directly input at the signal end, then the sensor will start to work; if inputting

low levels, the sensor won’t work

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Expansion

Board*1

Keyestudio

White LED

Module*1

3P

Dupont

Wire*1

Micro

USB

Cable*1

Wiring Diagram

42

www.keyestudio.com

Test Code
/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 3

* Laser sensor

* http://www.keyestudio.com

*/

int laserPin = 2; //define the laser pin as 2

void setup() {

pinMode(laserPin, OUTPUT);//set Pins to OUTPUT

}

void loop() {

digitalWrite(laserPin, HIGH); //turn on the laser module

delay(2000); //delay in 2s

digitalWrite(laserPin, LOW); //turn off laser module

delay(2000); //delay in 2s

}

43

www.keyestudio.com

Test Results

Upload the test code successfully and power on, the laser module will emit

red laser signals for 2 seconds and stop emitting signals for 2 seconds.

Project 4: Button Sensor

Overview

44

www.keyestudio.com

In this kit, there is a Keyestudio single-channel button module, which

mainly uses a tact switch and comes with a yellow button cap.

In previous lessons, we learned how to make the pins of our single-chip

microcomputer output a high level or low level. In this experiment, we will

read the high level (3.3V) and low level (0V).

We can determine whether the button on the sensor is pressed by reading

the high and low level of the S terminal on the sensor.

Working Principle

The button module has four pins. The pin 1 is connected to the pin 3 and

the pin 2 is linked with the pin 4. When the button is not pressed, they are

disconnected. Yet, when the button is pressed, they are connected. If the

button is released, the signal end is high level.

45

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Button

Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 4
* button
* http://www.keyestudio.com

*/
int val = 0; //used to save values of buttons

46

www.keyestudio.com

int button = 15; //the pin of the button is connected to GP15
void setup() {

Serial.begin(9600); //start the serial monitor and set baud rate to 9600
pinMode(button, INPUT); //set the pin of the button to INPUT

}

void loop() {
val = digitalRead(button); //read values of buttons and assign to the variable val
Serial.print(val); //print on the serial port
if (val == 0) { //press the button to read low levels and print the relevant information

Serial.print(" ");
Serial.println("Press the botton");
delay(100);

}

else { //print the pertinent information
Serial.print(" ");
Serial.println("Loosen the botton");
delay(100);

}
}

Code Explanation

1. pinMode(button, INPUT); set the pin of the button module to GP15 and

INPUT.

Configure INPUT through pinMode(). INPUT must use the pull-up or pull-down

resistor(ours module has the pull-up resistor RI).

2. Serial.begin(9600): Initialize serial communication and set the baud rate to

9600.

3. digitalRead(button): read the digital level of the button(HIGH or LOW). If

this pin is not connected to pins, the digitalRead() will return HIGH or LOW.

4. if..else..： if the logic behind () is true, execute the code of (); otherwise

47

www.keyestudio.com

execute the code of else.

5. If the button is pressed, the signal end is low level, GP15 is low level and Val is

0. Then the monitor will show the corresponding value and characters; otherwise,

the sensor is released, val is 1 and monitor will show 1 and other characters

Test Result

Upload the test code successfully. After powering on the USB cable, open the

serial monitor and set the baud rate to 9600. The serial monitor will display the

corresponding data and characters. When the button is pressed, val is 0, the

monitor will show“Press the button”；when the button is released, val is 1，the

monitor will show“Loosen the button”; as shown below

48

www.keyestudio.com

49

www.keyestudio.com

Project 5: Capacitive Sensor

Description

In this kit, there is a capacitive touch module which mainly uses a

TTP223-BA6 chip. It is a touch detection chip, which provides a touch

button, and its function is to replace the traditional button with a variable

area button. When we power on, the sensor needs about 0.5 seconds to

stabilize. Do not touch the keys during this time period. At this time, all

functions are disabled, and self-calibration is always performed. The

calibration period is about 4 seconds. We display the test results in the

shell.

50

www.keyestudio.com

Working Principle

When our fingers touch the module, the signal S outputs high levels, the red LED

on the module flashes. We can determine if the button is pressed or not by

reading high and low levels on the sensor.

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Capacitive

Module*1

3P Dupont

Wire*1

Micro USB

Cable*1

51

www.keyestudio.com

Wiring Diagram

Test Code
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 5
* Touch sensor
* http://www.keyestudio.com

*/
int val = 0;
int button = 3; //Pins of the button sensor
void setup() {

Serial.begin(9600);//set baud to 9600
pinMode(button, INPUT);//set to INPUT

}

void loop() {
val = digitalRead(button);//read values of the button sensor
Serial.print(val);//print values
if (val == 1) {//press the button, high levels

Serial.print(" ");
Serial.println("Press the button");
delay(100);

}
else {//release the button, low levels

Serial.print(" ");
Serial.println("Loosen the button");
delay(100);

52

www.keyestudio.com

}
}

Code Explanation

When we touch the sensor, the monitor will show “ You pressed the

button!”, if not,“You loosen the button!”will be shown on the monitor.

Test Result

The monitor shows corresponding data and characters. In the experiment,

when the button is pressed, the red LED lights up and val is 1. Then the

shell shows “You pressed the button!”; if the button is released, the red

LED is off and val is 0,“You loosen the button!”will be displayed

53

www.keyestudio.com

Project 6: Obstacle Avoidance Sensor

Overview

In this kit, there is a Keyestudio obstacle avoidance sensor, which mainly

uses an infrared emitting and a receiving tube. In the experiment, we will

determine whether there is an obstacle by reading the high and low level

54

www.keyestudio.com

of the S terminal on the sensor.

Working Principle

NE555 circuit provides IR signals with frequency to the emitter TX, then the

IR signals will fade with the increase of transmission distance. If

encountering the obstacle, it will be reflected back.

When the receiver RX meets the weak signals reflected back, the receiving

pin will output high levels, which indicates the obstacle is far away. On the

contrary, it the reflected signals are stronger, low levels will be output,

which represents the obstacle is close. There are two potentiometers on

the module, and one is for adjusting emission power, another one is for

receiving frequency.

55

www.keyestudio.com

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Obstacle

Avoidance

Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

56

www.keyestudio.com

Test Code
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 6
* obstacle avoidance sensor
* http://www.keyestudio.com

*/
int val = 0;
void setup() {

Serial.begin(9600);//set baud rate to 9600
pinMode(16, INPUT);//set GP16 to INPUT

}

void loop() {
val = digitalRead(16);//read digital levels
Serial.print(val);//print the read level signals
if (val == 0) {//check the obstacle

Serial.print(" ");
Serial.println("There are obstacles");
delay(100);

}
else {//the obstacle is not detected

Serial.print(" ");
Serial.println("All going well");
delay(100);

}
}

57

www.keyestudio.com

Note:

Upload the test code and wire up according to the connection diagram.

After powering on, we start to adjust the two potentiometers to sense

distance.

1. Adjust the potentiometer transmitting power. Make the P LED at the

critical point of ON and OFF states.

2. Adjust the potentiometer receiving frequency. Rotate it clockwise, the

frequency will increase. Make the S LED at the critical point of ON and OFF

states, then the 38KHz square wave can be produced.

Test Result

Upload the code power up by a USB cable, open the serial monitor and set

baud rate to 9600. When the sensor detects the obstacle, the monitor will

show“There are obstacles”; if the obstacle is not detected,“All going well”

will be shown.

58

www.keyestudio.com

59

www.keyestudio.com

Project 7: Line Tracking Sensor

Description

In this kit, there is a DIY electronic building block single-channel line

tracking sensor which mainly uses a TCRT5000 reflective black and white

line recognition sensor element.

In the experiment, we judge the color (black and white) of the object

detected by the sensor by reading the high and low levels of the S terminal

on the module; and display the test results on the shell.

Working Principle

60

www.keyestudio.com

When a black or no object is detected, the signal terminal will output high

levels; when white object is detected, the signal terminal is low level; its

detection height is 0-3cm. We can adjust the sensitivity by rotating the

potentiometer on the sensor. When the potentiometer is rotated, the

sensitivity is best when the red LED on the sensor is at the critical point

between off and on.

61

www.keyestudio.com

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Line Tracking

Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 7
* line tracking
* http://www.keyestudio.com

*/
int val = 0;
void setup() {

Serial.begin(9600);//set baud rate to 9600
pinMode(3, INPUT);//set pins of the sensor to INPUT

}

void loop() {

62

www.keyestudio.com

val = digitalRead(3);//read digital levels of the sensor
Serial.print(val);//serial port prints
if (val == 0) {//detect white val(0)

Serial.print(" ");
Serial.println("White");
delay(100);

}
else {//detect black val (1)

Serial.print(" ");
Serial.println("Black");
delay(100);

}
}

Test Result

Upload test code, wire up, open the monitor and set baud rate to 9600.

In the experiment, when the sensor doesn’t detect an object or detects a

black object, the val is 1, and the monitor will display "Black" ; when a white

object (can reflect light) is detected, the val is 0, and the monitor will

display "White" ;

63

www.keyestudio.com

Project 8: Photo Interrupter

Description

This kit contains a photo interrupter which mainly uses 1 ITR-9608

photoelectric switch. It is a photoelectric switch optical switch sensor.

64

www.keyestudio.com

Working Principle

When the paper is put in the slot, C is connected with VCC and the signal end S of

the sensor are high levels; then the red LED will be off. Otherwise, the red LED

will be on.

Required Components

65

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Photo

Interrupter*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code
/*
* Keyestudio 37 in 1 Starter Kit for Raspberry Pi Pico
* lesson 8
* Photo_Interrupt
* http://www.keyestudio.com

*/
int PushCounter = 0; //push counter variable
int State = 0; //output the current state
int lastState = 0; //output state of the sensor saved

void setup() {
Serial.begin(9600);//set baud rate to 9600
pinMode(3, INPUT);//set pins of the sensor to INPUT

}

void loop() {
State = digitalRead(3);//read the current state
if (State != lastState) {//if the state is different from the previous

if (State == 1) {//block light
PushCounter = PushCounter + 1;//counter plus 1
Serial.println(PushCounter);//print counters

66

www.keyestudio.com

}
}
lastState = State;//update

}

Code Explanation

Logic setting:

Initial Setting

Set PushCounter to 0

Set State to 0 (value of the sensor)

Set lastState to 0

when an object

enters the slot

lastState is 0，State turns

into 1; lastState turns

into 1

Set

PushCounter to

PushCounter+1

print the value

of PushCounter

when the object

leaves the slot

lastState is 1 ， State

becomes 0，two data are

not equal，lastState turns

into 0.

PushCounterdo

esn’t change;

Don’t print the

value of

PushCounter

When the object

goes through this

lastState is 0, State

becomes 1，two data are

Set

PushCounter to

67

www.keyestudio.com

slot again not equal，lastState turns

into 1.

PushCounter+1

And print the

value of

PushCounter

When the object

leaves this slot

again

lastState is 1，State turns

into 0，two data are not

equal lastState turns into

0

PushCounter

doesn’t change;

Don’t print the

PushCounter

value

Test Result

Wire up, upload test code, and the shell displays the PushCounter data.

Every time when the object passes through the slot of the sensor, the

PushCounter data will increase by 1 continuously, as shown below;

68

www.keyestudio.com

Project 9: Tilt Module

Overview

69

www.keyestudio.com

In this kit, there is a Keyestudio tilt sensor. The tilt switch can output signals

of different levels according to whether the module is tilted. There is a ball

inside. When the switch is higher than the horizontal level, the switch is

turned on, and when it is lower than the horizontal level, the switch is

turned off. This tilt module can be used for tilt detection, alarm or other

detection.

Working Principle

The working principle is pretty simple. When pin 1 and 2 of the ball switch

P1 are connected, the signal S is low level and the red LED will light up;

when they are disconnected, the pin will be pulled up by the 4.7K R1 and

make S a high level, then LED will be off.

70

www.keyestudio.com

Components

Raspberry Pi

Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Tilt

Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 9

* Tilt switch
* http://www.keyestudio.com

*/

71

www.keyestudio.com

int val; //save the output level value of tilt sensor

void setup() {
Serial.begin(9600);
pinMode(17, INPUT); //Connect the tilt sensor pin to GP17, set GP17 to input

}

void loop() {
val = digitalRead(17); //read level signals of the module
Serial.println(val); //
delay(100); //delay in 100ms

}

Test Result

Upload the code power up by a USB cable, open the serial monitor and set

baud rate to 9600.

Make the tilt module incline to one side, the red LED on the module will be

off and the monitor will display“1”. In contrast, if you make it incline the

other side, the red LED will light up and the monitor will display“0”.

72

www.keyestudio.com

Project 10: Collision Sensor

Description

The collision sensor uses a tact switch. This sensor is often used as a limit

switch in 3D printers. In the experiment, we judge whether the sensor

73

www.keyestudio.com

shrapnel is pressed down by reading the high and low levels of the S

terminal on the module; and, we display the test results in the shell.

Working Principle

It mainly uses a tact switch. When the shrapnel of the tact switch is pressed,

2 and 3 are connected, the signal terminal S is low level, and the red LED on

the module lights up; when the touch switch is not pressed, 2 and 3 are not

connected, and 3 is pulled up to a high level by the 4.7K resistor R1, that is,

the sensor signal terminal S is a high level, and the built-in red LED will be

off at this time.

Components Required

74

www.keyestudio.com

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Expansion

Board*1

Keyestudio

Collision

Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code
/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

lesson 10

collision sensor

http://www.keyestudio.com

*/

int val = 0;

void setup() {

Serial.begin(9600);//Set baud rate to 9600

pinMode(17, INPUT);//Set the pin of the collision sensor to INPUT

}

75

www.keyestudio.com

void loop() {

val = digitalRead(17);//Read values of the collision sensor

Serial.print(val);//print out

if (val == 0) {//set val to 0

Serial.print(" ");

Serial.println("The end of his!");

delay(100);

}

else {//Set val to 1

Serial.print(" ");

Serial.println("All going well");

delay(100);

}

}

Test Result

Run the test code, the shell displays the corresponding data and characters.

In the experiment, when the shrapnel on the sensor is pressed down, val is

0, the red LED of the module is on, and "The end of his!" is printed; when

the shrapnel is released, the val is 1, the red LED of the module is off, and

"All going well" is printed. !" character, as shown below.

76

www.keyestudio.com

77

www.keyestudio.com

Project 11: Hall Sensor

Description

In this kit, there is a Hall sensor which mainly adopts a A3144 linear Hall

element. The element P1 is composed of a voltage regulator, a Hall voltage

generator, a differential amplifier, a Schmitt trigger, a temperature

compensation circuit and an open-collector output stage. In the

experiment, we use the Hall sensor to detect the magnetic field and display

the test results on the shell.

Working Principle

When the sensor detects no magnetic field or a north pole magnetic field,

the signal terminal will be high level; when it senses a south pole magnetic

78

www.keyestudio.com

field, the signal terminal will be low levels.

The stronger the magnetic field strength is, induction distance is longer.

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Hall Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

79

www.keyestudio.com

Test Code
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 11
* Hall magnetic

* http://www.keyestudio.com
*/
int val = 0;
int hallPin = 5; //the pin of the hall sensor is connected to port 5
void setup() {

Serial.begin(9600);//set baud rate to 9600
pinMode(hallPin, INPUT);//set pins to INPUT

}

void loop() {
val = digitalRead(hallPin);//read level values of the hall sensor
Serial.print(val);//print val
if (val == 0) {//South Pole Magnetic Field

Serial.println(" The magnetic field at the South Pole!");
}
else {//or

Serial.println(" Just be all normal!");
}
delay(100);

}

80

www.keyestudio.com

Test Result

Upload the test code, open the monitor and set baud rate to 9600.

when the sensor detects no magnetic fields or the north pole magnetic

field, the monitor l will show“1 Just be all normal!”and the LED on the

sensor will be off; When it detects the south pole magnetic field,“0 The

magnetic field at the South Pole!”and the LED on the sensor will be on.

81

www.keyestudio.com

Project 12: Reed Switch Module

Overview

In this kit, there is a Keyestudio reed switch module, which mainly uses a

MKA10110 green reed component.

The reed switch is the abbreviation of the dry reed switch. It is a passive

electronic switch element with contacts.

It has the advantages of simple structure, small size and easy control.

Its shell is a sealed glass tube with two iron elastic reed electric plates.

In the experiment, we will determine whether there is a magnetic field near

the module by reading the high and low level of the S terminal on the

module; and, we display the test result in the shell.

82

www.keyestudio.com

Working Principle

Reed switch is an abbreviation of the dry reed contacts a passive

electronic switching elements, and has the advantages of simple structure,

small size and ease of control, its shell is a sealed glass tube, the tubes are

installed two iron elastic reed plate, but also filling called rhodium metal

inert gas. In peacetime, the glass tube in the two reeds made of special

materials are separated. When a magnetic substance close to the glass

tube, in the role of the magnetic field lines, the pipe within the two reeds

are magnetized to attract each other in contact, the reed will suck together,

so that the junction point of the connected circuit communication. After

83

www.keyestudio.com

the disappearance of the outer magnetic reed because of their flexibility

and separate, the line is disconnected. Therefore, as a use of the magnetic

field signals to control the line switching device, reed tube can be used as a

sensor for counting the number, spacing, etc., and also are widely used in a

variety of communication devices.

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Shield*1

Keyestudio

Reed Switch

Module*1

3P Dupont

Wire*1

Micro

USB

Cable*1

84

www.keyestudio.com

Wiring Diagram

Test Code
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 12
* Reed Switch
* http://www.keyestudio.com

*/
int val = 0;
int reedPin = 18; ///the signal pin of reed switch module is GP18
void setup() {

Serial.begin(9600);//Set baud rate to 9600
pinMode(reedPin, INPUT);//set to INPUT

}

void loop() {
val = digitalRead(reedPin);//read digital levels
Serial.print(val);//

if (val == 0) {//magnetic field nearby
Serial.print(" ");
Serial.println("A magnetic field");
delay(100);

}
else {//no magnetic field

Serial.print(" ");
Serial.println("There is no magnetic field");

85

www.keyestudio.com

delay(100);
}

}

Test Result

Upload the code power up by a USB cable, open the serial monitor and set

baud rate to 9600. When the sensor detects a magnetic field, val is 0 and

the red LED of the module lights up, "A magnetic field" will be displayed;

when no magnetic field is detected, val is 1, and the LED on the module

goes out, "There is no magnetic field" will be shown, as shown below.

86

www.keyestudio.com

Project 13: PIR Motion Sensor

Overview

In this kit, there is a Keyestudio PIR motion sensor, which mainly uses an

RE200B-P sensor elements. It is a human body pyroelectric motion sensor

87

www.keyestudio.com

based on pyroelectric effect, which can detect infrared rays emitted by

humans or animals, and the Fresnel lens can make the sensor's detection

range farther and wider.

In the experiment, we determine if there is someone moving nearby by

reading the high and low levels of the S terminal on the module. The

detected results will be displayed on the Shell.

Working Principle

The upper left part is voltage conversion(VCC to 3.3V). The working voltage

of sensors we use is 3.3V, therefore we can’t use 5V directly. The voltage

conversion circuit is needed.

When no person is detected or no infrared signal is received, and pin 1 of

the sensor outputs low level. At this time, the LED on the module will light

up and the MOS tube Q1 will be connected and the signal terminal S will

detect Low levels.

When one is detected or an infrared signal is received, and pin 1 of the

sensor outputs a high level. Then LED on the module will go off, the MOS

tube Q1 is disconnected and the signal terminal S will detect high levels.

88

www.keyestudio.com

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Shield*1

Keyestudio

PIR Motion

Sensor*1

3P Dupont

Wire*1

Micro

USB

Cable*1

Wiring Diagram

89

www.keyestudio.com

Test Code
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 13
* PIR motion
* http://www.keyestudio.com

*/
int val = 0;
int pirPin = 19; //set the pin of PIR motion sensor to GP19
void setup() {

Serial.begin(9600); //Set baud rate to 9600
pinMode(pirPin, INPUT); //set the sensor to INPUT

}

void loop() {
val = digitalRead(pirPin); //read the value of the sensor
Serial.print(val);//print val
if (val == 1) {//if there are people nearby, high levels will output

Serial.print(" ");
Serial.println("Some body is in this area!");
delay(100);

}
else {//if not detecting people, low levels will output

Serial.print(" ");
Serial.println("No one!");
delay(100);

90

www.keyestudio.com

}
}

Test Result

Upload the code power up by a USB cable, open the serial monitor and set

baud rate to 9600. When the sensor detects someone nearby, value is 1,

the LED will go off and the monitor will show“Somebody is in this area!”.

In contrast, the value is 0, the LED will go up and“0 No one!”will be shown.

91

www.keyestudio.com

Project 14: Active Buzzer

Overview

In this kit, it contains an active buzzer module and a power amplifier

module (the principle is equivalent to a passive buzzer). In this experiment,

we control the active buzzer to emit sounds. Since it has its own oscillating

circuit, the buzzer will automatically sound if given large voltage.

Working Principle

92

www.keyestudio.com

From the schematic diagram, the pin of buzzer is connected to a resistor

R2 and another port is linked with a NPN triode Q1. So, if this triode Q1 is

powered, the buzzer will sound.

If the base electrode of the triode connected to the R1 resistor is a high

level, the triode Q1 will be connected.If the base electrode is pulled down

by the resistor R3, the triode is disconnected.

When we output a high level from the IO port to the triode, the buzzer will

emit sounds; if outputting low levels, the buzzer won’t emit sounds.

93

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Active

Buzzer*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 14

* Active buzzer
* http://www.keyestudio.com

*/
int buzzer = 20; //set the pin of the active sensor to GP20

94

www.keyestudio.com

void setup() {
pinMode(buzzer, OUTPUT);//set OUTPUT

}

void loop() {
digitalWrite(buzzer, HIGH); //stop beeping
delay(1000);
digitalWrite(buzzer, LOW); //stop beeping
delay(1000);

}

Code Explanation

In the experiment, we set the pin number to 20. When setting to high, the

active buzzer will beep; when setting to low, the active buzzer will stop

emitting sounds

Test Result

Upload the code and power on. The active buzzer will emit sound for 1

second, and stop for 1 second.

95

www.keyestudio.com

Project 15: 8002b Audio Power Amplifier

Overview

In this kit, there is a Keyestudio 8002b audio power amplifier. The main

components of this module are an adjustable potentiometer, a speaker,

and an audio amplifier chip;

The main function of this module is: it can amplify the output audio signal,

with a magnification of 8.5 times, and play sound or music through the

built-in low-power speaker, as an external amplifying device for some

music playing equipment.

In the experiment, we used the 8002b power amplifier speaker module to

emit sounds of various frequencies.

96

www.keyestudio.com

Working Principle

In fact, it is similar to a passive buzzer. The active buzzer has its own

oscillation source.Yet, the passive buzzer does not have internal oscillation.

When controlling the circuit, we need to input square waves of different

frequencies to the positive pole of the component and ground the

negative pole to control the buzzer to chime sounds of different

frequencies.

97

www.keyestudio.com

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Shield*1

Keyestudio

8002b Audio

Power

Amplifier*1

3P Dupont

Wire*1

Micro

USB

Cable*1

Wiring Diagram

Test Code/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 15

98

www.keyestudio.com

* Passive buzzer
* http://www.keyestudio.com

*/
int beeppin = 21; //set the pin of the power amplifier to GP21
void setup() {

pinMode(beeppin, OUTPUT);//set the digital port of the power amplifier to OUTPUT
}

void loop() {
tone(beeppin, 262);//emit DO for 1000mss
delay(1000);
tone(beeppin, 294);//emit Re for 750ms
delay(750);
tone(beeppin, 330);//emit Mi for 625ms
delay(625);
tone(beeppin, 349);//emit Fa for 500ms
delay(500);
tone(beeppin, 392);//emit So for 375ms
delay(375);
tone(beeppin, 440);//emit La for 250ms
delay(250);
tone(beeppin, 494);//emit Si for 125ms
delay(125);
noTone(beeppin);//stop playing for 100ms
delay(1000);

}

Code Explanation

In the experiment, we use the function tone(). We set pin to 21. Function tone

generates waves of frequency.

Test Result

Upload the test code successfully and power on.The power amplifier

module will emit the sound of the corresponding frequency corresponding

99

www.keyestudio.com

to the beat:

DO for one beat, Re for 0.75 beat, Mi for 0.625, Fa for 1/2 beat, So for 0.375

beat, La for 1/4 beat and Si for 0.125 beat

Project 16: 130 Motor

Description

100

www.keyestudio.com

The 130 motor driver module is compatible with servo motors, which has

high efficiency and good quality fans.

It adopts a HR1124S motor control chip. HR1124S is a single-channel

H-bridge driver chip for DC motor solutions. In addition, this chip has low

standby current and low quiescent current.

The module is compatible with various single-chip control boards. In the

experiment, we can control the rotation direction of the motor by

outputting the voltage directions of the two signal terminals IN+ and IN-

to make the motor rotate.

Working Principle

The chip is used to help drive the motor.

We can’t drive it with a triode or an IO port due to its a large current of

need. It is very simple to make the motor rotate. Just apply voltage to both

ends of the motor. The direction of the motor is different in different

voltage directions. Within the rated voltage, the higher the voltage, the

faster the motor rotates; on the contrary, the lower the voltage, the slower

the motor rotates, or even unable to rotate.

So we can use the PWM port to control the speed of the motor. We haven't

learned PWM here, so we use the high and low levels to control the motor

101

www.keyestudio.com

first.

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

keyestudio DIY

130 Motor*1

4P Dupont

Wire*1
Micro USB Cable*1

Note: the motor is separated with its fan, you need to assemble it first.

Wiring Diagram

102

www.keyestudio.com

Test Code

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 16

* 130DC Fan motor

* http://www.keyestudio.com

*/

//define two pins of the motor as 14 and 15

int INA = 14;

int INB = 15;

void setup() {

//set pins of the motor to OUTPUT

pinMode(INA, OUTPUT);

103

www.keyestudio.com

pinMode(INB, OUTPUT);

}

void loop() {

//rotate anticlockwise

digitalWrite(INA, HIGH);

digitalWrite(INB, LOW);

delay(2000);

//stop

digitalWrite(INA, LOW);

digitalWrite(INB, LOW);

delay(1000);

//rotate clockwise

digitalWrite(INA, LOW);

digitalWrite(INB, HIGH);

delay(2000);

//stop

digitalWrite(INA, LOW);

digitalWrite(INB, LOW);

delay(1000);

}

104

www.keyestudio.com

Code Explanation

Set pins to 14 and 15, when the pin 14 outputs high levels and the pin 15 outputs

low levels, the motor will rotate counterclockwise; when both pins are set to low,

the motor stops rotating.

Test Result

Burn the test 130 motor code, and connect the wires according to the

Wiring Diagram; after power-on, the fan rotates counterclockwise for 2

seconds; stops for 1 second; rotates clockwise for 2 seconds; stops for 1

second; cycle alternately.

Wire up, upload test code and test the 130 motor, the fan will rotate

counterclockwise for 2 seconds, stop for 1 second and clockwise for 2

seconds and stop for 1 second; cycle alternately.

105

www.keyestudio.com

106

www.keyestudio.com

Project 17: RGB Module

Overview

Among these modules is a RGB module. It adopts a F10-full color RGB

foggy common cathode LED. We connect the RGB module to the PWM

port of MCU and the other pin to GND(for common anode RGB, the rest

pin will be connected to VCC). So what is PWM?

PWM is a means of controlling the analog output via digital means. Digital

control is used to generate square waves with different duty cycles (a signal

that constantly switches between high and low levels) to control the analog

107

www.keyestudio.com

output.In general, the input voltages of ports are 0V and 5V. What if the 3V

is required? Or a switch among 1V, 3V and 3.5V? We cannot change

resistors constantly. For this reason, we resort to PWM.

For Arduino digital port voltage outputs, there are only LOW and HIGH

levels, which correspond to the voltage outputs of 0V and 5V respectively.

You can define LOW as“0”and HIGH as“1’, and let the Arduino output

five hundred‘0’or“1”within 1 second. If output five hundred‘1’, that

is 5V; if all of which is‘0’,that is 0V; if output 250 01 pattern, that is 2.5V.

This process can be likened to showing a movie. The movie we watch are

not completely continuous. Actually, it generates 25 pictures per second,

which cannot be told by human eyes. Therefore, we mistake it as a

continuous process. PWM works in the same way. To output different

voltages, we need to control the ratio of 0 and 1. The more‘0’or‘1’

output per unit time, the more accurate the control.

108

www.keyestudio.com

Working Principle

For our experiment, we will control the RGB module to display different

colors through three PWM values.

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Common

Cathode

RGB Module

*1

4P Dupont

Wire*1

Micro

USB

Cable*1

109

www.keyestudio.com

Test Code

Code 1：

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 17.1

* rgb_1

* rgb_1

* http://www.keyestudio.com

*/

int redPin = 9; //the red LED is connected to GP9

int greenPin = 10; //the green LED is connected to GP10

int bluePin = 11; //the blue LED is connected to GP11

void setup(){

//set ports to OUTPUT

110

www.keyestudio.com

pinMode(redPin, OUTPUT);

pinMode(greenPin, OUTPUT);

pinMode(bluePin, OUTPUT);

}

void loop(){

//red color

digitalWrite(redPin,HIGH);

digitalWrite(greenPin,LOW);

digitalWrite(bluePin,LOW);

delay(1000);

//green color

digitalWrite(redPin,LOW);

digitalWrite(greenPin,HIGH);

digitalWrite(bluePin,LOW);

delay(1000);

//blue color

digitalWrite(redPin,LOW);

digitalWrite(greenPin,LOW);

digitalWrite(bluePin,HIGH);

delay(1000);

111

www.keyestudio.com

}

Code 2：

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 17.2

* rgb_2

* http://www.keyestudio.com

*/

int redPin = 9; //the red LED is connected to GP9

int greenPin = 10; //the green LED is connected to GP10

int bluePin = 11; //the blue LED is connected to GP11

void setup() {

pinMode(redPin, OUTPUT);

pinMode(greenPin, OUTPUT);

pinMode(bluePin, OUTPUT);

}

void loop() {

//red(255, 0, 0)

analogWrite(9, 255);

analogWrite(10, 0);

analogWrite(11, 0);

112

www.keyestudio.com

delay(1000);

//orange(255, 97, 0)

analogWrite(9, 255);

analogWrite(10, 97);

analogWrite(11, 0);

delay(1000);

//yellow(255, 255, 0)

analogWrite(9, 255);

analogWrite(10, 255);

analogWrite(11, 0);

delay(1000);

//green(0, 255, 0)

analogWrite(9, 0);

analogWrite(10, 255);

analogWrite(11, 0);

delay(1000);

//blue(0, 0, 255)

analogWrite(9, 0);

analogWrite(10, 0);

analogWrite(11, 255);

delay(1000);

//cyan-blue(0, 255, 255)

113

www.keyestudio.com

analogWrite(9, 0);

analogWrite(10, 255);

analogWrite(11, 255);

delay(1000);

//purple(160, 32, 240)

analogWrite(9, 160);

analogWrite(10, 32);

analogWrite(11, 240);

delay(1000);

}

Code Explanation

Code 1：

1. For code 1, RGB stands for corresponding ports of red, green and blue.

According to the connection diagram, GP9,GP10 and GP11 are connected,

then we set 9, 10 and 11 and HOGH and LOW. If setting to HIGH, the LED

will light up.

2. RGB LED shows red color for 1s, green color for 1s, blue color for 1s

Code 2：

114

www.keyestudio.com

1. In code 2, we use PWM output. According to the wiring diagram, we

connect GP9, GP10 and GP11 and set to 9 10 11.

(Note: The PWM output of pico is normally 0~65535, and we use adjust it

to 0~255).

In the experiment, we adjust the ratio of red, green and blue colors on the

RGB LED by setting the corresponding values, so as to control the RGB LED

to display corresponding colors. So theoretically, there are 256*256*256

colors that can be set (for details, please refer to the common RGB color

table below)

RGB Color Chart

115

www.keyestudio.com

116

www.keyestudio.com

117

www.keyestudio.com

Test Result

Upload the code 1, the RGB on the module will show red, green and blue

color with an interval of 1s.

Upload the code 2, the RGB on the module will show red, orange, yellow,

green, cyan-blue, blue, purple and white color with an interval of 1s.

118

www.keyestudio.com

Project 18: Potentiometer

Overview

The following we will introduce is the Keyestudio rotary potentiometer

which is an analog sensor.

The digital IO ports can read the voltage value between 0 and 3.3V and the

module only outputs high levels. However, the analog sensor can read the

voltage value through ADC analog ports(GP26~GP28) on the pico board.

In the experiment, we will display the test results on the Shell.

119

www.keyestudio.com

Working Principle

It uses a 10K adjustable resistor. We can change the resistance by rotating

the potentiometer. The signal S can detect the voltage changes(0-3.3V)

which are analog quantity

Components

Raspberry

Pi Pico

Raspberry Pi

Pico Shield*1

Keyestudio

Rotary

3P Dupont

Wire*1

Micro

USB

120

www.keyestudio.com

Board*1 Potentiometer*1 Cable*1

Wiring Diagram

Test Code
/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 18

* Rotary potentiometer

* http://www.keyestudio.com

*/

int analogVal = 0;

int resPin = 26; //the potentiometer is connected to ADC0

void setup() {

Serial.begin(9600);//set baud rate to 9600

}

void loop() {

analogVal = analogRead(resPin);//read values of the potentiometer

Serial.println(analogVal);//print analog value

121

www.keyestudio.com

delay(100);//delay in 100ms

}

Code Explanation

analogVal means analog value. The rotary potentiometer outputs analog

values(0~4095), therefore, we set pins to analog ports. For example, we connect

to ADC0(GP26)

analogRead(pin): read the value of the specified analog pin. The pico board

contains a multi-channel, 12-bit converter. This means that it will map the

input voltage between 0 and the working voltage (5V or 3.3V) to an

integer value between 0 and 4095. For example, this will produce a

resolution among readings: 3.3V/4096 stands for 0.0008V per unit.

Pin: the name of analog input pin. GP26 is connected to GP28, GP29

measures VSYS voltage and ADC4 measures the internal temperature.

Test Result

Upload the code power up by a USB cable, open the serial monitor and set

baud rate to 9600.

122

www.keyestudio.com

In the experiment, rotate the potentiometer clockwise, the analog value

increases, and turn the potentiometer counterclockwise, the analog value

decreases(0-4095), as shown in the figure below.

123

www.keyestudio.com

Project 19: Steam Sensor

Description

This is a commonly used steam sensor. Its principle is to detect the amount

of water by bare printed parallel lines on the circuit board. The more the

water is, the more wires will be connected. As the conductive contact area

increases, the output voltage will gradually rise. It can detect water vapor in

the air as well. The steam sensor can be used as a rain water detector and

level switch. When the humidity on the sensor surface surges, the output

voltage will increase.

In the experiment, we connect the signal terminal (S terminal) of the sensor to

the analog port of the pico development board. The analog value detected will be

displayed on the serial monitor.

124

www.keyestudio.com

Working Principle

Its principle is to detect the amount of water through the exposed printed parallel

lines on the circuit board. The more water there is, the more wires will be

connected, and the conductive contact area increases. The voltage output by pin

2 will gradually increase. The larger the analog value detected by the signal

terminal S is.

It can also detect steam in the air. Two position holes are used to install on the

other devices

Required Components

125

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Steam Sensor *1

3P Dupont

Wire*1

Micro USB

Cable*1

Test Code
/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 19

* Steam sensor

* http://www.keyestudio.com

*/

int val = 0;

int Water = 26; //the pin of the steam sensor is 26

void setup() {

Serial.begin(9600);//set baud rate to 9600

}

126

www.keyestudio.com

void loop() {

val = analogRead(Water); //read the value of the sensor

Serial.print("Water:");

Serial.println(val);

delay(100);

}

Test Result

Wire up, run the test code , power up and set baud rate to 9600. The more

water volume, the greater the output voltage and the analog value, as

shown below.

127

www.keyestudio.com

Project 20: Sound Sensor

Overview

In this kit, there is a sound sensor. In the experiment, we test the analog

value corresponding to the sound level in the current environment with it.

128

www.keyestudio.com

The louder the sound, the larger the analog value;

Working Principle

It uses a high-sensitive microphone component and an LM386 chip.

We build the circuit with the LM386 chip and amplify the sound through

the high-sensitive microphone. In addition, we can adjust the sound

volume by the potentiometer. Rotate it clockwise, the sound will get

louder.

Components

129

www.keyestudio.com

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Sound

Sensor*1

3P Dupont

Wire*1

Micro

USB

Cable*1

Wiring

Diagram

Test Code
/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 20

* http://www.keyestudio.com

*/

int val = 0;

int Microphone = 27; //microphone is connected to ADC1

void setup() {

Serial.begin(9600);//Set baud rate to 9600

}

130

www.keyestudio.com

void loop() {

val = analogRead(Microphone); //read the value of the sensor and assign to the variable val

Serial.println(val); //print the analog value

delay(100); //delay in 100MS

}

Test Result

Upload the code power up by a USB cable, open the serial monitor and set

baud rate to 9600. Rotate clockwise the potentiometer and speak at the

MIC. Then you can see the analog value get larger, as shown below

131

www.keyestudio.com

Project 21: Photoresistor

Description

132

www.keyestudio.com

In this kit, there is a photoresistor which consists of photosensitive

resistance elements. Its resistance changes with the light intensity. Also, it

converts the resistance change into a voltage change through the

characteristic of the photosensitive resistive element. When wiring it up,

we interface its signal terminal (S terminal) with the analog port of pico , so

as to sense the change of the analog value, and display the corresponding

analog value in the shell.

Working Principle

If there is no light, the resistance is 0.2MΩ and the detected voltage at the

terminal 2 is close to 0. When the light intensity increases, the resistance of

photoresistor and detected voltage will diminish.

Components

133

www.keyestudio.com

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Photoresistor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code
/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 21

* Photoresistance

* http://www.keyestudio.com

134

www.keyestudio.com

*/

int val = 0;

int photoPin = 28; //analog port ADC2 of photoresistor

void setup() {

Serial.begin(9600);//set baud rate to 9600

}

void loop() {

val = analogRead(photoPin);///read the value of the sensor

Serial.println(val);//print values

delay(100);//delay in 100MS

}

Test Result

Upload the code power up by a USB cable, open the serial monitor and set

baud rate to 9600. When the light intensity gets stronger, the analog value

will get larger, as shown below;

135

www.keyestudio.com

136

www.keyestudio.com

Project 22: NTC-MF52AT Thermistor

Overview

In the experiment, there is a NTC-MF52AT analog thermistor. We connect

its signal terminal to the analog port of the Raspberry Pi Pico Board and

read the corresponding analog value.

We can use analog values to calculate the temperature of the current

137

www.keyestudio.com

environment through specific formulas. Since the temperature calculation

formula is more complicated, we only read the corresponding analog

value.

Working Principle

This module mainly uses NTC-MF52AT thermistor elements. The

NTC-MF52AT thermistor element can sense the changes of the

surrounding environment temperature. Resistance changes with the

temperature, causing the voltage of the signal terminal S to change.

This sensor uses the characteristics of NTC-MF52AT thermistor element to

convert resistance changes into voltage changes.

Components

138

www.keyestudio.com

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

NTC-MF52AT

Thermistor*1

3P Dupont

Wire*1

Micro

USB Cable*1

Wiring Diagram

Test Code
/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 22

* Temperature sensor

* http://www.keyestudio.com

*/

int val;

int ntcPin = 26; //NTC-MF52AT analog thermistor is connected to ADC0

void setup() {

Serial.begin(9600);//Set baud rate to 9600

139

www.keyestudio.com

}

void loop() {

val = analogRead(ntcPin); //read the analog temperature value

Serial.println(val); //read and print the analog vale of photoresistor

delay(100);//delay in 100ms

}

Test Result

Upload the code power up by a USB cable, open the serial monitor and set

baud rate to 9600. The higher the temperature, the larger the analog value.

140

www.keyestudio.com

Project 23: Thin-film Pressure Sensor

Overview

In this kit, there is a Keyestudio thin-film pressure sensor. The thin-film

141

www.keyestudio.com

pressure sensor composed of a new type of nano pressure-sensitive

material and a comfortable ultra-thin film substrate, has waterproof and

pressure-sensitive functions.

In the experiment, we determine the pressure by collecting the analog

signal on the S end of the module. The smaller the analog value, the

greater the pressure; and the displayed results will shown on the Shell.

Working Principle

When the sensor is pressed by external forces, the resistance value of

sensor will vary. We convert the pressure signals detected by the sensor

into the electric signals through a circuit. Then we can obtain the pressure

changes by detecting voltage signal changes.

Components

142

www.keyestudio.com

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Thin-film

Pressure

Sensor*1

3P Dupont

Wire*1

MicroUSB

Cable*1

Wiring Diagram

Test Code

143

www.keyestudio.com

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 23

* Film pressure sensor

* http://www.keyestudio.com

*/

int val = 0;

int Film = 27; //the thin-film pressure sensor is connected ADC1

void setup() {

Serial.begin(9600);//Set baud rate to 9600

}

void loop() {

val = analogRead(Film);//read the analog value

Serial.println(val);//print the analog value

delay(100);//delay in 1000ms

}

Test Result

Upload the code power up by a USB cable, open the serial monitor and set baud

rate to 9600. when the thin-film is pressed by fingers, the analog value will

decrease, as shown below;

144

www.keyestudio.com

145

www.keyestudio.com

Project 24: Flame Sensor

Description
In daily life, it is often seen that a fire broke out without any precaution. It
will cause great economic and human loss. So how can we avoid this
situation? Right, install a flame sensor and a speaker in those places that
easily break out a fire. When the flame sensor detects a fire, the speaker
will alarm people quickly to put out the fire.
So in this project, you will learn how to use a flame sensor and an active
buzzer module to simulate the fire alarm system.

Working Principle

This flame sensor can be used to detect fire or other light sources with
wavelength stands at 760nm ~ 1100nm. Its detection angle is about 60°.
You can rotate the potentiometer on the sensor to control its sensitivity.
Adjust the potentiometer to make the LED at the critical point between on

146

www.keyestudio.com

and off state. The sensitivity is the best.

From the below figure, power up. When detecting fire, the digital pin

outputs low levels, the red LED2 will light up first, the digital signal terminal

D0 outputs a low level, and the red LED1 will light up. The stronger the

external infrared light, the smaller the value; the weaker the infrared light,

the larger the value.

147

www.keyestudio.com

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

keyestudio DIY

Flame Sensor*1

4P Dupont

Wire*1
Micro USB Cable*1

Wiring Diagram

Test Code
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 24
* Flame sensor
* http://www.keyestudio.com

*/
//set pins of the sensor to 22 and 26
int digitalPin = 22;

148

www.keyestudio.com

int analogPin = 26;
//save below variables to the digital signal and analog signal
int analogVal = 0;
int digitalVal = 0;

void setup() {
Serial.begin(9600); //set baud rate to 9600
pinMode(digitalPin, INPUT); //set the pin 22 to INPUT

}

void loop() {
analogVal = analogRead(analogPin); //read analog signals
digitalVal = digitalRead(digitalPin); //read digital signals
Serial.print(analogVal); //print analog values
Serial.print(" "); //
Serial.println(digitalVal); //print digital values
delay(100); //delay in 100ms

}

Code Explanation

Two pins we use are defined as 22 and 26 according to the wiring-up

diagram, and print digital signals and analog signals respectively.

Test Result

Upload the test code and power up，LED2 is on and LED1 is off. Open the

monitor and set baud rate to 9600. When fire is detected, LED1 will be on.

the digital value will change from 1 to 0, and the analog value will become

smaller, as shown in the figure below.

149

www.keyestudio.com

150

www.keyestudio.com

Project 25: MQ-2 Gas Sensor

Description

This analog gas sensor - MQ2 is used in gas leakage detecting equipment

in consumer electronics and industrial markets.

This sensor is suitable for detecting LPG, I-butane, propane, methane,

alcohol, Hydrogen and smoke. It has high sensitivity and quick response.

In addition, the sensitivity can be adjusted by rotating the potentiometer.

In the experiment, we read the analog value at the A0 port and the D0 port

to determine the content of gas.

151

www.keyestudio.com

Working Principle

The greater the concentration of smoke, the greater the conductivity, the

lower the output resistance, the greater the output analog signal.

When in use, the A0 terminal reads the analog value of the corresponding

gas; the D0 terminal is connected to an LM393 chip (voltage comparator),

we can adjust the alarm threshold of the measured gas through the

potentiometer, and output the digital value at D0. When the measured gas

content exceeds the critical point, the D0 terminal outputs a low level;

152

www.keyestudio.com

when the measured gas content does not exceed the critical point, the D0

terminal outputs a high level.

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

keyestudio

DIY Analog

Gas Sensor*1

4P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

153

www.keyestudio.com

Test Code
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 25
* MQ2
* http://www.keyestudio.com

*/
//connect two pins of the sensor to 22 and 26
int digitalPin = 22;
int analogPin = 26;
//save two variables to digital signals and analog signals
int analogVal = 0;
int digitalVal = 0;

void setup() {
Serial.begin(9600); //set baud rate to 9600
pinMode(digitalPin, INPUT); //set the pin 22 to INPUT

}

void loop() {
analogVal = analogRead(analogPin); //read analog signals
digitalVal = digitalRead(digitalPin); //read digital signals
Serial.print(analogVal);
if (digitalVal == 1) {

Serial.println(" Normal");
}
else {

Serial.println(" Exceeding");
}
delay(100); //delay in 100ms

}

Test Result

Run the test code, the yellow-green LED on the module lights up, open the

serial monitor, set baud rate to 9600 and display the corresponding data

154

www.keyestudio.com

and characters.

In the experiment, we can see the simulated value is less than or equal to

2769, the gas content does not exceed the critical point, and the red LED is

off; when the simulated value is greater than or equal to 2769, the gas

content exceeds the critical point, and the red LED lights up. That means

that the analog value of the critical point of gas content is between

2769-2863, we can adjust the critical point by rotating the potentiometer

on the sensor.

155

www.keyestudio.com

Project 26: MQ-3 Alcohol Sensor

Description

In this kit, there is a MQ-3 alcohol sensor, which uses the gas-sensing

material is tin dioxide (SnO2) which has a low conductivity in clean air.

When there is alcohol vapor in the environment where the sensor is

located, the conductivity of the sensor increases with the increase of the

alcohol gas concentration in the air. The change in conductivity can be

converted into an output signal corresponding to the gas concentration

using a simple circuit.

In the experiment, we read the analog value at the A0 end of the sensor

and the digital value at the D0 end to judge the content of alcohol vapor in

the air and whether they exceed the standard.

156

www.keyestudio.com

Working Principle

At a certain temperature, the conductivity changes with the composition of

the ambient gas. When in use, A0 terminal reads the analog value

corresponding to alcohol vapor; D0 terminal is connected to an LM393

chip (comparator), we can adjust and measure the alcohol vapor alarm

threshold through the potentiometer, and output the digital value at D0.

When the measured alcohol vapor content exceeds the critical point, the

D0 terminal outputs a low level; when the measured alcohol vapor content

does not exceed the critical point, the D0 terminal outputs a high level.

Components Required

157

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

keyestudio

Alcohol

Sensor*1

Dupont

Wire4P*1
Micro USB Cable*1

Connection Diagram

Test Code
/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 26

* MQ3

* http://www.keyestudio.com

*/

//The two pins of the smoke sensor are connected to 22 and 26 respectively.

int digitalPin = 22;

int analogPin = 26;

//The following two variables store the digital signal and the analog signal respectively int analogVal = 0;

158

www.keyestudio.com

int digitalVal = 0;

void setup() {

Serial.begin(9600); //Set baud rate to 9600

pinMode(digitalPin, INPUT); //set pin 22 to INPUT

}

void loop() {

analogVal = analogRead(analogPin); //read analog signals

digitalVal = digitalRead(digitalPin); //read digital signals

Serial.print(analogVal);

if (digitalVal == 1) {

Serial.println(" Normal");

}

else {

Serial.println(" Exceeding");

}

delay(100); //delay in 100ms

}

Test Result

Upload the test code successfully, power up with a USB cable, the red led

LED on the module lights up and open the serial monitor and set baud rate

to 9600. The serial monitor displays the corresponding data and characters.

In the experiment, we can see that when the simulated value of the test is

less than or equal to 2788, the gas content does not exceed the critical

point, and the yellow-green LED is off; when the simulated value of the test

is greater than or equal to 2800, the gas content exceeds the critical point,

159

www.keyestudio.com

and the yellow-green LED lights up; then that means that the analog value

of the alcohol vapor content critical point is between 2788-2800, we can

adjust the critical point by rotating the potentiometer on the sensor.

160

www.keyestudio.com

Project 27: Five-key AD Button Module

Description

When we talked about analog and digital sensors earlier, we talked about

the single-channel key module. When we press the key, it outputs a low

level, and when we release the key, it outputs a high level. We can only

read these two digital signals. In fact, the key module ADC acquisition can

also be performed. In this kit, a DIY electronic building block five-way AD

button module is included.

We can judge which key is pressed through the analog value. In the

experiment, we print out the key press information in the shell.

161

www.keyestudio.com

Working Principle

Let’s look at the schematic diagram, when we do not press the key, the OUT of S

output to the signal end is pulled down by R1. At this time, we read the low level

0V. When we press the key SW1, the OUT of the output to the signal end S is

directly connected to the VCC. At this time, we read the high level 3.3V(the figure

is marked as a 10-bit ADC(0~1023) and VCC is 5V. The principle is the same. Here

we have VCC of 3.3V and ADC mapped to 16 bits), which is an analog value of

65535.

Next,when we press the key SW2, the OUT terminal voltage of the signal we read

is the voltage between R2 and R1, namely VCC*R1/(R2+R1), which is about

2.64V, and the analog value is about 52219.

When we press the key SW3, the OUT terminal voltage of the signal we read is

the voltage between R2+R3 and R1, namely VCC*R1/(R3+R2+R1), which is

about 1.99V, and the analog value is about 39360.

When we press the key SW4, the OUT terminal voltage of the signal we read is

the voltage between R2+R3+R4 and R1, namely VCC*R1/(R4+R3+R2+R1),

about 1.31V, and the analog value is about 26109.

Similarly, when we press the key SW5, the OUT terminal voltage of the signal we

read is the voltage between R2+R3+R4+R5 and R1, namely

162

www.keyestudio.com

VCC*R1/(R5+R4+R3+R2+R1), which is about 0.68V, and the analog value is

about 13415.

Components Required

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion

Board*1

keyestudio

5-Channel

AD Button

Module*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

163

www.keyestudio.com

Test Code

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 27

* AD Key

* http://www.keyestudio.com

*/

int val = 0;

int ADkey = 26; //Define five AD buttons to connect to GPIO26

void setup() {

Serial.begin(9600); //Set baud rate to 9600

}

void loop() {

val = analogRead(ADkey); //Read the analog value of the AD button and assign it to the variable val

Serial.print(val); //newline print variable val

if (val <= 500) { //When no button is pressed, val is less than or equal to 500

Serial.println(" no key is pressed");

} else if (val <= 1200) { //When key 5 is pressed, val is between 500 and 1200

Serial.println(" SW5 is pressed");

164

www.keyestudio.com

} else if (val <= 2000) { //When key 4 is pressed, val is between 1200 and 2000

Serial.println(" SW4 is pressed");

} else if (val <= 2800) { //When key 3 is pressed, val is between 2000 and 2800

Serial.println(" SW3 is pressed");

} else if (val <= 3500) { //When key 2 is pressed, val is between 2800 and 3500

Serial.println(" SW2 is pressed");

} else { //When button 1 is pressed, val is greater than 3500

Serial.println(" SW1 is pressed");

}

}

Code Explanation

We assign the read analog value to the variable val, and the serial monitor

displays the value of val, (we set to 9600).

When the analog value is in the range of 500 and 1200, the button SW5 is

pressed; when the analog value is in the 1200 and 2000, the button SW4 is

pressed; when the analog value is between 2000 and 2800, the button SW3

is pressed; when the analog value is between 2800 and 3500, the button

SW2 is pressed. Press; When the analog value is above 3500, we judge that

the button SW1 is pressed.

165

www.keyestudio.com

Test Result

After uploading the test code successfully, power on, open the serial

monitor and set baud rate to 9600; when the button is pressed, the serial

monitor prints out the corresponding information, as shown in the figure

below.

166

www.keyestudio.com

Project 28: Joystick Module

Overview

Game handle controllers are ubiquitous.

It mainly uses PS2 joysticks. When controlling it, we need to connect the X

and Y ports of the module to the analog port of the single-chip

microcomputer, port B to the digital port of the single-chip microcomputer,

VCC to the power output port(3.3-5V), and GND to the GND of the MCU.

We can read the high and low levels of two analog values and one digital

port) to determine the working status of the joystick on the module.

In the experiment, two analog values(x axis and y axis) will be shown on

Shell.

Working Principle

167

www.keyestudio.com

In fact, its working principle is very simple. Its inside structure is equivalent

to two adjustable potentiometers and a button. When this button is not

pressed and the module is pulled down by R1, low levels will be output ; on

the contrary, when the button is pressed, VCC will be connected (high

levels), When we move the joystick, the internal potentiometer will adjust

to output different voltages, and we can read the analog value.

Components

168

www.keyestudio.com

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Joystick

Module*1

5P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 28

* Joystick

* http://www.keyestudio.com

*/

int X = 0;

int Y = 0;

int Button = 0;

void setup() {

169

www.keyestudio.com

Serial.begin(9600);

pinMode(22, INPUT); //set the pin of the button to GP22

}

void loop() {

X = analogRead(26); //the pin of the x axis is connected to ADC0

Y = analogRead(27); //the pin of Y axis is connected to ADC1

Button = digitalRead(22); //read the status of the button and print

Serial.write("X:");

Serial.print(X);

Serial.write(" Y:");

Serial.print(Y);

Serial.write(" B:");

Serial.println(Button);

delay(100);

}

Code Explanation

In the experiment, according to the wiring diagram, the x pin is set to GP26, the y

pin is set to GP27 and the pin of the joystick is set to GP22. Teen the serial

monitor displays the test data.

Test Result

Upload the code power up by a USB cable, open the serial monitor and set baud

rate to 9600.

The serial monitor will show the corresponding value. Move the joystick, the

analog value of X axis and Y axis will change. Press the button, the digital value is

1, on the contrary is 0. as shown below;

170

www.keyestudio.com

171

www.keyestudio.com

Project 29: Ultraviolet Sensor

Description

There is a ultraviolet Sensor used for UV index monitoring, UV radiation

dose measurement, flame detection. Suitable for measuring UV index of

smart wearable devices, such as UV index detection of watches,

smartphones and outdoor equipment. It can also be used to monitor the

intensity of UV light, or as a UV flame detector when UV sanitizing items.

The sensor has a specific spectral response. In the experiment, we use the

purple led module to test the UV module, and then display the results on

the shell.

172

www.keyestudio.com

Working Principle

The output current of the UV sensor is proportional to the light intensity,

and the output of the product has a very high consistency. The module

circuit has been set up, and we directly use the ADC to collect the analog

signal.

Required Components

173

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

Ultraviolet

Sensor*1

3P Dupont

Wire*2

Micro USB

Cable*1

Keyestudio DIY

Purple LED*1

Wiring Diagram

(V of led module is connected to VUSB(5V) to make the LED brighter)

Test Code

/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 29
* UV sensor
* http://www.keyestudio.com

*/
int val = 0;
int led = 27;
void setup() {

Serial.begin(9600);//set baud rate to 9600

174

www.keyestudio.com

pinMode(led, OUTPUT);//set the pin of the purple LED to INPUT
pinMode(26, INPUT);//set the pin of the sensor to INPUT
digitalWrite(led, HIGH);

}

void loop() {
val = analogRead(26);//read levels
Serial.println(val);//print analog levels
delay(100);

}

Code Explanation

We first light up the purple LED, and then use it to illuminate the UV

module to see the changes in the data on the serial monitor.

Test Result

Upload the test code, open the serial monitor and set baud rate to 9600.

When we make the purple LED close to the ultraviolet module, view the

data on the monitor, as shown below:

175

www.keyestudio.com

Project 30: SK6812 RGB Module

Overview

In previous lessons, we learned about the plug-in RGB module and used

PWM signals to color the three pins of the module.

There is a Keyestudio 6812 RGB module whose the driving principle is

different from the plug-in RGB module. It can only control with one pin.

176

www.keyestudio.com

This is a set. It is an intelligent externally controlled LED light source with

the control circuit and the light-emitting circuit. Each LED element is the

same as a 5050 LED lamp bead, and each component is a pixel. There are

four lamp beads on the module, which indicates four pixels

In the experiment, we make different lights show different colors.

Working Principle

From the schematic diagram, we can see that these four pixel lighting

beads are all connected in series. In fact, no matter how many they are, we

can use a pin to control a light and let it display any color. The pixel point

contains a data latch signal shaping amplifier drive circuit, a high-precision

internal oscillator and a 12V high-voltage programmable constant current

control part, which effectively ensures the color of the pixel point light is

highly consistent.

The data protocol adopts a single-wire zero-code communication method.

After the pixel is powered up and reset, the S terminal receives the data

transmitted from the controller. The first 24bit data sent is extracted by the

first pixel and sent to the data latch of the pixel.

177

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

6812 RGB

Module*1

3P Dupont

Wire*1

MicroUSB

Cable*1

Wiring Diagram

Test Code

/*

178

www.keyestudio.com

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 30

* 6812 RGB LED

* http://www.keyestudio.com

*/

#include"rgb.h"

RGB rgb(16,4); //rgb(pin, num); num = 0-100

///

void setup() {

rgb.setBrightness(100); //rgb.setBrightness(0-255);

delay(10);

rgb.clear(); //Turn off all leds

delay(10);

}

///

void loop() {

while(1){

rgb.setPixelColor(0,255,0,0); //rgb.setPixelColor(num,r,g,b); num = 0-100

rgb.setPixelColor(1,0,255,0); //rgb.setPixelColor(num,r,g,b); num = 0-100

rgb.setPixelColor(2,0,0,255); //rgb.setPixelColor(num,r,g,b); num = 0-100

rgb.setPixelColor(3,255,255,255); //rgb.setPixelColor(num,r,g,b); num = 0-100

rgb.show();

delay(1000);

}

}

Code Explanation

We use the library function . You can

refer to project Add libraries.

Interfaces and functions：

RGB rgb(16,4); used to initialize 6812RGB，16 is the pin number，4 means

the number of light beads

179

www.keyestudio.com

rgb.setBrightness(100); used to set the brightness(0-255) of the 6812RGB

module. The larger the brightness value, the brighter light beads. 255

means the brightest.

rgb.clear(); used to clear up the screen

rgb.setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b); this function

is used to set locations of light beads of the 6812RGB module.

rgb.show(); used to display 6812RGB，necessary, if without this sentence,

light beads can’t refresh.

Test Result

Upload the test code, wire up and power up. Then we can the module

display red, green, blue and white color.

180

www.keyestudio.com

Project 31: Rotary Encoder

Overview

In this kit, there is a Keyestudio rotary encoder, dubbed as switch encoder.

It is applied to automotive electronics, multimedia audio, instrumentation,

household appliances, smart home, medical equipment and so on.

In the experiment, it it used for counting. When we rotate the rotary

encoder clockwise, the set data falls by 1; if you rotate it anticlockwise, the

set data is up 1; and when the middle button is pressed, the value will be

181

www.keyestudio.com

show on Shell.

Working Principle

The incremental encoder converts the displacement into a periodic electri

c signal, and then converts this signal into a counting pulse, and the num

ber of pulses indicates the size of the displacement.This module mainly us

es 20-pulse rotary encoder components. It can calculate the number of pu

lses output during clockwise and reverse rotation. There is no limit to cou

nt rotation. It resets to the initial state, that is, starts counting from 0.

Components

182

www.keyestudio.com

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudi

o Rotary

Encoder*1

5P

Dupont

Wire*1

MicroUSB

Cable*1

Wiring Diagram

Test Code
/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
lesson 31
Encoder
http://www.keyestudio.com

*/

//Interfacing Rotary Encoder with Arduino
//Encoder Switch -> pin 20
//Encoder DT -> pin 19
//Encoder CLK -> pin 18

int Encoder_DT = 19;
int Encoder_CLK = 18;

183

www.keyestudio.com

int Encoder_Switch = 20;

int Previous_Output;
int Encoder_Count;

void setup() {
Serial.begin(9600);

//pin Mode declaration
pinMode (Encoder_DT, INPUT);
pinMode (Encoder_CLK, INPUT);
pinMode (Encoder_Switch, INPUT);

Previous_Output = digitalRead(Encoder_DT); //Read the inital value of Output A
}

void loop() {
//aVal = digitalRead(pinA);

if (digitalRead(Encoder_DT) != Previous_Output)
{

if (digitalRead(Encoder_CLK) != Previous_Output)
{

Encoder_Count ++;
Serial.println(Encoder_Count);

}
else
{

Encoder_Count--;
Serial.println(Encoder_Count);

}
}

Previous_Output = digitalRead(Encoder_DT);

if (digitalRead(Encoder_Switch) == 0)
{

delay(5);
if (digitalRead(Encoder_Switch) == 0) {

Serial.println("Switch pressed");
while (digitalRead(Encoder_Switch) == 0);

}
}

}

184

www.keyestudio.com

Code Explanation

Set CLK to GP18 and DAT to GP19

This code is set well in the library file. When CLK descends, read the voltage of

DAT, when DAT is a HIGH level, the value of the rotary encoder is added by 1;

when DAT is a LOW level, the value of the rotary encoder is cut down 1.

Set the pin of the button(GP20) to LOW ans print.

Test Result

Upload the code power up by a USB cable, open the serial monitor and set baud

rate to 9600. Rotate the knob on the rotary encoder clockwise, the

displayed data will decrease; on the contrary, in anticlockwise way, the data

will rise. Equally, press the button on the rotary encoder,“Switch pressed”

will be shown.

185

www.keyestudio.com

Project 32: Servo Control

Overview

Servo motor is a position control rotary actuator. It mainly consists of a

housing, a circuit board, a core-less motor, a gear and a position sensor. Its

working principle is that the servo receives the signal sent by MCU or

186

www.keyestudio.com

receiver and produces a reference signal with a period of 20ms and width

of 1.5ms, then compares the acquired DC bias voltage to the voltage of the

potentiometer and obtain the voltage difference output.

In general, servo has three lines in brown, red and orange. The brown wire

is grounded, the red one is a positive pole line and the orange one is a

signal line.

Working Principle

When the motor speed is constant, the potentiometer is driven to rotate

through the cascade reduction gear, which leads that the voltage

187

www.keyestudio.com

difference is 0, and the motor stops rotating. Generally, the angle range of

servo rotation is 0° --180 °

The rotation angle of servo motor is controlled by regulating the duty cycle

of PWM (Pulse-Width Modulation) signal. The standard cycle of PWM

signal is 20ms (50Hz). Theoretically, the width is distributed

between 1ms-2ms, but in fact, it's between 0.5ms-2.5ms. The width

corresponds the rotation angle from 0° to 180°. But note that for different

brand motors, the same signal may have different rotation angles.

Components

188

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Shield*1
Servo*1

Micro

USB Cable*1

Wiring Diagram

Test Code

//Code 1：
/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

lesson 32.1

189

www.keyestudio.com

servo_1

http://www.keyestudio.com

*/

int servoPin = 0;//Pins of the servo

void setup() {

pinMode(servoPin, OUTPUT);//set pins of the servo to OUTPUT

}

void loop() {

servopulse(servoPin, 0);//rotate to 0°

delay(1000);//delay in 1s

servopulse(servoPin, 90);//rotate to 90°

delay(1000);

servopulse(servoPin, 180);//rotate to 180°

delay(1000);

}

void servopulse(int pin, int myangle) { //Impulse function

int pulsewidth = map(myangle, 0, 180, 500, 2500); //map angles to pulse width

for (int i = 0; i < 10; i++) { //output several pulse

digitalWrite(pin, HIGH);//pull up the pin of the servo

delayMicroseconds(pulsewidth);//extend the delayed time of pulse width

digitalWrite(pin, LOW);//pull down the pin of the servo

delay(20 - pulsewidth / 1000);

}

}

Code 2：
/*

Keyestudio 37 in 1 Starter Kit for Raspberry Pi Pico
lesson 29.2
servo_2
http://www.keyestudio.com

*/
#include <Servo.h> //servo library
Servo myservo;
void setup() {

myservo.attach(0);//the servo is connected to GP0

190

www.keyestudio.com

}

void loop() {
for (int pos = 0; pos < 180; pos++) {

myservo.write(pos); //rotate to pos
delay(15); //

}
for (int pos = 180; pos > 0; pos--) {

myservo.write(pos);
delay(15);

}
delay(2000);//wait for 2s

}

Code Explanation

Code 1：

1. map(value, fromLow, fromHigh, toLow, toHigh)；

Value is the value we map. fromLow, fromHigh is the maximum and minimum

value；

toLow, toHigh are the upper limit and lower limit we map. For example,

map(myangle, 0, 180, 500, 2500) means that an angle value myangle (0°-180°）

the mapping range is from 500us to 2500us.

We use the function servopulse() to make the servo move. We also make the

servo rotate 0°, 90°and 180°cyclically.

191

www.keyestudio.com

Code 2：

1. The library of the servo has been downloaded ，

click and， to

find the path

The you can get the library of the servo.

。

192

www.keyestudio.com

myservo.write(pos): angle values of the servo. myservo.read(): read

angle values of the servo.

Test Result

Upload the code1 and power up，the servo will rotate 0°，90° and 180°.

Upload the code 2 and power up, the servo will rotate from 0° to 180° by

moving 1° for each 15ms.

Project 33: Ultrasonic Sensor

Overview

In this kit, there is a keyes HC-SR04 ultrasonic sensor, which can detect obstacles

in front and the detailed distance between the sensor and the obstacle. Its

193

www.keyestudio.com

principle is the same as that of bat flying. It can emit the ultrasonic signals that

cannot be heard by humans. When these signals hit an obstacle and come back

immediately. The distance between the sensor and the obstacle can be calculated

by the time gap of emitting signals and receiving signals.

In the experiment, we use the sensor to detect the distance between the sensor

and the obstacle, and print the test result.

Ultrasonic detector module can provide 2cm-450cm non-contact sensing

distance, and its ranging accuracy is up to 3mm, very good to meet the normal

requirements. The module includes an ultrasonic transmitter and receiver as well

as the corresponding control circuit.

Working Principle

The most common ultrasonic ranging method is the echo detection. As

shown below; when the ultrasonic emitter emits the ultrasonic waves

towards certain direction, the counter will count. The ultrasonic waves

travel and reflect back once encountering the obstacle. Then the counter

will stop counting when the receiver receives the ultrasonic waves coming

back.

The ultrasonic wave is also sound wave, and its speed of sound V is related

194

www.keyestudio.com

to temperature. Generally, it travels 340m/s in the air. According to time t,

we can calculate the distance s from the emitting spot to the obstacle.

s=340t/2.

The HC-SR04 ultrasonic ranging module can provide a non-contact

distance sensing function of 2cm-400cm, and the ranging accuracy can

reach as high as 3mm; the module includes an ultrasonic transmitter,

receiver and control circuit. Basic working principle:

1. First pull down the TRIG, and then trigger it with at least 10us high level

signal;

2. After triggering, the module will automatically transmit eight 40KHZ

square waves, and automatically detect whether there is a signal to return.

3. If there is a signal returned back, through the ECHO to output a high

level, the duration time of high level is actually the time from emission to

reception of ultrasonic.

Test distance = high level duration * 340m/s * 0.5.

195

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

keyestudio

SR01

Ultrasonic

Sensor*1

4P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

Test Code/*
Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
lesson 33
Ultrasonic
http://www.keyestudio.com

*/
int distance = 0; //Define a variable to receive the distance

196

www.keyestudio.com

int EchoPin = 13; //Echo is connected to GP13
int TrigPin = 14; //Trig is connected to GP14
float checkdistance() { //obtain the distance

// give a short low level so as to ensure a clear high pulse:
digitalWrite(TrigPin, LOW);
delayMicroseconds(2);
// trigger 10ms or above high pulse to the sensor
digitalWrite(TrigPin, HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin, LOW);
//read a signal from the sensor; a high level pulse，
//the duration time is calculated from sending ping command to receiving the echo of the object
float distance = pulseIn(EchoPin, HIGH) / 58.00; //calculate distance
delay(10);
return distance;

}

void setup() {
Serial.begin(9600);//Set baud rate to 9600
pinMode(TrigPin, OUTPUT);//set Trig to OUTPUT
pinMode(EchoPin, INPUT); //set Echo to INPUT

}

void loop() {
distance = checkdistance();
if (distance < 2 || distance >= 400) { //print "-1"

Serial.println("-1");
delay(100);

}
else { //print distance

Serial.print("distance:");
Serial.print(distance);
Serial.println("cm");
delay(100);

}

}

Code Explanation

The maximum test distance of HC-SR04 ultrasonic sensor is 3-4m, and the

197

www.keyestudio.com

minimum test distance is 2cm. Setting code When the detection distance is less

than 2cm or greater than or equal to 400cm, the serial monitor will display -1. We

display the distance between the sensor and the obstacle on the serial monitor.

Test Result

Upload the code power up by a USB cable, open the serial monitor and set baud

rate to 9600.

If the obstacle is beyond the detection range, the monitor will show “-1”; on the

contrary, the monitor will display the distance away from the obstacle.

198

www.keyestudio.com

Project 34: IR Receiver Module

Overview

199

www.keyestudio.com

There is no doubt that infrared remote control is ubiquitous in daily life. It

is used to control various household appliances, such as TVs, stereos, video

recorders and satellite signal receivers. Infrared remote control is

composed of infrared transmitting and infrared receiving systems, that is,

an infrared remote control and infrared receiving module and a single-chip

microcomputer capable of decoding.​

In this experiment, we need to know how to use the infrared receiving

sensor. The infrared receiving sensor mainly uses the VS1838B infrared

receiving sensor element. It integrates receiving, amplifying, and

demodulating. The internal IC has already completed the demodulation,

and the output is a digital signal. It can receive 38KHz modulated remote

control signal. In the experiment, we use the IR receiver to receive the

infrared signal emitted by the external infrared transmitting device, and

display the received signal in the shell.

Working Principle

200

www.keyestudio.com

The main part of the IR remote control system is modulation, transmission

and reception. The modulated carrier frequency is generally between

30khz and 60khz, and most of them use a square wave of 38kHz and a duty

ratio of 1/3. A 4.7K pull-up resistor R3 is added to the signal end of the

infrared receiver.

Components

201

www.keyestudio.com

Raspberry

Pi Pico

Board*1

Raspberry

Pi Pico

Shield*1

Keyestudio

DIY

IR Receiver

*1

3P Dupont

Wire*1

Micro

USB

Cable*1

Remote

Control*1

Wiring Diagram

Test Code
/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
lesson 34
IR Receiver
http://www.keyestudio.com

*/
#include"ir.h"
IR IRreceive(16);
////////////////////
void setup() {

Serial.begin(9600);
delay(1000);

}
////////////////////

202

www.keyestudio.com

void loop() {
Serial.println("IR receive");
while(1){

int key = IRreceive.getKey();
if(key != -1)

Serial.println(key);
}

}

Code Explanation

We need to import the library .

Key values are shown below;

Test Result

Wire up, upload the code, power up and open serial monitor. Point at the

IR receiver and press keys on the IR remote control. Then the lED on the IR

203

www.keyestudio.com

receiver will flash, as shown below;

204

www.keyestudio.com

Project 35: DS18B20 Temperature Sensor

Description

The DS18B20 is a 1-wire programmable Temperature sensor from maxim

integrated. It is widely used to measure temperature in hard environments

like in chemical solutions, mines or soil etc. The constriction of the sensor is

rugged and also can be purchased with a waterproof option making the

mounting process easy. It can measure a wide range of temperature from

-55°C to +125° with a decent accuracy of ±5°C. Each sensor has a unique

address and requires only one pin of the MCU to transfer data so it a very

good choice for measuring temperature at multiple points without

compromising much of your digital pins on the microcontroller.

205

www.keyestudio.com

Working Principle

The hardware interface of the 1-Wire bus is very simple, just connect the

data pin of the DS18B20 to an IO port of the microcontroller. The timing of

the 1-Wire bus is relatively complex. Many students can’t understand the

timing diagram independently here. We have encapsulated the complex

timing operations in the library, and you can use the library functions

directly.

Schematic Diagram of DS18B20

This can save up to 12-bit temperature vale. In the register, save in code

complement. As shown below;

206

www.keyestudio.com

A total of 2 bytes, LSB is the low byte, MSB is the high byte, where MSb is

the high byte of the byte, LSb is the low byte of the byte. As you can see,

the binary number, the meaning of the temperature represented by each

bit, is expressed. Among them, S represents the sign bit, and the lower 11

bits are all powers of 2, which are used to represent the final temperature.

The temperature measurement range of DS18B20 is from -55 degrees to

+125 degrees, and the expression form of temperature data, S represents

positive and negative temperature, and the resolution is 2﹣⒋, which is

0.0625.

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

18B20

Temperature

Sensor*1

3P Dupont

Wire*1
Micro USB Cable*1

207

www.keyestudio.com

Wiring Diagram

Test Code
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 35

* ds18b20
* http://www.keyestudio.com

*/
#include <DS18B20.h>

//ds18b20 pin to 3
DS18B20 ds18b20(3);

void setup() {
Serial.begin(9600);

}

void loop() {
double temp = ds18b20.GetTemp();//read temperature value
temp *= 0.0625;//convert to 0.0625/LSB
Serial.print("Temperature: ");
Serial.print(temp);
Serial.println("C");
delay(1000);

}

208

www.keyestudio.com

Code Explanation1.

We need to import the DS18B20 module.

Set the pin to 3.

Set a double decimal variable to temp, and assign the measured result to

temp.

The serial monitor displays the temp value, and the baud rate needs to be

set before displaying (our default setting is 9600, which can be changed).

We add the unit behind the data. If the unit is directly set to °C, the test

result will be garbled. So we directly replace ℃ with C.

Test Result

Run the test code, power on, open the serial monitor and set baud rate to

9600. The monitor will display the temperature of the current environment,

as shown below.

209

www.keyestudio.com

210

www.keyestudio.com

Project 36: XHT11 Temperature and Humidity Sensor

Description

This DHT11 temperature and humidity sensor is a composite sensor which

contains a calibrated digital signal output of the temperature and humidity.

DHT11 temperature and humidity sensor uses the acquisition technology

of the digital module and temperature and humidity sensing technology,

ensuring high reliability and excellent long-term stability.

It includes a resistive element and a NTC temperature measuring device.

211

www.keyestudio.com

Working Principle

The communication and synchronization between the single-chip

microcomputer and XHT11 adopts the single bus data format. The

communication time is about 4ms. The data is divided into fractional part

and integer part.

Operation process: A complete data transmission is 40bit, high bit first out.

Data format: 8bit humidity integer data + 8bit humidity decimal data +

8bit temperature integer data + 8bit temperature decimal data + 8bit

checksum

8-bit checksum: 8-bit humidity integer data + 8-bit humidity decimal data

+ 8-bit temperature integer data + 8-bit temperature decimal data "Add

the last 8 bits of the result.

Required Components

212

www.keyestudio.com

Raspberry Pi Pico

Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

XHT11

Temperature and

Humidity Sensor

（compatible with

DHT11)*1

3P Dupont Wire*1 Micro USB Cable*1

Wiring Diagram

Test Code
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 36
* xht11
* http://www.keyestudio.com

*/
#include "xht11.h"
//gpio22
xht11 xht(22);

213

www.keyestudio.com

unsigned char dht[4] = {0, 0, 0, 0};//only receive the data before 32 bit
void setup() {

Serial.begin(9600);//enable the serial monitor and set baud rate to 9600
}

void loop() {
if (xht.receive(dht)) { //return true

Serial.print("RH:");
Serial.print(dht[0]); //Integer part of humidity, dht[1] is the fractional part
Serial.print("% ");
Serial.print("Temp:");
Serial.print(dht[2]); //The integer part of the temperature, dht[3] is the fractional part
Serial.println("C");

} else { //read errors
Serial.println("sensor error");

}
delay(1500); //wait for 1500ms

}

Code Explanation

1. In the experiment, we need to import the library file of XHT11 first.

2. We set the pin to GP22, and store the detected temperature and

humidity data in the dht[4] array.

3. We add units behind the data. If the temperature unit is directly set to °

C, the test results may be wrong, so we directly replace ° C with C; the

humidity unit is directly set to %.

Test Result

Upload the test code, power up, open the serial monitor and set baud rate to

214

www.keyestudio.com

9600. The monitor will display the temperature and humidity data, as

shown below.

215

www.keyestudio.com

Project 37: DS1307 Clock Module

Overview

The DS1307 serial real-time clock (RTC) is a low-power, full binary-coded

decimal (BCD) clock/calendar plus 56 bytes of NV SRAM. Address and

data are transferred serially through an I2C, bidirectional bus.

The clock/calendar provides seconds, minutes, hours, day, date, month,

and year information. The end of the month date is automatically

adjusted for months with fewer than 31 days, including corrections for leap

216

www.keyestudio.com

year. The clock operates in either the 24-hour or 12-hour format with

AM/PM indicator. The DS1307 has a built-in power-sense circuit that

detects power failures and automatically switches to the backup supply.

Timekeeping operation continues while the part operates from the backup

supply.

Working Principle

Detailed address and data:

Serial real-time clock records year, month, day, hour, minute, second and

week; AM and PM indicate morning and afternoon respectively; 56 bytes of

217

www.keyestudio.com

NVRAM store data; 2-wire serial port; programmable square wave output;

power failure detection and automatic switching circuit; battery current is

less than 500nA.

Pins description：X1, 32.768kHz crystal terminal ;

VBAT:X2：+3V input;

SDA：serial data;

SCL：serial clock;

SQW/OUT：square waves/output drivers

Components

218

www.keyestudio.com

VUSB is 5V，then connect the power to VUSB.

Test Code

/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

lesson 37

DS1307 Real Time Clock

http://www.keyestudio.com

*/

#include <Wire.h>

#include "RtcDS1307.h" //library of the DS1307 clock module

RtcDS1307<TwoWire> Rtc(Wire);//i2c is connected to 14, 15

void setup(){

Serial.begin(57600);//set baud rate to 57600

219

www.keyestudio.com

Rtc.Begin();

Rtc.SetIsRunning(true);

Rtc.SetDateTime(RtcDateTime(__DATE__, __TIME__));

}

void loop(){

//print year, month, day, hour, minute, second and week

Serial.print(Rtc.GetDateTime().Year());

Serial.print("/");

Serial.print(Rtc.GetDateTime().Month());

Serial.print("/");

Serial.print(Rtc.GetDateTime().Day());

Serial.print(" ");

Serial.print(Rtc.GetDateTime().Hour());

Serial.print(":");

Serial.print(Rtc.GetDateTime().Minute());

Serial.print(":");

Serial.print(Rtc.GetDateTime().Second());

Serial.print(" ");

220

www.keyestudio.com

Serial.println(Rtc.GetDateTime().DayOfWeek());

delay(1000);//delay in 1s

}

Code Explanation

We need to import the library of the clock module.

Rtc.GetDateTime(): the obtained current time and date.

Rtc.Begin();enable DS1307 real-time clock

Rtc.SetIsRunning(true); run the DS1307 real-time clock, if true changes into

false, time will stop

Rtc.SetDateTime()；set time

Rtc.GetDateTime().Year() return year

Rtc.GetDateTime().Month() return month

Rtc.GetDateTime().Day()return data

Rtc.GetDateTime().Hour()return hour

Rtc.GetDateTime().Minute()return minute

Rtc.GetDateTime().Second()return second

Rtc.GetDateTime().DayOfWeek() return week

Test Result

Upload the code power up by a USB cable, open the serial monitor and set

221

www.keyestudio.com

baud rate to 9600.

We can see the displayed year, month, day, hour, minute, second and week

on the shell, as shown below;

222

www.keyestudio.com

Project 38: ADXL345 Acceleration Sensor

In this kit, there is a DIY electronic building block ADXL345 acceleration sensor

module, which uses the ADXL345BCCZ chip. The chip is a small, thin, low-power

3-axis accelerometer with a high resolution (13 bits) and a measurement range of

±16g that can measure both dynamic acceleration due to motion or impact as

well as stationary acceleration such as gravitational acceleration, making the

device usable as a tilt sensor.

223

www.keyestudio.com

Working Principle

The ADXL345 is a complete 3-axis acceleration measurement system with a

selection of measurement ranges of ±2 g, ±4 g, ±8 g or ±16 g. Its digital

output data is in 16-bit binary complement format and can be accessed through

an SPI (3-wire or 4-wire) or I2C digital interface.

The sensor can measure static acceleration due to gravity in tilt detection

applications, as well as dynamic acceleration due to motion or impact. Its high

resolution (3.9mg/LSB) enables measurement of tilt Angle changes of less than

1.0°.

Components Required

224

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

ADXL345

Acceleration

Module*1

4P Dupont

Wire*1
Micro USB Cable*1

Connection Diagram

Test Code
/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
lesson 38
ADXL345
http://www.keyestudio.com

*/
#include "adxl345_io.h"
//the port is sda-->9,scl-->910
adxl345 adxl345(9, 10);

float out_X, out_Y, out_Z;

void setup() {
Serial.begin(57600);//Start serial port monitoring and set the baud rate to 57600
adxl345.Init();

225

www.keyestudio.com

}

void loop() {
adxl345.readXYZ(&out_X, &out_Y, &out_Z);
Serial.print(out_X);
Serial.print("g ");
Serial.print(out_Y);
Serial.print("g ");
Serial.print(out_Z);
Serial.println("g");
delay(100);

}

Code Explanation

Set 3 decimal variables out_X out_Y out_Z, and assign the measured result

to out_X out_Y out_Z. The serial monitor displays the value of out_X out_Y

out_Z, and the baud rate needs to be set before displaying (our default

setting is 9600, which can be changed).

Adxl345.Init;Initialize the ADXX345 accelerometer

adxl345.readXYZ(&out_X, &out_Y, &out_Z);

Get the acceleration value of the X axis and return it to the variables out_X,

out_Y, out_Z

Test Result

Upload the test code, power on with a USB cable, open the serial monitor

and set baud rate to 9600. The serial monitor displays the value

corresponding to the sensor, the unit is g, as shown in the figure below.

226

www.keyestudio.com

227

www.keyestudio.com

Project 39: TM1650 4-Digit Tube Display

Overview

This module is mainly composed of a 0.36 inch red common anode 4-digit

digital tube, and its driver chip is TM1650. When using it, we only need two

signal lines to make the single-chip microcomputer control a 4-bitdigit

tube, which greatly saves the IO port resources of the control board.

TM1650 is a special circuit for LED (light emitting diode display) drive

control. It integrates MCU input and output control digital interface, data

latch, LED drivers, keyboard scanning, brightness adjustment and other

circuits.

TM1650 has stable performance, reliable quality and strong

228

www.keyestudio.com

anti-interference ability.

It can be applied to the application of long-term continuous working for 24

hours.

TM1650 uses 2-wire serial transmission protocol for communication (note

that this data transmission protocol is not a standard I2C protocol). The

chip can drive the digital tube and save MCU pin resources through two

pins and MCU communication.

Working Principle

TM1650 adopts IIC treaty and SDA and SCL wire

Data command setting is 0x48. This means that lighting up the tube

display not perform its button scanning function.

229

www.keyestudio.com

Data command setting: 0x48 means that we light up the digital tube,

instead of enable the function of key scanning

Command display setting:

bit[6:4]: set the brightness of tube display, and 000 is brightest

bit[3]: set to show decimal points

bit[0]: start the display of the tube display

Components

230

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

TM1650

4-Digit Tube

Display*1

4P Dupont

Wire*1

Micro

USB Cable*1

Wiring Diagram

Test Code

/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

lesson 39

TM1650 Four digital tube

http://www.keyestudio.com

*/

#include "KETM1650.h" //import the library file of TM1650

231

www.keyestudio.com

int item = 0; //display value

//pins are GP14 and GP15

#define DIO 14

#define CLK 15

KETM1650 tm_4display(CLK, DIO);

void setup() {

tm_4display.init(); //initialize

tm_4display.setBrightness(3); //set brightness to 3，in the range of

1~8

}

void loop() {

tm_4display.displayString(item);//the 4-digit tube display will show

item value

item = item + 1; //add 1

if (item > 9999) { //when adding to 9999, clear up

item = 0;

}

delay(100); //delay in 100ms

}

232

www.keyestudio.com

Code Explanation

Similarly, we need to import the library file of the TM1650 module first.

Here are some commonly used function interfaces:

.init(); Initialize TM1650

.clear();clear up the tube display

.displayString(char *aString);Display character string，

.displayString(String sString); Display string ，sString is character string

.displayString(float value);Display decimal, the content is float type

.displayString(double value);Display decimal, the content is double

type

.displayString(int value); Display integer, the content is int type

.displayOn();open the tube display

.displayOff(); turn off the tube display，in comparison with .clear，once turning

off, the function .displayOn() must be used;

.setDot(unsigned int aPos, bool aState); display decimal point, aPos is the

location of decimal point (0~3) corresponds to (1~4)， aState is the display

status:1（true）lights up，2（false）goes off.

.setBrightness(unsigned int iBrightness); set the brightness of the tube

display

iBrightness: the brightness value（1~8, type is unsigned int，

233

www.keyestudio.com

Test Result

Run the test code, wire up and power on. 4-digit tube display will show

integer from 0 to 99999, add 1 for each 10ms. Increase to 9999 then start

from 0

234

www.keyestudio.com

Project 40: HT16K33_8X8 Dot Matrix Module

Overview

What is the dot matrix display?

The 8X8 dot matrix is composed of 64 light-emitting diodes, and each

light-emitting diode is placed at the intersection of the row line and the

column line. When the corresponding row is set to 1 level, and a certain

column is set to 0 level, the corresponding diode will light up.

Working Principle

As the schematic diagram shown, to light up the LED at the first row and column,

235

www.keyestudio.com

we only need to set C1 to high level and R1 to low level. To turn on LEDs at the

first row, we set R1 to low level and C1-C8 to high level.

16 IO ports are needed, which will highly waste the MCU resources.

Therefore, we designed this module, using the HT16K33 chip to drive an 8*8 dot

matrix, which greatly saves the resources of the single-chip microcomputer.

There are three DIP switches on the module, all of which are set to I2C

communication address. The setting method is shown below.

A0

（1）

A1

（2）

A2

（3）

A0

（1）

A1

（2）

A2

（3）

A0

（1）

A1

（2）

A2

（3）

0

（ OFF

）

0

（ OFF

）

0

（ OFF

）

1

（ON）

0

（ OFF

）

0

（ OFF

）

0

（ OFF

）

1

（ON）

0

（ OFF

）

OX70 OX71 OX72

A0

（1）

A1

（2）

A2

（3）

A0

（1）

A1

（2）

A2

（3）

A0

（1）

A1

（2）

A2

（3）

1

（ON）

1

（ON）

0

（ OFF

0

（ OFF

0

（ OFF

1

（ON）

1

（ON）

0

（ OFF

1

（ON）

236

www.keyestudio.com

A0，A1 and A2 are grounded, that is, the address is 0x70

Components

） ） ） ）

OX73 OX74 OX75

A0

（1）

A1

（2）

A2

（3）

A0

（1）

A1

（2）

A2

（3）

0

（ OFF

）

1

（ON）

1

（ON）

1

（ON）

1

（ON）

1

（ON）

OX76 OX77

237

www.keyestudio.com

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

HT16K33_

8X8 Dot

Matrix*1

4P

Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code

/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

lesson 40

HT16K33 8*8 dot matrix

http://www.keyestudio.com

238

www.keyestudio.com

*/

#include <Matrix.h>//the library of the dot matrix

Matrix myMatrix(20, 21);

uint8_t LEDArray[8];

const uint8_t LedArray1[8] PROGMEM= {0x00, 0x18, 0x3c, 0x7e, 0xff,

0xff, 0x66, 0x00};//heart beat pattern

void setup() {

myMatrix.begin(0x70);//iic address

myMatrix.clear();//clear up

myMatrix.setBrightness(5);//brightness is 5, in the range of 0~15

}

void loop() {

memcpy_P(&LEDArray, &LedArray1, 8);

for (int i = 0; i < 8; i++)

{

for (int j = 0; j < 8; j++)

{

if ((LEDArray[i] & 0x01))

239

www.keyestudio.com

myMatrix.drawPixel(j, i, 1);

else

myMatrix.drawPixel(j, i, 0);

LEDArray[i] = LEDArray[i] >> 1;

}

}

myMatrix.write(); //display

}

Code Explanation

First we need to import the library file.

1. The pattern in our code is an array of byte data type, which is shown in

the table below. We convert {0x00, 0x18, 0x3c, 0x7e, 0xff, 0xff, 0x66, 0x00}

into binary, and fill in the 8*8 form below to make it clear. 1 means on, 0

means off,

Then we can see that it is a heart shape.

0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 1 1 1 1 0 0

0 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

240

www.keyestudio.com

0 1 1 0 0 1 1 0

0 0 0 0 0 0 0 0

Test Result

Burn the test code and wire up according to the wiring diagram; after

powering on, the dot matrix will display a heart beat pattern.

241

www.keyestudio.com

Project 41: LCD_128X32_DOT Module

This is a 128*32 pixel LCD module, which uses IIC communication mode and

ST7567A driver chip . At the same time, the code contains all the English letters

and common symbols of the library that can be directly called. When used, we

can also set English letters and symbols to display different text sizes in our

code. To make it easy to set up the pattern display, we also provide a mold

capture software that can convert a specific pattern into control code and then

copy it directly into the test code for use.

In the experiment, we will set up the display screen to display various English

words, common symbols and numbers.

242

www.keyestudio.com

Components Required

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

LCD_128X32_DO

T Module*1

4P Dupont

Wire*1

Micro USB

Cable*1

Connection Diagram

243

www.keyestudio.com

Test Code/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

lesson 41

lcd128*32

http://www.keyestudio.com

*/

#include "lcd128_32_io.h"

//Create an instance of lcd12832, sda--->20, scl--->21

lcd lcd(20, 21);

void setup() {

lcd.Init(); //initialization

244

www.keyestudio.com

lcd.Clear(); //

}

void loop() {

lcd.Cursor(0, 7); //Set display position

lcd.Display("KEYES"); //set display content

lcd.Cursor(1, 0);

lcd.Display("ABCDEFGHIJKLMNOPQR");

lcd.Cursor(2, 0);

lcd.Display("123456789+-*/<>=$@");

lcd.Cursor(3, 0);

lcd.Display("%^&(){}:;'|?,.~\\[]");

}

Code Explanation

First import the library file

1. .Init() initializes the display screen; .Clear() clears the display; .Cursor()

sets the display position; .Display() displays characters;

245

www.keyestudio.com

Test Result

After uploading the test code, wire up and power up, the first line of the

128X32LCD module display shows "KEYES", the second line shows

"ABCDEFGHIJKLMNOPQR", and the third line shows "123456789+-*/<>

=$@", the fourth line displays "%^&(){}:;'|?,.~\\[]", as shown in the

following figure:

246

www.keyestudio.com

Project 42: RFID Module

Description

RFIDRFID-RC522 radio frequency module adopts a Philips MFRC522

original chip to design card reading circuit, easy to use and low cost,

suitable for equipment development and card reader development and so

on.

RFID or Radio Frequency Identification system consists of two main

components, a transponder/tag attached to an object to be identified, and

a Transceiver also known as interrogator/Reader.

In the experiment, the data read by the card swipe module is 4

hexadecimal numbers, and we print these four hexadecimal numbers as

strings. For example, we read the data of the IC card below: 0x8d, 0xfe,

247

www.keyestudio.com

0x6c, 0x4d, and the information string displayed in the shell is 8dfe6c4d;

the data read from the keychain is: 0xbc, 0x33, 0x76, 0x6e, and the

information is displayed in the shell The string is bc33766e. Sometimes I

see that there are only 7 bits because there is a 0 in the front omitted, such

as 0a, it displays a.

Working Principle

RFID (Radio Frequency Identification)

Radio frequency identification, the card reader is composed of a radio

frequency module and a high-level magnetic field. The Tag transponder is

a sensing device, and this device does not contain a battery. It only

contains tiny integrated circuit chips and media for storing data and

antennas for receiving and transmitting signals. To read the data in the tag,

first put it into the reading range of the card reader. The reader will

generate a magnetic field, and because the magnetic energy generates

electricity according to Lenz's law, the RFID tag will supply power, thereby

activating the device.

248

www.keyestudio.com

Required Components

Raspberry Pi Pico

Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

RFID Module*1
4P Dupont Wire*1

Micro USB Cable*1 Key*1 IC Card*1

Wiring Diagram

249

www.keyestudio.com

Test Code

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 42

* mfrc522

* http://www.keyestudio.com

*/

#include <Wire.h>

#include "MFRC522_I2C.h"

//iic pins default to pico's 4 and 5

// 0x28 is the i2c address on SDA. If it doesn't match, check your

address with i2cscanner

MFRC522 mfrc522(0x28); // Create an instance of MFRC522

String rfid_str = "";

250

www.keyestudio.com

void setup() {

Serial.begin(115200); // set baud rate to 115200

Wire.begin(); // Initialize I2C

mfrc522.PCD_Init(); // Initialize MFRC522

}

void loop() {

if (! mfrc522.PICC_IsNewCardPresent() || !

mfrc522.PICC_ReadCardSerial()) {

delay(50);

return;

}

rfid_str = "";//String empty

Serial.print(F("Card UID:"));

for (byte i = 0; i < mfrc522.uid.size; i++) {// save UID

rfid_str = rfid_str + String(mfrc522.uid.uidByte[i], HEX); //

// Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");

// Serial.print(mfrc522.uid.uidByte[i], HEX);

}

Serial.println(rfid_str);

}

251

www.keyestudio.com

Code Explanation

First import the library file of RFID522.

Wire.begin(); The module we use is the IIC interface, so we first initialize

the IIC

mfrc522.PCD_Init(); initialize MFRC522

String(mfrc522.uid.uidByte[i], HEX); A string to convert the value read

into hexadecimal format

Test Result

Wire up, run the test code, power up and open the monitor and set baud

rate to 9600.When we make the IC card close to the RFID module, the

information will be printed out, as shown in the figure below.

252

www.keyestudio.com

5. Comprehensive Experiments

The previous projects are related to single sensor or module. In the

following part, we will combine various sensors and modules to create

some comprehensive experiments to perform special functions.

253

www.keyestudio.com

Project 43: Breathing LED

Overview

A“breathing LED”is a phenomenon where an LED's brightness smoothly

changes from dark to bright and back to dark, continuing to do so and

giving the illusion of an LED“breathing. This phenomenon is similar to a

lung breathing in and out. So how to control LED’s brightness? We need

to take advantage of PWM.

Components

254

www.keyestudio.com

Raspberry Pi

Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

White LED

Module*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 43

* Breath

* http://www.keyestudio.com

*/

255

www.keyestudio.com

int LED = 15; //the pin of LED is connected to GP15

void setup() {

pinMode(LED, OUTPUT); //set the pin of LED to OUTPUT

}

void loop() {

for (int i = 0; i <= 255; i++) { //from 0 to 255，increase 1 for each

time

analogWrite(LED, i);

delay(10);//delay in 10ms

}

for (int i = 255; i >= 0; i--) { //from 255 to 0，reduce 1 for each time

analogWrite(LED, i);

delay(10);//delay in 10ms

}

}

Code Explanation

The function for (int i = 0; i <= 255; i = i + 1)；indicate the variable 1 adds by

1 from 0 to 255, until it doesn’t meet with i <= 255. It will execute the code

for 256 times.

256

www.keyestudio.com

Equally, for (int i = 255; i >= 0; i = i - 1) means reducing by 1 for each

time.

When not meeting with i>= 0，jump out the for() loop，execute the code for

256 times

In the code, we control the brightness of the LED on the module by setting the

PWM value. In the experiment, we connect the module signal to the pin GPIO15.

The smaller the PWM value, the darker the LED on the module; on the contrary,

the larger the value, the brighter the LED on the module, the range is 0-255.

analogWrite (pin, value): pin is the PWM port, value is the PWM value to be

output (0~255).

Set the PWM output value of GP15 to i. At the beginning, i increased from

0 to 255, and up by 1 each time. Each time delaying in 10ms, the LED on

the module gradually will brighten. When PWM is 255, i begins to decrease

from 255 to 0, down by 1 for each time.

Each time delaying in 10ms, the LED on the module will gradually get dim.

Then it will become brighter, cyclically alternating, just like human breathe.

We can change the delayed time in the code. There are two ways:

Change the step length or reduce the delayed time.

The step length is supposed to divided by 255, like 3 and 5. 3 means increasing by

257

www.keyestudio.com

3, -3 means reducing by 3.

Test Result

Run the test code, the LED on the module gradually gets dimmer then

brighter, cyclically, like human breathe

258

www.keyestudio.com

Project 44: Button-controlled LED

Overview

In this lesson, we will make an extension experiment with a button and an

LED. When the button is pressed and low levels are output, the LED will

light up; when the button is released, the LED will go off. Then we can

control a module with another module.

259

www.keyestudio.com

Components

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

White LED

Module*1

Keyestudio DIY

Button Module*1

3P Dupont

Wire*2

Micro

USB Cable*1

Wiring Diagram

Test Code

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 44

260

www.keyestudio.com

* button control LED

* http://www.keyestudio.com

*/

int button = 16;//the digital pin of the button is 16

int led = 15;//the pin of LED is connected to GP15

bool led_flag;

void setup() {

pinMode(button, INPUT); //set the pin of the button to INPUT

pinMode(led, OUTPUT); //set the pin of the LED to OUTPUT

attachInterrupt(digitalPinToInterrupt(button), toggle_handle,

FALLING); //external interrupt is 0, trailing edge triggers

}

void loop() {

digitalWrite(led, led_flag);//press the button to light up LED or turn

off LED

delay(100);

}

void toggle_handle(){//switch the state of LED

led_flag = !led_flag;

}

261

www.keyestudio.com

Code Explanation

Set IO ports according to connection diagram and configure pins mode

attachInterrupt(digitalPinToInterrupt(button), toggle_handle,

FALLING)

The trigger mode is when a high level becomes a low level. When the trigger

interrupts, the interrupt function will be activated.

toggle_handle: when entering the interrupt mode, the on and off of the LED

can be controlled.

Test Result

Upload the code wire up and power up with a USB cable. When the button

is pressed, the LED will light up; when pressed again, the LED will go off.

262

www.keyestudio.com

Project 45: Alarm Experiment

Overview

In the previous experiment, we control an output module though an input

module. In this lesson, we will make an experiment that the active buzzer

will emit sounds once an obstacle appears.

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Shield*1

Keyestudio

Obstacle

Avoidance

Sensor*1

Keyestudio

Active Buzzer*1

3P Dupont

Wire*2

Micro

USB Cable*1

263

www.keyestudio.com

Wiring Diagram

Test Code

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 45

* Avoiding alarm

* http://www.keyestudio.com

*/

int item = 0;

void setup() {

pinMode(15, INPUT); //the obstacle avoidance sensor is interfaced

with GP15 and set to INPUT

pinMode(16, OUTPUT); //the obstacle avoidance sensor is interfaced

with GP16and set to OUTPUT

}

264

www.keyestudio.com

void loop() {

item = digitalRead(15);//read the level values of the obstacle

avoidance sensor

if (item == 0) {//the obstacle is detected

digitalWrite(16, HIGH);//the buzzer beeps

} else {//the obstacle is not detected

digitalWrite(16, LOW);//the buzzer doesn’t beep

}

delay(100);//delay in 1000ms

}

Code Explanation

Set IO ports according to connection diagram then configure pins mode

The value is 0 when pressing the button, So, we can determine the key

value(0）through if (item == 0) and make the buzzer beep.

Test Result

Upload the test code, if the obstacle is detected, the active buzzer will

265

www.keyestudio.com

chime; if not, it won’t beep

Project 46: Ultraviolet Alarm

Description

We can use a UV sensor to control the buzzer to achieve the effect of UV

alarm.

Required Components

266

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

ultraviolet

Sensor*1

Keyestudio

Active

Buzzer*1

3P Dupont

Wire*2

Micro USB

Cable*1

Wiring Diagram

Test Code

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 46

* http://www.keyestudio.com

*/

int item = 0;

void setup() {

pinMode(3, OUTPUT); // the buzzer is connected to the digital port 3

267

www.keyestudio.com

and set to OUTPUT

}

void loop() {

item = analogRead(26);//read analog values of ultraviolet sensor

if (item >= 20) {//stronger than 20

digitalWrite(3, HIGH);//buzzer turns on

} else {//otherwise

digitalWrite(3, LOW);//buzzer turns off

}

delay(100);//delay in 100ms

}

Test Result

Wire up, run the test code and power on. We use an ultraviolet sensor to

detect and if the strength of ultraviolet rays reach what we set, the active

buzzer will emit sound.

268

www.keyestudio.com

Project 47: PIR Motion Sensor

Introduction

In this experiment, we will control an active buzzer and an on-board LED

through a PIR motion sensor.

Components

269

www.keyestudio.com

Raspberry Pi

Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

PIR Motion

Sensor*1

Keyestudio

Active

Buzzer*1

3P

Dupont

Wire*2

Micro USB

Cable*1

Connection Diagram

Test Code

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 47

* PIR alarm

* http://www.keyestudio.com

*/

270

www.keyestudio.com

int item = 0;

void setup() {

pinMode(15, INPUT); //the PIR motion sensor is connected to

GP15 and set it to INPUT

pinMode(16, OUTPUT);//the active buzzer is connected to GP16 and

set it to output

}

void loop() {

item = digitalRead(15);//Read the digital level signal output by the

PIR motion sensor

if (item == 1) { //detect someone moving

digitalWrite(16, HIGH); //turn on the buzzer

} else { //nobody is detected

digitalWrite(16, LOW); //turn off the buzzer

}

}

Test Result

Upload the test code wire up and power on. if the sensor detects people

moving, the external active buzzer will chime; if not, it won’t beep.

271

www.keyestudio.com

Project 48: Speaker Module

272

www.keyestudio.com

Introduction

We learned about controlling the speaker module to make sounds, play

beats and adjust its volume. In fact, each song is a combination of specific

beats and tones (frequencies). In this experiment, we use this speaker

module to play a song.

The frequency of each tone is shown below.

Bass:

Key

Note

1# 2# 3# 4# 5# 6# 7#

A 221 248 278 294 330 371 416

B 248 278 294 330 371 416 467

C 131 147 165 175 196 221 248

D 147 165 175 196 221 248 278

E 165 175 196 221 248 278 312

F 175 196 221 234 262 294 330

273

www.keyestudio.com

G 196 221 234 262 294 330 371

Midrange :

Key

Note

1 2 3 4 5 6 7

A 441 495 556 589 661 724 833

B 495 556 624 661 724 833 935

C 262 294 330 350 393 441 495

D 294 330 350 393 441 495 556

E 330 350 393 441 495 556 624

F 350 393 441 495 556 624 661

G 393 441 495 556 624 661 724

274

www.keyestudio.com

Treble:

Key

Note

1# 2# 3# 4# 5# 6# 7#

A 882 990 1112 1178 1322 1484 1665

B 990 1112 1178 1322 1484 1665 1869

C 525 589 661 700 786 882 990

D 589 661 700 786 882 990 1112

E 661 700 786 882 990 1112 1248

F 700 786 882 935 1049 1178 1322

G 786 882 990 1049 1178 1322 1484

Beats are the time delay for each note. The larger the number, the longer

the delay time. A note without a line in the spectrum is a beat, with a delay

of 1s. while a beat with an underline is 1/2 of a beat without a line, with a

delay of 0.5s, and a beat with two underlines is 1/4 of a beat without a line,

with a delay of 0.25s. The 1/8 of a beat is with a delay of 0.125s.

We will take Happy Birthday Song as an example.

275

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico

Expansion

Board*1

Keyestudio

8002b

Audio

Power

Amplifier*1

3P Dupont

Wire*1

MicroUSB

Cable*1

Connection Diagram

Test Code

/*

276

www.keyestudio.com

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 48

* play music

* http://www.keyestudio.com

*/

#define D0 -1

#define D1 262

#define D2 293

#define D3 329

#define D4 349

#define D5 392

#define D6 440

#define D7 494

#define M1 523

#define M2 586

#define M3 658

#define M4 697

#define M5 783

#define M6 879

#define M7 987

#define H1 1045

#define H2 1171

277

www.keyestudio.com

#define H3 1316

#define H4 1393

#define H5 1563

#define H6 1755

#define H7 1971

//List all the frequencies of the D key

#define WHOLE 1

#define HALF 0.5

#define QUARTER 0.25

#define EIGHTH 0.25

#define SIXTEENTH 0.625

//list all beats

int tune[] = //List the frequencies according to the numbered

musical notation

{

D5, D5, D6, D5, M1, D7,

D5, D5, D6, D5, M2, M1,

D5, D5, M5, M3, M1, D7, D6,

M4, M4, M3, M1, M2, M1

};

float durt[] = //List the beats according to the numbered musical

notation

278

www.keyestudio.com

{

0.5, 0.5, 1, 1, 1, 1 + 1,

0.5, 0.5, 1, 1, 1, 1 + 1,

0.5, 0.5, 1, 1, 1, 1, 1,

0.5, 0.5, 1, 1, 1, 1 + 1

};

int beeppin = 15; //power amplifier is connected to GP15

int length;

void setup() {

pinMode(beeppin, OUTPUT); //set the buzzer to OUTPUT

length = sizeof(tune) / sizeof(tune[0]); //Calculated length

}

void loop() {

for (int x = 0; x < length; x++)

{

tone(beeppin, tune[x]);

delay(500 * durt[x]); //500 means delayed time.

noTone(beeppin);

}

delay(2000);

}

279

www.keyestudio.com

Test Result

Connect the components according to the connection diagram and run the

test code, the audio power amplifier module will play a birthday song.

Project 49: Extinguishing Robot

280

www.keyestudio.com

Description

Today we will use Arduino simulation to build an extinguishing robot that

will automatically sense the fire and start the fan. In this project we will

learn how to build a very simple robot using pico, (detecting flames with a

flame sensor, blowing out candles with a fan) can teach us basic concepts

about robotics. Once you understand the basics below, you can build more

complex robots.

Components Required

Connection Diagram

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

130

Motor*1

Flame

Sensor*1

4P Dupont

Wire*2

Micro USB

Cable*1

281

www.keyestudio.com

Test Code

/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

lesson 49

Self-extinguishing

http://www.keyestudio.com

*/

int item = 0;

void setup() {

Serial.begin(9600);

pinMode(20, OUTPUT);

pinMode(21, OUTPUT);

}

282

www.keyestudio.com

void loop() {

item = analogRead(26);//Connect the flame sensor to 26, read the

analog value of the flame sensor and assign it to item

Serial.println(item);//the serial monitor shows analog values

if (item < 2000) {//less than 2000

digitalWrite(20, LOW);//open the fan

digitalWrite(21, HIGH);

} else {//turn off the fan

digitalWrite(20, LOW);

digitalWrite(21, LOW);

}

delay(100);

}

Code Explanation

In the code, we set the threshold value to 2000. When the flame sensor

detects that the analog value is lower than this threshold, the fan will

automatically turn on; otherwise, it will be turned off. For the driving

method of the fan, please refer to the previous experiment sixteen 130

motor.

283

www.keyestudio.com

Test Result

Wire up and upload the test code, power up, open the monitor and set baud rate

to 9600. When this value is less than 2000, the fan will works to blow out the fire.

Basically, the flame value can be set by yourself.

284

www.keyestudio.com

Project 50: Rotary Encoder

Introduction

In this lesson, we will control the LED on the RGB module to show different

colors through a rotary encoder.

When designing the code, we need to divide the obtained values by 3 to

get the remainders. The remainder is 0 and the LED will become red. The

remainder is 1, the LED will become green. The remainder is 2, the LED will

turn blue.

Components

285

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Shield*1

Keyestudio

Common

Cathode RGB

Module*1

Keyestudio

Rotary Encoder

Module*1

5P Dupont

Wire*1
4P Dupont Wire*1

Micro USB

Cable*1

Connection Diagram

Test Code

/*

286

www.keyestudio.com

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

lesson 50

Encoder control RGB

http://www.keyestudio.com

*/

//Interfacing Rotary Encoder with Arduino

//Encoder Switch -> pin 20

//Encoder DT -> pin 19

//Encoder CLK -> pin 18

int Encoder_DT = 19;

int Encoder_CLK = 18;

int Encoder_Switch = 20;

int Previous_Output;

int Encoder_Count;

int redPin = 9; //connect the red LED D9

int greenPin = 10; //connect the green LED to D10

int bluePin = 11; //connect the blue LED to D11

int val;

void setup() {

Serial.begin(9600);

287

www.keyestudio.com

//pin Mode declaration

pinMode (Encoder_DT, INPUT);

pinMode (Encoder_CLK, INPUT);

pinMode (Encoder_Switch, INPUT);

Previous_Output = digitalRead(Encoder_DT); //Read the inital value

of Output A

pinMode(redPin, OUTPUT);

pinMode(greenPin, OUTPUT);

pinMode(bluePin, OUTPUT);

}

void loop() {

//aVal = digitalRead(pinA);

if (digitalRead(Encoder_DT) != Previous_Output)

{

if (digitalRead(Encoder_CLK) != Previous_Output)

{

Encoder_Count ++;

Serial.print(Encoder_Count);

Serial.print(" ");

288

www.keyestudio.com

val = Encoder_Count % 3;

Serial.println(val);

}

else

{

Encoder_Count--;

Serial.print(Encoder_Count);

Serial.print(" ");

val = Encoder_Count % 3;

Serial.println(val);

}

}

Previous_Output = digitalRead(Encoder_DT);

if (digitalRead(Encoder_Switch) == 0)

{

delay(5);

if (digitalRead(Encoder_Switch) == 0) {

Serial.println("Switch pressed");

while (digitalRead(Encoder_Switch) == 0);

}

289

www.keyestudio.com

}

if (val == 0) {

//红色(255, 0, 0)

analogWrite(9, 255);

analogWrite(10, 0);

analogWrite(11, 0);

} else if (val == 1) {

//绿色(255, 0, 0)

analogWrite(9, 0);

analogWrite(10, 255);

analogWrite(11, 0);

} else {

//蓝色(255, 0, 0)

analogWrite(9, 0);

analogWrite(10, 0);

analogWrite(11, 255);

}

}

Code Explanation

1. In the experiment we set val to the remainder of dividing Encoder_Count

290

www.keyestudio.com

by 3. Encoder_Count is the value of the encoder. After getting the

remainder, set the pins to 9 (red light), 10 (green light) and 11 (blue light)

according to the wiring.

2. Referring to the control method learned in the previous experiment, use

the LED on the remainder control module to display the corresponding

light color. The value obtained by taking the remainder of 3 for any number

is 0 or 1 or 2. We use these three values to judge, and Display the

corresponding color.

Test Result

Wire up, run the code, open the serial monitor and set baud rate to 9600.

Rotate the knob of the rotary encoder to display the reminders, which can

control colors of LED.

291

www.keyestudio.com

Project 51: Rotary Potentiometer

Introduction

In the previous courses, we did experiments of breathing light and

controlling LED with button. In this course, we do these two experiments

by controlling the brightness of LED through an adjustable potentiometer.

292

www.keyestudio.com

The brightness of LED is controlled by PWM values, and the range of

analog values is the same as the PWM’s, from 0 to 65535.

After the code is set successfully, we can control the brightness of the LED

on the module by rotating the potentiometer.

Components

Raspberry

Pi Pico

Board*1

Raspberry

Pi Pico

Shield*1

Keyestudio

White LED

Module*1

Keyestudio

Rotary

Potentiometer*1

3P Dupont

Wire*2

MicroUSB

Cable*1

Connection Diagram

Test Code

/*

293

www.keyestudio.com

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

lesson 51

adjust the light

http://www.keyestudio.com

*/

int val1 = 0;//used to save analog values

int val2 = 0;//used to save the PWM value to be output

void setup() {

Serial.begin(9600);//Set baud rate to 9600

}

void loop() {

val1 = analogRead(26);//read the analog value of the potentiometer

Serial.print(val1);//print analog value

Serial.print(" ");

val2 = map(val1, 0, 4095, 0, 255);//map analog values to the range

of PWM value

Serial.println(val2);//print PWM values

analogWrite(15, val2);//output PWM values at the pin 15

delay(100);//delay in 100ms

}

294

www.keyestudio.com

Code Explanation

In the experiment, the mapping function maps val1 from the range of

0-4095 to 0-255, and assigns it to val2.

Test Result

Run the test code and turn the potentiometer on the module to adjust the

brightness of the LED on the LED module.

295

www.keyestudio.com

Project 52: Smart Windows

Description

In life, we can see all kinds of smart products, such as smart home. Smart

homes include smart curtains, smart windows, smart TVs, smart lights, and

more. In this experiment, we use a steam sensor to detect rainwater, and

then achieve the effect of closing and opening the window by a servo.

Required Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio

Steam

Sensor*1

Servo*1
3P Dupont

Wire*1

Micro USB

Cable*1

296

www.keyestudio.com

Wiring Diagram

Test Code

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 52

* smart window

* http://www.keyestudio.com

*/

#include <Servo.h>//import the library of the servo

int item = 0;//save the variable of the steam sensor

Servo myservo;//Define an instance of the servo example

297

www.keyestudio.com

void setup(){

myservo.attach(9);//the servo is connected to pin 0

}

void loop(){

item = analogRead(26);//the analog port of the steam sensor is

connected to GP26

if (item > 200) {//analog value >200

myservo.write(0);//close the window

delay(500);//delay in 500ms

} else {//no rains

myservo.write(180);//open the window

delay(500);//delay in 500ms

}

}

Code Explanation

We can control a servo to rotate by a threshold

298

www.keyestudio.com

Test Result

Wire up and run the test code. When the sensor detects a certain amount

of water, the servo rotates to achieve the effect of closing or opening

windows.

299

www.keyestudio.com

Project 53: Sound Activated Light

Introduction

In this lesson, we will make a smart sound activated light using a sound

sensor and an LED module. When we make a sound, the light will

automatically turn on; when there is no sound, the lights will automatically

turn off. How it works? Because the sound-controlled light is equipped with

a sound sensor, and this sensor converts the intensity of external sound

into a corresponding value. Then set a threshold, when the threshold is

exceeded, the light will turn on, and when it is not exceeded, the light will

300

www.keyestudio.com

go out.

Components

Raspberry

Pi Pico

Board*1

Raspberry

Pi Pico

Shield*1

Keyestudio

Sound

Sensor*1

Keyestudio

White LED

Module*1

3P Dupont

Wire*2

MicroUSB

Cable*1

Connection Diagram

Test Code/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

lesson 53

sound-controlled lights

301

www.keyestudio.com

http://www.keyestudio.com

*/

int ledPin = 15;//LED is connected to GP15

int microPin = 26;//the sound sensor is connected to ADC0 (GP26)

void setup() {

Serial.begin(9600);//Set baud rate to 9600

pinMode(ledPin, OUTPUT);//LED is set to OUTPUT

}

void loop() {

int val = analogRead(microPin);//read analog values

Serial.print(val);//serial prints

if(val > 200){//more than threshold 200

digitalWrite(ledPin, HIGH);//light up LED3s and print the pertinent

information

Serial.println(" led on");

delay(3000);

}else{//otherwise

digitalWrite(ledPin, LOW);//turn off LED and print the pertinent

information

Serial.println(" led off");

}

302

www.keyestudio.com

delay(100);

}

Code Explanation

We set the analog threshold value to 200. If more than 200, LED will be on

3s; on the contrary, it will be off.

Test Result

Run the test code, the monitor displays the corresponding volume value.

When the analog value of sound is greater than 200, the LED on the LED

module will light up, otherwise it will go off.

303

www.keyestudio.com

Project 54: Fire Alarm

Description

In this experiment, we will make a fire alarm system. Just use a flame sensor

to control an active buzzer to emit sounds.

Required Components

Raspberry Pi Pico

Board*1

Raspberry Pi Pico Expansion

Board*1

Keyestudio DIY 电

Active Buzzer*1

keyestudio DIY

Flame Sensor*1

304

www.keyestudio.com

Wiring Diagram

Test Code

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 54

* flame alarm

* http://www.keyestudio.com

*/

int item = 0;

void setup() {

Micro USB Cable*1 3P Dupont Wire*1 4P Dupont Wire*1

305

www.keyestudio.com

Serial.begin(9600);

pinMode(22, INPUT);//the pin of the flame sensor is connected to 22

pinMode(3, OUTPUT);//the pin of the buzzer is connected to 3

}

void loop() {

item = digitalRead(22);//read digital levels output by the flame

sensor

Serial.println(item);//print level signals

if (item == 0) {//detect fire

digitalWrite(3, HIGH);//open buzzer

} else {//otherwise, turn off the buzzer

digitalWrite(3, LOW);

}

delay(100);//delay in 100ms

}

Code Explanation

This flame sensor uses an analog pin and a digital pin. When a flame is

detected, the digital pin outputs a low level. In this experiment we will use

the digital port.

306

www.keyestudio.com

Test Result

Wire up, run the test code and power on. The sensor detects the flame, and

the external active buzzer will emit sounds, otherwise the active buzzer will

not emit sounds.

307

www.keyestudio.com

Project 55: Smoke Alarm

Description

In this experiment, we will make a smoke alarm by a TM16504-Digit segment

module, a gas sensor and an active buzzer.

308

www.keyestudio.com

Required Components

Wiring Diagram

Raspberry Pi Pico

Board*1

Raspberry Pi Pico Expansion

Board*1

Keyestudio Active

Buzzer*1

Keyestudio

TM16504-Digit

Segment Module*1

keyestudio Analog

Gas Senso*1
3P Dupont Wire*1 4P Dupont Wire*2 Micro USB Cable*1

309

www.keyestudio.com

Test Code

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 55

* smoke alarm

* http://www.keyestudio.com

*/

#include "KETM1650.h" //import the library of TM1650

int val = 0; //display values

//two ports are GP14 and GP15

#define DIO 14

#define CLK 15

KETM1650 tm_4display(CLK, DIO);

void setup() {

tm_4display.init(); //initialize

tm_4display.setBrightness(3); //set brightness to 3，in the range of

（1~8）

pinMode(3, OUTPUT);//the active buzzer is connected to 3

}

void loop() {

310

www.keyestudio.com

val = analogRead(26);//read analog values

tm_4display.displayString(val);//4-digit segment display shows val

if (val > 1000) {//analog value >100

digitalWrite(3, HIGH); //buzzer beeps

} else {//otherwise

digitalWrite(3, LOW); //turn off the buzzer

}

delay(100);//delay in 100ms

}

Code Explanation

Define an integer variable val to store the analog value of the smoke sensor, and

then we display the analog value in the four-digit digital tube, and then set a

threshold, and when the threshold is reached, the buzzer will sound.

Test Result

Run the test code, wire up and power on. When the concentration of

combustible gas exceeds the standard, the active buzzer module will give

an alarm, and the four-digit digital tube will display the concentration

value.

311

www.keyestudio.com

Project 56: Alcohol Sensor

Description

In the last experiment, we made a smoke alarm. In this experiment, we

combine the active buzzer, the MQ-3 alcohol sensor, and a four-digit

digital tube to test the alcohol concentration through the alcohol sensor.

Then, the concentration to control the active buzzer alarm and the

four-digit digital tube to display the concentration. So as to achieve the

simulation effect of alcohol detector.

312

www.keyestudio.com

Components Required

Raspberry Pi Pico

Board*1

Raspberry Pi Pico Expansion

Board*1
Active Buzzer

Keyestudio TM1650

4-Digit Module*1

keyestudio Alcohol

Sensor*1
3P Dupont Wire*1 4P Dupont Wire*2 Micro USB Cable*1

Connection Diagram

Test Code

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

313

www.keyestudio.com

* lesson 56

* breathalyzer

* http://www.keyestudio.com

*/

#include "KETM1650.h" //Import the library file of TM1650

int val = 0; //display values

//ports are connected to GP14, GP15

#define DIO 14

#define CLK 15

KETM1650 tm_4display(CLK, DIO);

void setup() {

tm_4display.init(); //initialization

tm_4display.setBrightness(3); //Set Brightness to 3, in the range of

1~8

pinMode(3, OUTPUT);//the active buzzer is connected to 3

}

void loop() {

val = analogRead(26);//Read alcohol analog value

tm_4display.displayString(val);//Four-digit display shows val value

if (val > 3000) {//analog values are more than3000

314

www.keyestudio.com

digitalWrite(3, HIGH); //alarm

} else {//otherwise

digitalWrite(3, LOW); //turn off the buzzer

}

delay(100);//delay in 100ms

}

Code Explanation

The code setting is the same as the previous experiment, define an integer

variable val to store the analog value of the alcohol sensor, and then we

display the analog value in the four-digit digital tube, and then set a

threshold, when the threshold is reached, the predestined buzzer sounded.

Test Result

Wire up according to the wiring diagram and run the test code. When

different alcohol concentrations are detected, the active buzzer module

will alarm, and the four-digit digital display will show the concentration

value.

315

www.keyestudio.com

Project 57: 6812 RGB Module

Description

We learned how to use the 6812 RGB module, we knew that this module

can light up each LED through a pin. In this experiment, we will control the

RGB module to display different colors. (Note: do not look directly at the

LEDs for a long time to avoid damage to our eyes.)

316

www.keyestudio.com

Components

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

6812 RGB

Module*1

3P Dupont

Wire*1

MicroUSB

Cable*1

Connection Diagram

Test Code

/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

lesson 57

SK6812 RGB

http://www.keyestudio.com

317

www.keyestudio.com

*/

#include"rgb.h"

RGB rgb(15, 4); //rgb(pin, num); num = 0-100

//used to save the variable of RGB

int R = 0;

int G = 0;

int B = 0;

int num = 0;

void setup() {

rgb.setBrightness(100); //rgb.setBrightness(0-255);

delay(10);

rgb.clear(); //Turn off all LEDs

delay(10);

}

void loop() {

num++;

if (num > 3) { //num is in the range of 0~3

//Select a random integer between 0 and 255

R = random(0, 255);

G = random(0, 255);

B = random(0, 255);

318

www.keyestudio.com

num = 0;

}

rgb.setPixelColor(num, R, G, B); //set the color of num-1 light

rgb.show();//display

delay(100);//

}

Code Explanation

random(0, 255):Select a random integer between 0 and 255

.setPixelColor(num - 1, R, G, B)：set the light beads at num-1 to display red,

green and blue color

.show()：display，if without this function , the function we set can’t work.

Test Result

Wire up the components and run the code. We will see LEDs on the

6812RGB module shows different colors.

319

www.keyestudio.com

Project 58: Ultrasonic Radar

320

www.keyestudio.com

Description

We know that bats use echoes to determine the direction and the location

of their preys. In real life, sonar is used to detect sounds in the water. Since

the attenuation rate of electromagnetic waves in water is very high, it

cannot be used to detect signals, however, the attenuation rate of sound

waves in the water is much smaller, so sound waves are most commonly

used underwater for observation and measurement.In this experiment, we

will use a speaker module, an RGB module and a 4-digit tube display to

make a device for detection through ultrasonic.

321

www.keyestudio.com

Components

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Shield*1

keyes brick

HC-SR04

Ultrasonic

Sensor*1

Keyestudio

Speaker

Module*1

Keyestudio

Common

Cathode RGB

Module*1

Keyestudio

TM1650 4-Digit

Tube Display*1

4P Dupont

Wire*3
3P Dupont Wire*1

MicroUSB

Cable*1

Wiring Diagram

322

www.keyestudio.com

Test Code

/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

lesson 58

Ultrasonic radar

http://www.keyestudio.com

*/

#include "KETM1650.h"//the library file of the 4-digit tube display

KETM1650 tm_4display(15, 14);

int beeppin = 16; //define GP16

int EchoPin = 19; //Echo is connected to GP19

323

www.keyestudio.com

int TrigPin = 20; //Trig is connected to GP20

int distance;//distance detected by the ultrasonic sensor

int redPin = 9; //make the red LED connect to GP9

int greenPin = 10; //make the green LED connect to GP10

int bluePin = 11; //make the blue LED connect to GP11

float checkdistance() { //obtain the distance

// give a short low level so as to ensure a clear high pulse

digitalWrite(TrigPin, LOW);

delayMicroseconds(2);

// trigger 10ms or above high pulse to the sensor

digitalWrite(TrigPin, HIGH);

delayMicroseconds(10);

digitalWrite(TrigPin, LOW);

// read a signal from the sensor; a high level pulse，

//the duration time is calculated from sending ping command to

receiving the echo of the object.

float distance = pulseIn(EchoPin, HIGH) / 58.00; //calculate

distance

delay(10);

return distance;

324

www.keyestudio.com

}

void setup() {

tm_4display.init(); //initialize the tube display

pinMode(TrigPin, OUTPUT);//Trig is OUTPUT

pinMode(EchoPin, INPUT); //Echo is INPUT

pinMode(beeppin, OUTPUT);//set the audio power amplifier to

OUTPUT

pinMode(redPin, OUTPUT);

pinMode(greenPin, OUTPUT);

pinMode(bluePin, OUTPUT);

}

void loop() {

distance = checkdistance(); //ultrasonic ranging

tm_4display.displayString(distance); //the tube display shows the

distance

if (distance <= 10) {

tone(beeppin, 880);

delay(100);

noTone(beeppin);

analogWrite(9, 255);//red(255, 0, 0)

325

www.keyestudio.com

analogWrite(10, 0);

analogWrite(11, 0);

} else if (distance > 10 && distance <= 20) {

tone(beeppin, 532);

delay(200);

noTone(beeppin);

analogWrite(9, 0);//blue(255, 0, 0)

analogWrite(10, 0);

analogWrite(11, 255);

} else {

analogWrite(9, 0);//green(255, 0, 0)

analogWrite(10, 255);

analogWrite(11, 0);

}

}

Code Explanation

We set sound frequency and light color by adjusting different distance

range.

We can adjust the distance range in the code.

326

www.keyestudio.com

Test Result

Wire up according to the connection diagram upload the run the code and

power up. When the ultrasonic sensor detects different distances, the

buzzer will produce different frequencies of sound, the RGB will show

different colors, and the measured distances are displayed on the 4-digit

tube display.

327

www.keyestudio.com

Project 59: IR Remote Control

Introduction

In the previous experiments, we learned to turn on or turn off the LED,

adjust the brightness of a light through PWM, and how to use the infrared

receiver module. So in this experiment, we use an infrared remote control

to control an LED module.

When we receive a value, we set the PWM value by the corresponding

button value, thus you can adjust the brightness. Control the LED to turn

328

www.keyestudio.com

on or turn off is in the same way. If we want to use the same button to

control the LED to turn on or turn off, we can achieve it through the code.

Components

Raspberry Pi Pico

Board*1

Raspberry Pi Pico

Shield*1

Keyestudio

White LED

Module*1

Keyestudio

IR Receiver*1

MicroUSB

Cable*1
Remote Control*1

3P Dupont

Wire*2

Connection Diagram

329

www.keyestudio.com

Test Code

/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

lesson 59

IR control LED

http://www.keyestudio.com

*/

#include"ir.h"

IR IRreceive(16);//IR receiver is connected to GP16

int led = 14;//LED is connected to GP14

boolean flag = true;//LED flag bit

void setup() {

Serial.begin(9600);

pinMode(led, OUTPUT);

delay(1000);

330

www.keyestudio.com

}

////////////////////

void loop() {

Serial.println("IR receive");

while (1) {

int key = IRreceive.getKey();

if (key != -1) {

Serial.print(key);

if (key == 64) { //press the OK key

if (flag == true) {//flag is true

digitalWrite(led, HIGH);//打开 LED

Serial.println(" led on");

flag = false;//flag is false

} else { //flag becomes false

digitalWrite(led, LOW);//关闭 LED

Serial.println(" led off");

flag = true;//flag becomes true

}

}

}

}

}

331

www.keyestudio.com

Code Explanation

We define a boolean variable. There are two boolean variables. true (true)

or false (false), boolean flag = true.

2. When we press the OK button, the value of infrared reception is 64. At

this time, we need to set a boolean variable flag. When the flag is true

(true), the LED is turned on, and when it is false (false), the LED is turned off

and turned on. After the LED is on and set it to false. We press the OK key,

the LED will be off.

Test Result

Wire up, upload the test code, open the serial monitor and set baud rate to

9600. Press the OK button of the remote, the LED will be on; press it again,

the LED will be off.

332

www.keyestudio.com

333

www.keyestudio.com

Project 60: Heat Dissipation Device

Description

We will use a temperature sensor and some modules to make a smart

cooling device in this experiment. When the ambient temperature is higher

than a certain value, the motor is turned on, thereby reducing the ambient

temperature and achieving the heat dissipation effect. Then display the

temperature value in the four-digit segment display.

Required Components

334

www.keyestudio.com

Wiring Diagram

Test Code

/*

Raspberry Pi Pico

Board*1

Raspberry Pi Pico Expansion

Board*1

keyestudio 130

Motor*1

Keyestudio

TM1650 4-Digit

Segment Display*1

Keyestudio 18B20

Temperature Sensor*1
3P Dupont Wire*1 4P Dupont Wire*2 Micro USB Cable*1

335

www.keyestudio.com

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 60

* heat abstractor

* http://www.keyestudio.com

*/

#include <DS18B20.h>

#include "KETM1650.h" //import the library of TM1650

//two ports are GP14 and GP15

#define DIO 14

#define CLK 15

KETM1650 tm_4display(CLK, DIO);

//ds18b20 pin to 3

DS18B20 ds18b20(3);

void setup() {

Serial.begin(9600);

tm_4display.init(); //initialize

tm_4display.setBrightness(3); //set brightness to 3，in the rage of

（1~8）

//motor is connected to 20 21

pinMode(20, OUTPUT);

pinMode(21, OUTPUT);

336

www.keyestudio.com

}

void loop() {

double temp = ds18b20.GetTemp();//read temperature

temp *= 0.0625;//convert to 0.0625/LSB

Serial.println(temp);

tm_4display.displayString(int(temp));//display temperature value

if (temp > 25) {//>25℃，turn on the fan

digitalWrite(20, LOW);

digitalWrite(21, HIGH);

} else {//or, turn off the fan

digitalWrite(20, LOW);

digitalWrite(21, LOW);

}

delay(100);

}

Code Explanation

The setting of variables and the storage of detection values are the same as

what we learned earlier. We also set a temperature threshold and control

the rotation of the motor when the threshold is exceeded, and then we use

the digital tube to display the temperature value.

337

www.keyestudio.com

Test Result

Wire up and run the test code. We can see the temperature of the current

environment (unit is Celsius) on the four-digit segment display, as shown

in the figure below. If this value exceeds the value we set, the fan will rotate

to dissipate heat.

Project 61: Intelligent Entrance Guard System

Description

In this project, we use the RFID522 card swiping module and the servo to

set up an intelligent access control system. The principle is very simple.We

338

www.keyestudio.com

use RFID522 swipe card module, an IC card or key card to unlock

Required Components

Wiring Diagram

Raspberry Pi Pico

Board*1

Raspberry Pi Pico Expansion

Board*1
Key*1 IC Card*1

Keyestudio RFID

Module*1
Servo*1 4P Dupont Wire*1 Micro USB Cable*1

339

www.keyestudio.com

Test Code

/*

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 61

* Intelligent access control

* http://www.keyestudio.com

*/

#include <Servo.h>

#include <Wire.h>

#include <MFRC522_I2C.h>

MFRC522 mfrc522(0x28);

Servo myservo;

String rfid_str = "";

void setup() {

Serial.begin(9600);

Wire.begin();

mfrc522.PCD_Init();

myservo.attach(10);//the digital port is 10

myservo.write(0);//initialize 0°

delay(500);

}

340

www.keyestudio.com

void loop() {

if (! mfrc522.PICC_IsNewCardPresent() || !

mfrc522.PICC_ReadCardSerial()) {

delay(50);

return;

}

rfid_str = "";//character strings clear up

Serial.print(F("Card UID:"));

for (byte i = 0; i < mfrc522.uid.size; i++) {// save UID

rfid_str = rfid_str + String(mfrc522.uid.uidByte[i], HEX);

//convert to character strings

// Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");

// Serial.print(mfrc522.uid.uidByte[i], HEX);

}

Serial.println(rfid_str);

if (rfid_str == "8dfe6c4d" || rfid_str == "bc33766e") {

myservo.write(180);

delay(500);

Serial.println(" open the door!");

}

341

www.keyestudio.com

}

Code Explanation

In the previous experiment, our card swipe module has tested the

information of IC card and key. Then we use this corresponding

information to control the door.

Test Result

Upload the test code, wire up and power up with a USB cable, open the

shell and set the baud rate to 9600; the shell displays information.

When we use the IC card or blue key to swipe the card, the shell displays

the card information and "open the door", as shown in the figure below,

the servo rotates to the corresponding angle to simulate opening the door.

342

www.keyestudio.com

Project 62: Comprehensive Experiment

Introduction

We did a lot of experiments, and for each one we needed to re-upload the

code, so can we achieve different functions through an experiment? In this

experiment, we will use an external button module to achieve different

functions.

343

www.keyestudio.com

Components Required

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Expansion

Board*1

Keyestudio DIY

Purple LED

Module*1

Keyestudio

Button Module*1

Keyestudio

Rotary

Encoder*1

Keyestudio

Obstacle

Avoidance

Sensor*1

Keyestudio IR

Receiver*1

Keyestudio DIY

Joystick

Module*1

keyes brick

HC-SR04

Ultrasonic

sensor *1

Keyestudio

DIYCommon

Cathode RGB

Module *1

Keyestudio

XHT11

Temperatur

e and

Humidity

Sensor

*1

Keyestudio

ADXL345

Acceleration

Sensor*1

Micro USB

Cable*1
3PDupont Wire*6 4PDupont Wire*3 5PDupont Wire*1

Remote

Control*1

344

www.keyestudio.com

Connection Diagram

Test Code

/*

Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

lesson 62

Comprehensive experiment

http://www.keyestudio.com

*/

345

www.keyestudio.com

#include"ir.h"//the library of IR receiver

#include "xht11.h"

#include "adxl345_io.h"

//ADXL345 sda-->20,scl-->21

adxl345 adxl345(20, 21);

//the IR receiver is connected to GP11

IR IRreceive(11);

//xht11 to gpio19

xht11 xht(19);

//rgb is connected to 2,3 and 4

int r_pin = 2;

int g_pin = 3;

int b_pin = 4;

//the joystick module is connected to ports

int X = 26;

int Y = 27;

int KEY = 22;

346

www.keyestudio.com

//The potentiometer pin is connected to the analog port 28

int resPin = 28;

//LED is connected to GP14

int LED = 14;

//the obstacle avoidance sensor is connected to GP0

int Avoid = 0;

//interfaces of the Ultrasonic sensor

int Trig = 6;

int Echo = 7;

//interfaces of the button module

int button = 16;

int PushCounter = 0;//save the number of pressing the button

int yushu = 0;

unsigned char dht[4] = {0, 0, 0, 0};//receive 32 bit data

bool ir_flag = 1;

float out_X, out_Y, out_Z;

347

www.keyestudio.com

void counter() {

delay(10);

ir_flag = 0;

if (!digitalRead(button)) {

PushCounter++;

}

}

void setup() {

Serial.begin(9600);//set baud rate to 9600

pinMode(KEY, INPUT);//the button of the joystick module

pinMode(button, INPUT);//button module

attachInterrupt(digitalPinToInterrupt(button), counter, FALLING);

//

pinMode(Avoid, INPUT);//Obstacle avoidance sensor

pinMode(Trig, OUTPUT);//Ultrasonic Module

pinMode(Echo, INPUT);

adxl345.Init();

delay(1000);

}

348

www.keyestudio.com

void loop() {

yushu = PushCounter % 8;

if (yushu == 0) { //remainder is 0

yushu_0(); //rgb display

} else if (yushu == 1) { //remainder is 1

yushu_1(); //show IR remote signals

} else if (yushu == 2) { //remainder is 2

yushu_2(); //show temperature and humidity

} else if (yushu == 3) { //remainder is 3

yushu_3(); //show values of the joystick module

}else if (yushu == 4) { //remainder is 4

yushu_4(); //potentiometer controls LED

} else if (yushu == 5) { //remainder is

yushu_5(); //detect obstacles

} else if (yushu == 6) { //remainder is 6

yushu_6(); //show the distance detected by the ultrasonic sensor

} else if (yushu == 7) { //remainder is 7

yushu_7(); //ADXL345 three-axis acceleration value

}

}

//RGB

349

www.keyestudio.com

void yushu_0() {

int R = random(0, 255);

int G = random(0, 255);

int B = random(0, 255);

analogWrite(r_pin, R);

analogWrite(g_pin, G);

analogWrite(b_pin, B);

delay(300);

}

//Infrared reception

void yushu_1() {

ir_flag = 1;

while (ir_flag) {

int key = IRreceive.getKey();

if (key != -1) {

Serial.println(key);

}

}

}

void yushu_2() {

350

www.keyestudio.com

if (xht.receive(dht)) { //check and return true

Serial.print("RH:");

Serial.print(dht[0]); //Integer part of humidity, dht[1] is the

fractional part

Serial.print("% ");

Serial.print("Temp:");

Serial.print(dht[2]); //The integer part of the temperature, dht[3]

is the fractional part

Serial.println("C");

} else { //read errors

Serial.println("sensor error");

}

delay(1200);

}

void yushu_3() {

int x = analogRead(X);

int y = analogRead(Y);

int key = digitalRead(KEY);

Serial.print("X:");

Serial.print(x);

Serial.print(" Y:");

351

www.keyestudio.com

Serial.print(y);

Serial.print(" KEY:");

Serial.println(key);

delay(100);

}

void yushu_4() {

int RES = analogRead(resPin);

int res = map(RES, 0, 4095, 0, 255);

Serial.println(res);

analogWrite(LED, res);

delay(100);

}

void yushu_5() {

int val = digitalRead(Avoid);

if (val == 0) {//detect obstacles

Serial.println("There are obstacles");

}

else {//no obstacles are detected

Serial.println("All going well");

}

352

www.keyestudio.com

delay(100);

}

void yushu_6() {

float distance = checkdistance();

Serial.print("distance:");

Serial.print(distance);

Serial.println("cm");

delay(100);

}

void yushu_7() {

adxl345.readXYZ(&out_X, &out_Y, &out_Z);

Serial.print(out_X);

Serial.print("g ");

Serial.print(out_Y);

Serial.print("g ");

Serial.print(out_Z);

Serial.println("g");

delay(100);

}

353

www.keyestudio.com

float checkdistance() {

digitalWrite(Trig, LOW);

delayMicroseconds(2);

digitalWrite(Trig, HIGH);

delayMicroseconds(10);

digitalWrite(Trig, LOW);

float distance = pulseIn(Echo, HIGH) / 58.00;

delay(10);

return distance;

}

Code Explanation

1. Calculate how many times the button is pressed, divide it by 8, and get

the remainder which is 0, 1 2, 3, 4, 5 , 6 and 7. According to different

remainders, construct five unique functions to control the experiment and

realize different functions.

2. We add dht and adxl345 library files in this project.

354

www.keyestudio.com

Test Result

Upload the test code, wire up and power on with a USB cable.
At the beginning, the number of the button is 0 and remainder is 0. Open the monitor

and set baud rate to 9600. Press the button, the RGB stops flashing, press once, the

remainder is 1. If we point at IR receiver with the infrared remote control and

press the button,the serial monitor will display as follows.

355

www.keyestudio.com

Press a key twice, the time of pressing buttons is 2 and the remainder is 2.

Read temperature and humidity values. As shown below;

Press a key again, the time of pressing buttons is 3 and the remainder is 3.

Read digital values at x, y and z axis of the joystick module. As shown

356

www.keyestudio.com

below;

Press the key for the fourth time, the remainder is 4. Then the

potentiometer can adjust the PWM value at the GP14 port to control LED

brightness of the purple LED

357

www.keyestudio.com

Press the key for the fifth time, the remainder is 5. Then the ultrasonic sensor

can detect obstacles, as shown below;

358

www.keyestudio.com

Press the key for sixth time and the remainder is 6. Then the distance away

from the obstacle can be detected. As shown below;

Press the key for seventh time and the remainder is 7. The shell will print

out the acceleration values

359

www.keyestudio.com

Press the key for eighth time and the remainder is 0. Then the RGB will flash.

If you press keys incessantly, remainders will change in loop way. So does

functions.

6. Resources

https://fs.keyestudio.com/KS3024

https://fs.keyestudio.com/KS0470

	1.Description
	2.Kit
	3.Raspberry Pi Pico & Arduino IDE
	3.1 Raspberry Pi Pico

	4. Install Arduino IDE and Driver
	(1)Installing Arduino IDE
	(2)Setting Arduino IDE
	(3)Add Libraries
	(4)Keyestudio Raspberry Pico IO Shield

	5. Projects
	Project 1: Lighting up LED
	Project 2: Traffic Light Module
	Project 3: Laser Sensor
	Project 4: Button Sensor
	Project 5: Capacitive Sensor
	Project 6: Obstacle Avoidance Sensor
	Project 7: Line Tracking Sensor
	Project 8: Photo Interrupter
	Project 9: Tilt Module
	Project 10: Collision Sensor
	Project 11: Hall Sensor
	Project 12: Reed Switch Module
	Project 13: PIR Motion Sensor
	Project 14: Active Buzzer
	Project 15: 8002b Audio Power Amplifier
	Project 16: 130 Motor
	Project 17: RGB Module
	Project 18: Potentiometer
	Project 19: Steam Sensor
	Project 20: Sound Sensor
	Project 21: Photoresistor
	Project 22: NTC-MF52AT Thermistor
	Project 23: Thin-film Pressure Sensor
	Project 24: Flame Sensor
	Project 25: MQ-2 Gas Sensor
	Project 26: MQ-3 Alcohol Sensor
	Project 27: Five-key AD Button Module
	Project 28: Joystick Module
	Project 29: Ultraviolet Sensor
	Project 30: SK6812 RGB Module
	Project 31: Rotary Encoder
	Project 32: Servo Control
	Project 33: Ultrasonic Sensor
	Project 34: IR Receiver Module
	Project 35: DS18B20 Temperature Sensor
	Project 36: XHT11 Temperature and Humidity Sensor
	Project 37: DS1307 Clock Module
	Project 38: ADXL345 Acceleration Sensor
	Project 39: TM1650 4-Digit Tube Display
	Project 40: HT16K33_8X8 Dot Matrix Module
	Project 41: LCD_128X32_DOT Module
	Project 42: RFID Module

	5. Comprehensive Experiments
	Project 43: Breathing LED
	Project 44: Button-controlled LED
	Project 45: Alarm Experiment
	Project 46: Ultraviolet Alarm
	Project 47: PIR Motion Sensor
	Project 48: Speaker Module
	Project 49: Extinguishing Robot
	Project 50: Rotary Encoder
	Project 51: Rotary Potentiometer
	Project 52: Smart Windows
	Project 53: Sound Activated Light
	Project 54: Fire Alarm
	Project 55: Smoke Alarm
	Project 56: Alcohol Sensor
	Project 57: 6812 RGB Module
	Project 58: Ultrasonic Radar
	Project 59: IR Remote Control
	Project 60: Heat Dissipation Device
	Project 61: Intelligent Entrance Guard System
	Project 62: Comprehensive Experiment

	6. Resources

