Ml
o

www.keyestudio.com

Keyestudio Raspberry Pi Pico 42 in 1 Sensor Kit

Ml
o

www.keyestudio.com

1. Description

The Keyestudio Raspberry Pi Pico 42 in 1 sensor kit mainly contains 37
commonly used sensors/modules, a Raspberry Pi Pico board, a Raspberry
Pi Pico expansion board and Dupont wires.

The 42 sensors and modules are fully compatible with the Raspberry Pi
Pico shield. You only need to stack the Raspberry Pi Pico board onto the
Raspberry Pi Pico shield, and hook up them with Dupont wires, which is
simple and convenient.

To make you master the electronic knowledge, detailed tutorials
(Micropython), schematic diagrams, wiring methods and test code are
included. Through these projects, you will have a better understanding

about programming, logic and electronics.

Ml
o

www.keyestudio.com

2. Kit

Picture

Name

QTY

Keyestudio Purple LED
Module

Keyestudio Common

Cathode RGB Module

Keyestudio Traffic
Lights Module

ONIHSYM
djljh‘

3"\OWBH

Keyestudio Active

Buzzer

Keyestudio 8002b

Audio Power Amplifier

Keyestudio Button
Module

Ml
o

www.keyestudio.com

Keyestudio Tilt Sensor

Keyestudio PIR Motion

Sensor

Keyestudio Obstacle

Avoidance Sensor

10

Keyestudio 6812 RGB
Module

11

Keyestudio
NTC-MF52AT

Thermistor

12

Keyestudio

Photoresistor

13

Keyestudio Sound

Sensor

14

Keyestudio

Rotary Potentiometer

Ml
o

www.keyestudio.com

15 Keyestudio IR Receiver
Keyestudio Reed
16
Switch Sensor
Keyestudio Rotary
17
Encoder Module
Keyestudio Joystick
18
Module
Eﬁ?i?ﬁ?;?ﬁii _ Keyestudio HT16K33
19 s |
== 8X8 Dot Matrix Module
Keyestudio TM1650
20
4-Digit Tube Display
Keyestudio Thin-film
21
Pressure Sensor
Keyestudio DS1307
22
Clock Sensor

Ml
o

www.keyestudio.com

Keyestudio SRO1
23
Ultrasonic Sensor
24 9G 90° Servo
Keyestudio Capacitive
25
Sensor
Keyestudio Photo
26
Interrupter
27 Keyestudio Hall Sensor
Keyestudio Flame
28
Sensor
Keyestudio line
29
1 Tracking Sensor

Ml
o

www.keyestudio.com

Keyestudio Analog Gas
30
Sensor
Keyestudio XHT11
31 Temperature and
Humidity Sensor
Keyestudio 18B20
32
Temperature Sensor
33 keyestudio 130 Motor
34 Fan
Keyestudio Laser
35
Module
Keyestudio Steam
36
Sensor

Ml
o

www.keyestudio.com

Keyestudio Ultraviolet
37
Sensor
Keyestudio RFID
38
Module
Keyestudio Collision
39
Sensor
Keyestudio Alcohol
40
Sensor
Kyestudio
41 LCD 128X32 DOT
Module
42 5-Channel AD Button Module
43 DXL.345 Acceleration Module
DXL345

£

www.keyestudio.com

44 Raspberry Pi Pico Board
Keyestudio Raspberry
45 Pico IO Expansion
Board
Keyestudio JMFP-4
17-Key Remote
46
Control(without
batteries)
47 USB Cable
48 F-F Dupont Wire
49 White Card
50 ABS RFID Key

pv4
o

www.keyestudio.com

2. Raspberry Pi Pico & Thonny

Pi Pico Al
"", Raspberry Pi Pico @ 20200 n§oovse
] = r o al E

E Wi - =
= W - -

At the end of January 2021, the Raspberry Pi Foundation launched the
Raspberry Pi Pico, which received a lot of attention due to its

high-performance and low-cost.

The size of Pico is 21mm *51mm, which is similar to Arduino Nano

Raspberry Pi Pico

Raspberry Pi Pico ©2020 ,,,, soorseL ;H ”

(=]
| -

Raspberry Pi Pico is a low-cost, high-performance microcontroller board

10

Ml
o

www.keyestudio.com

with flexible digital interfaces. It integrates the RP2040 microcontroller chip
designed by Raspberry Pi, with dual-core Arm Cortex MO+ processor
running up to 133 MHz, embedded 264KB of SRAM and 2MB of on-board
Flash memory, as well as 26 multi-function GPIO pins. For software
development, either Raspberry Pi's C/C++ SDK, or the MicroPython is

available. In this tutorial, we will use MicroPython.

The bare board does not come with pins and you need to solder yourself.
This is a well-made board that can also be used as an SMD component and

soldered directly to a printed circuit board.

11

£

www.keyestudio.com

<« microUsSB

pal =

On-board LED

Boot Select

BOOTSEL

RP2040

Raspberry Pl Pico ©2020

1
DEBUG
.7 e @

Debug Pins

L]
) @
®
X
; -
[]
[]
L]
=
[]
o
®
X
[)
)
) @
®
®
[]
[]

The most predominant feature on the board is the microUSB connector at
one end. This is used both for communication and to supply power to the
Pico. An on-board LED is mounted next to the microUSB connector, it is
internally connected to GPIO pin 25. It" s worthwhile to note that this is the
only LED on the entire Pico board.

The BOOTSEL pushbutton switch is mounted a bit down from the LED, it
allows you to change the boot mode of the Pico so that you can load
MicroPython onto it and perform drag-and-drop programming.

At the bottom of the board, you' Il see three connections, these are for a

serial Debug option that we won’ t be exploring here.

12

£

www.keyestudio.com

In the center of the board is the brains of the whole thing, the RP2040 MCU,
which is capable of supporting up to 16MB of off-chip Flash memory,

although in the Pico there is only 4MB.

® Dual-core 32-bit Arm Cortex MO+ processor

® Runs at 48MHz, but can be overclocked to 133MHz
® 30 GPIO pins

® Can support USB Host or Device mode

® 8 Programmable I/O(PIO) state machines

VBUS
VSYS
GND
3V3-EN

w.

o
mh e e ;e e e cEeEEeEEEeEEEDE®ES

GND

BOOTSEL

GND GND

GND GND

GND GND

>
L]
) @
2
_—
>
.
L]
L
) @
L
L]
°
L]
°
L]
L
L]

L
o™
o~
o
Lo B
o
o
o
-
>
=
=
@
o
a
%
©
o

The Pico is a 3.3V logic device, however, it can be powered with a range of

power supplies thanks to a built-in voltage converter and regulator.

13

Ml
o

www.keyestudio.com

GND: Ground connection. 8 grounding wires plus an additional one on the
3-pin Debug connector. They are square as opposed to rounded like the

other connections.

VBUS: This is the power from the microUSB bus, 5 V. If the Pico is not being
powered by the microUSB connector then there will be no output here.
VSYS: This is the input voltage, which can range from 2 to 5V. The on-board
voltage converter will change it to 3.3V for the Pico.

3V3: This is a 3.3V output from the Pico’ s internal regulator. It can be used
to power additional components, providing you keep the load under
300ma.

3V3 EN: You can use this input to disable the Pico’ s internal voltage
regulator, which will shut off the Pico and any components powered by it.
RUN: It can enable or disable the RP2040 microcontroller, it can also reset

it.

14

Ml
o

www.keyestudio.com

VBUS
VSYS
GND
3V3_EN
3V3 OUT

L]
[

GP28
GND
GP27
GP26
RUN
GP22
GND
GP21
GP20
GP19
GP18
GND
GP17
GP16

. Raspberry Pi Pico © 2020

There are 26 exposed GPIO connections on the Raspberry Pi Pico

board.They are laid out pretty-well in order, with a“gap”between GP22 and
GP26 (those "missing” pins are used internally). All these pins have multiple
functions, and you can configure up to 16 of them for PWM. There are two
12C buses, two UARTSs, and two SPI buses, these can be configured to use a

wide variety of GPIO pins.

The Pico has three Analog-to-Digital Converters, they are ADC0O-GP26,
ADC1-GP27, ADC2-GP28, and plus ADC-VREF converter used internally for
an on-board temperature sensor. Note: The ADCs have a 12-bit resolution.
However, the Micropython has scaled the 12-bit resolution into a 16-bit
resolution, which means that we will receive ADC values from 0 to 65535.

15

Ml
o

www.keyestudio.com

The microcontroller’ s working voltage is 3.3V, indicating that 0

corresponds to OV and 65535 corresponds to 3.3V.

You can also provide an external precision voltage-reference on the
ADC VREF pin. One of the grounds, the ADC_GND on pin 33 is used as a

ground point for that reference.

--

Raspberry Pi Pico Configuration
Dual-core Arm Cortex-M0 + @ 133MHz
2 x SPI,2 x 12C, 2 x UART
264KB of SRAM, and 2MB of on-board Flash memory
16 PWM channels
QSPI bus controller, supporting up to 16 MB of
external Flash memory
USB 1.1 with host and device support
DMA controller
8 x Programmable 1/O (PIO) state machines for
custom peripheral support
30 GPIO pins, 4 of which can optionally be used as
analog inputs

Drag-and-drop programming using mass storage over

pv4
o

www.keyestudio.com

.
Pin out
B
9
&;_l‘
 UARTO TX § 12C0SDA § sPiorx J GPO NI . ey’ veus |
2 30@iegll vsys |
3 X L 38 NI
[12¢15DA § sPiosck | GP2 QRS e L 37
[12c1scL § sPoTx | 6P Jtigpe erem§ 3vs(ouT) |
(1 ® (X 35
[UART1 RX § 12C0SCL § SPiocsn | GP5 [ARp @ eem’8 GP28 | ADC2 |
8 2 srgd GND | AGND |
[12C1SDA | sPi0SCK | GP6_ RUIEp'® e gy GP27 | spci [12C1SCL |
| i2c1scL | spioTx § GP7 Rl e} GP26 § ADCO_J 12C1 SDA |
| UARTT TX J 12C0SDA § SPITRX | GP8 Rilgpe L 30
| UART1 RX § 12C0SCL § SPi1CSn | GP9 RFiEp ® oo} GP22 |
| GND_ RERTe el GND |
[12¢1 DA § spiisck | GPio Ritie'e o il GP21 |
[12c1SCL § sPiiTX | GP11 Rl e o o} GP20 |
[UARTOTX § 12C0SDA | sPiiRx § GP12 RS e o g} GP19 § spioTx J12C1SCL |
| UARTORX § 12c0SCL | sPi1Csn § GP13_ BT ® o ol8 GP18 | SPi0SCK § 12C1 SDA |
T e 23 IO
[12¢1SDA § sPiisck | GP14 ELlp'e o -8 GP17 | SPI0CSn J 12C0 SCL § UARTORX |
0 22 o ouil} GP16 J SPIORX [I2C0SDA § UARTOTX |
I B rower [Ground [l UART/UART (default) [l criopioandPwnv [l aoc [sp [l 1zc [| Dei)ugqmgl

Raspberry Pi did release a ton of technical documentation, plus a great
guide called Get Started with MicroPython on Raspberry Pi Pico. It' s
available in softcover, and as a PDF download as well. For more information,
please refer to:

https://www.raspberrypi.com/products/raspberry-pi-pico/

3.1 MicroPython IDE----- Thonny

Programming the Pico: You could use C/C++ or MicroPython.
MicroPython is an interpreted language that is made specifically for

17

Ml
o

www.keyestudio.com

microcontrollers. Many microcontroller users have familiarity with C/C++
as they are used on the Arduino and ESP32 boards. In this tutorial, we will
use Thonny recommended by Raspberry Pi. Thonny bills itself as a “Python
IDE for Beginners” , and it is available for Windows, Mac OSX and Linux. It
was also part of the Raspberry Pi operating system(formerly Raspbian).

Boot and Install MicroPython: The first thing that we need to do is to get

MicroPython installed onto the Pico.

Download and Burn Firmware

Go to the official website to download the UF2 file:

https://www.raspberrypi.com/documentation/microcontrollers/#getting-s

tarted-with-micropython

|| rp2-pico-20210902-v1.17.uf2

What | downloaded is . Once the

download is complete, we proceed to burn the firmware.

With BOOTSEL held down, then plug the Pico into Raspberry Pi or your
computer’ s USB port.

Release it after the connection was finished. You should see a drive

appearing on your computer with the name “RP/-RPZ2" .

| Pictures

E Yideos

en_windows_10_ent

= RPI-RPZ (E:]

- RPI-RPZ (E:]

¥ Metwork

18

https://www.raspberrypi.com/documentation/microcontrollers/#getting-started-with-micropython，
https://www.raspberrypi.com/documentation/microcontrollers/#getting-started-with-micropython，

£

www.keyestudio.com

Move the UF2 file into “"RPI-RPZ’ , and the Raspberry Pi Pico will

automatically restart. At this point, the burning is complete.

o

Mame Drate modified Type
#F Quick access

|| rp2-pico-20210902-v1,17.uf2 2021/12/13 1035 UF2 File
B Desktop | PEP I
‘v Downloads

"—__l Documents

[&=] Pictures

B This PC
il 30 Objects
B Desktop
"—__l Documents
‘v Downloads
.h Music
[&] Pictures
ﬁ Videos
= en_wind
- RPI-RP2 .

o RPI-RP2 (E:) |+ Copy to RPI-RP2 (E:) |

o Metwork

Download and Install Thonny IDE

Enter the official website to download Thonny, we should download the

latest version for Windows.

Link: https://thonny.org/

19

£

www.keyestudio.com

Thonny

Python IDE for beginners

T+ Thenny

File Edit View Run Tools Help
DB 0% 22,9 @

factorial py

def fact(n}:
if n=8:
return 1
else:
return fact{n-1) * n

I
print("Its factorial is", Fact(3])

Shell

EIntas 2 natesal nembas: 3

n = int{input(“Enter a natural number o

fact

def fact(n):

ifn==2a
retur
else:

petur,

Local variables

MName Value

i

3

Variables
MName Value
fact =function fact z
n E)

fact

def fact(n):

if n == a:
return 1

else:
peturn fact(E-1) = n

Local variables

Mame Value

n

After downloading, we start installing the software. Click “Next” , then click

"I accept the agreement” and click “Next” again. After that, we choose

"Create desktop icon" and click “Next”, or just click "Next" to go to the next

step (you can open the file in the corresponding folder).

20

£

www.keyestudio.com

i Setup - Thonny - x
Select Additional Tasks
Which additional tasks should be performed? % E

o

Select the additional tasks you would like Setup to perform while installing Thonny,
then dick Next.

Ia =

< Back Mext = Cancel

When we see the contents shown below, click "Install" to complete the

installation.
i Setup - Thonny - x
Ready to Install
Setup is now ready to begin installing Thonny on your computer. % F

Click Install to continue with the installation, or dick Back if you want to review or
change any settings.

Destination location:
C:\Program Files (x88)\Thonny

Additional tasks:
Create desktop icon

< Back F Install i Cancel "

Finally, click "Finish".

21

£

www.keyestudio.com

i Setup - Thonny —

4 O% I
Great success!
Liess. py, _'
: d Thonny is now upgraded. Run it via shortout or right-dick a
imp andom * py file and select "Edit with Thonny™.
n = randir

guess = int(input

i while n != "guess i
= if guess < n: 1
print(”gL
guess = j
elif guess »
int(” Computers are useless, They can only give you
print(g': aNSWers,
guess =]
else: —Pablo Picasso
print("yc

Einish

Now we run the Thonny software. First, choose the language we need and

“Raspberry Pi” in “Initial settings” , then click “Let" s go!” .

¢ - O X

Language: B w
Initial settings: |GGk et il W
Let's go!

Next, we will see the interface as shown below.

22

Ml
o

www.keyestudio.com

B M O » @
P
Frid hiliE= = it i i =ik ok 1BH
<untitled> % ‘
Shell |
>>>
Python 3.7.9

Click on the text in the top right of the window to switch to "Regular

Mode". Then restart the program, the interface will be like this as illustrated

below.

B &7 I8 ##

OB o

o K

testLpy X |

1 print(1+3)
2 print("hello world ")

Shell 2% |

>

Python 3.7.9

23

£

www.keyestudio.com

Click on the word “Python” followed by a version number at the

bottom-right of the Thonny window, then choose “MicroPython (Raspberry
Pi Pico)” .

r = e =
T Thonny - <untitled> @ 1:1 -

Ist‘(itﬁ?ﬂﬁﬁ];ﬁ%ﬁh

Tuy OH o

| <untitled> %
; .

[shell x|
|>>> ' “

>33 x |

o ThorooBIREIEEE @HiL)
Bljf Iy then I BREE T ERIITE

_____*4 MicroPython (Raspberry Fi Fico) |

Configure interpreter. ..

The Raspberry Pi Pico interpreter is only available in the latest version of
Thonny. If you' re running an older version, you can’ t choose the

corresponding interpreter. After choosing the interpreter, the interface will

be like this as follows.

24

Ml
o

www.keyestudio.com

rﬁi Thonny - <untitled> @ 1:1 | i[5 iz-1
Xt R WA BT IR B
BK O o

<untitled =

| shell 3¢ |

>

-

MicroPython (Raspberry Pi Pico)

3.2 Install Drivers

Wire the Pi Pico board with the USB port of a computer via a MicroUSB. If

the Pi Pico shield has installed MicroPython, and installed “Board CDC “ on

the computer, then it will shows corresponding ports of “Pi Pico Serial Port
(COM)" on Device Manager. If you have a Raspberry Pi, you can connect

the Pico to the Raspberry Pi directly. The Raspberry Pi has a lot of built-in

software that can be used directly. If wire the Pico with the computer,

please follow the steps below.
Windows 10

When plug the Pico into the computer, the system will automatically

identify serial port and install corresponding driver. You can find “USB

25

£

www.keyestudio.com

Serial” on Device Manager. On my computer is COM4. You can find the

corresponding COM port in Thonny options (Tools-Options-Interpreter).

File Edit View Run Tools Help
JZd O W
zuntitled = .
TG Thonny options X
General Interpreter Editor Theme & Font Run & Debug Terminal Shell Assistant
Which interpreter or device should Thonny use for running your code?
MicroPython (Raspberry Pi Pico) v
Details
Connect your device to the computer and select corresponding port below
{lock for your device name, "USB Serial" or "UART").
If you can't find it, you may need to install proper USE driver first.
Port
Pi Pico Serial Port (COM4) v
Shell
2
Install or update firmware
oK Cancel

MicroPython (Raspberry Pi Pico)
If it shows the following information, indicating that your Pico board is
sucessfully connected to the computer.

MicroPython v1.17 on 2021-09-02; Raspberry Pi Pico with RP2040

Type “help()” for more information.

26

£

www.keyestudio.com

Then we input the following command behind >>>.

machine.Pin(25, machine.Pin.OUT).value(1)

Press “Enter” , if the on-board LED lights up, it means that Thonny works.

Ta Thonny - =untiled= @ 1:1 - d X
File Edit View Run Tools Help

1Zd O w

zuntitleds

Shell

»>

>>3 machine.Pin(25, machine.Pin.OUT).value(l) |efmmmmm—

>’

MicroPython (Raspberry Pi Pico)

3.3 Thonny User Interface

After installing the IDE and the driver, now we will introduce Thonny user

27

£

www.keyestudio.com

interface. At the top is the main menu, there are “File” , "Edit" , "View" ,

“Run” , "Tools” and "Help” .

T Thonny - <zuntitled= @ 1:1

File Edit View Run Tools Help

JEH O @
zuntitled =

.1|

Shell

b

2>

——

L4

MicraPython (Raspberry Pi Pica)

Click “File” , it shows some operations related to files.

28

Ml
o

www.keyestudio.com

Th Thonny - <untitled= @ 1:1

b

File Edit View Run Tools Help
|] New Ctel+N
(% Open.. Ctrl+0
Recent files ¢
Close Ctrl+W
Close all Ctrl+Shift+ W
|l Save Cirl+S
Save Al files Cirl+Al+S
Save as.. Ctrl+Shift+5
Save copy...
Move [rename...
Print... Ctrl+P
Exit Alt+F4
Shell
b3 3
2

v

MicroPython (Raspberry Pi Pico)

Click "Edit”

pasting.

, these are some options about code, such as copying, cutting,

29

£

www.keyestudio.com

Te Thonny - =untitled= @ 1:1
File Edit View Run Tools Help

B Undo Cirl+Z
Redo Ctrl+Y

<l
Cut Cirl+X
Copy Cirl+C
Paste Ctrl+V
Select all Ctrl+A
Indent selected lines Tab
Dedent selected lines Shift+Tab
Replace tabs with spaces
Toggle comment Ctrl+3
Comment out Alt+3
Uncomment Alt+4
Auto-complete Cirl+space
Find & Replace Ctrl+F
Clear shell Cirl+L

Shell

22>

22>

v

MicraPython (Raspberry Pi Pica)

In the View drop-down menu, these are the tools to assist you. For example,

if we do not tick Shell (the Shell is the “command line” of the Pico, and you

can execute code directly here.), the result won' t be displayed. Click

“Files” , the files we saved will be shown on the left.

30

£

www.keyestudio.com

Tq Thonny - <untiled= @ 1:1
File Edit View Run Tools Help

el Assistant
Exception

suntited Fijac

1 Heap
Help
Notes
Object inspector
Outline
Program tree
« Shell
Stack

Variables

Program arguments

Plotter

Increase font size Ctrl+ +

Decrease font size Ctrl+-

Focus editor Alt+E
Shell

Focus shell Alt+S
2
22

L4

MicraPython (Raspberry Pi Pica)

We can select interpreter in the Run drop-down menu, there are also some

shortcuts used in programming.

31

pv4
o

www.keyestudio.com
T& Thonny - =untitled> @ 1:1 - a X
File Edit View Run Tools Help
A5 Hd @ Selectinterpreter..
s) Run current script F5
Debug current script (nicer) Ctrl+F5
1 Debug current script (faster) Shift+F3
{% Debug current script (birdseye) Ctrl+Shift+B
“.» Step over Fo
., Step into Fr
., Step out
.4+ Resume F8
%! Run to cursor Ctrl+F8
Step back Cirl+B
B Run current script in terminal Ctrl+T
Dock user windows
Pygame Zero mode
& Stop/Restart backend Ctrl+F2
Interrupt execution Ctrl+C
Shell Send EOF [Soft reboot Ctrl+D
. Disconnect i | o
- /ne 1 I o : WiE o I
b
1.17 on 202 -02; | 1 Pico with §
Tl Intormatior
v

MicroPython (Raspberry Pi Pica)

In Tools menu, we can select interpreter, font and import modules, etc.

pv4
o

www.keyestudio.com

T Thonny - =zuntited= @ 1:1
File Edit View Run Tools Help

Manage packages..

JEd ©

B 0pen system shell...

zuntitled > -
Open Thonny program folder...

1 | Open Thonny data folder...

Manage plug-ins...

Options...

Type "help()" for more informati

MicroPython v1.17 on 2021-89-02; Raspberry

Micr (l 1.17 on 2021-89-02: Ra
Type "help()" for more information.

RP2040

A

W

MicroPython (Raspberry Pi Pico)

33

£

www.keyestudio.com

File Edit View Run Tools Help

JEd O
=untitled=

Shell

b

¥

T Thonny options
General Interpreter Editor Theme & Font Run & Debug Terminal Shell Assistant
Ul theme V Editor font | Consolas w
Syntax theme | Default Light it 10 font |Courier New &
Preview
def foo(bar):
if bar is None:
print('The answer is', 33)
unclosed string = "blah, blah
22
Enter an integer: 2.5
ValueError: invalid literal for int(} with base 10:

125t

NB! Some style elements change only after restarting Thonny!

(12

Cancel

W

MicroPython (Raspberry Pi Pico)

In Help menu, we will see “Help contents” , “Version history” and more.

The icons below the main menu are our commonly used tool shortcuts.

34

£

www.keyestudio.com

T Thonny - <untitled= @ 1:1
File Edit Wiew Run Tools Help

=]

unfitled =

Stop/Restart backend

4| Run current script |

Open files

—| Create new f;’lesl

Shell

»>>

>

L

MicroPython (Raspberry Pi Pico)

When we open or save files, it will shows the following contents.

T Where to open from? b4 T& Where to save to?

>

This computer This computer

Raspberry Pi Pico Raspberry Pi Pico

We can open programs saved on the computer or the Pico, or save them

on This computer or Raspberry Pi Pico.

Copy the code below to the Thonny and save it to the computer as test.py.

35

Ml
o

www.keyestudio.com

Ta Thonny - CAUsers\Administrator\Desktop\testpy @ 7:12 — O b4
File Edit View Run Tools Help

Jzd 0 @

test.py

from machine import Pin
from utime import sleep
import utime

led = Pin(25, Pin.OUT)
while True:

led.value(1)
utime.sleep ms(1000)

led.value(0)
utime.sleep ms(1000)

Shell
rrz =

>3

2
2y

¥

MicroPython (Raspberry Pi Pico)

Click @ to run the code, the on-board LED will blink at 1 second
intervals, then click 0 to stop, the LED won’ t blink. If we unplug the
MicroUSB cable and plug it in again, the LED won’ t blink after powering
up. This is because we did not name the file main.py and save it to the Pico.
Click “File” , then click “Save as..." to choose Raspberry Pi Pico. After that,
enter main.py as the file name (don’ t forget to enter the .py file extension)

and click “OK" . Run the code again, the LED will continue to blink.

36

Ml
o

www.keyestudio.com

ﬁi-.

Flle Edit

Rl

test.py

Shell

>
>

>

View Run Tools

0

Help

from machine
from utime im
import utime

led = Pin(25,
while True:

led.value
utime.sle

led.value
utime.sle

Tk Save to Raspberry Pi Pico

.l Raspberry Pi Pico

. Narne
& DHT22.py
@ ht16k33 matrix.py
& matrix_fonts.py
& rotary.py

@ rotary irq_rp2.py
& urtc.py

File name: main.p)d

Size (bytes)
5660
1433

10270
5056
1779
6083

QK Cancel

W

MicroPython (Raspberry Pi Pico)

When we unplug the cable again, then plug it in and power on, the LED will

blink. This is because the Raspberry Pi Pico starts running the program

saved on main.py after powering up.

3.4 Add Modules

Python is a powerful language due to its modules. Python scripting

37

Ml
o

www.keyestudio.com

language with the most rich and powerful class library, enough to support
the vast majority of day-to-day applications. By importing modules, this
makes it easier for us when using some complex sensors.

The method is simple, just save the module that we need to the Pico, or
open the file saved on our computer, click “File” to choose “Save as” , then
save it to the Pico board (right click the mouse, you can delete files). For
instance, | saved some library files required for these courses on my Pico.
Click "View" to choose “Files” , they will be displayed on the left of the

interface.

38

Ml
o

www.keyestudio.com

Ta Thonny - g X
File Edit View Run Tools Help

0 ©

Files

1]
>

This computer
i,

]

AMD

3]

!

4 inetpub
4 Intel
/

/

B B

KidsBlock Link
OpenBlock 5

3]

Raspberry Pi Pico =
& DHT22.py
@ ht16k33_matrix.py

& main.py /

& matrix_fonts.py

& rotary.py
. Shell
& rotary irq_rp2.py =
& urtc.py Use Stop/Restart to reconnect.
D v

MicroPython (Raspberry Pi Pico)

When using sensors, we can import the corresponding modules directly.

Ml
o

www.keyestudio.com

* http://www.keyestudio.com

import machine
import time
import json

import matrix fonts P—""

from htl16k33_matrix import ht16k33_matrix

clock_pin = 1
data_pin = @

bus = 8
i2c_addr_left = 6x70
use_i2c = True

def scan_for_devices():

i2c = machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_pin)})
devices = i2c.scan()
if devices:

for d in devices:

print(hex(d))

else:

print('no i2c devices')

3.6 Keyestudio Raspberry Pico 10 Shield

(1) Overview

The Keyestudio Raspberry Pico 10 shield is designed for Raspberry Pi Pico.
No soldering required. To make the connection easier, the interfaces on the
shield have silkscreen labels. The silkscreen labels of the 3pin interface
generally are G, V, S. On the shield, G represents GND, V represents the VCC
interface (3.3V), and S represents digital ports or analog ports. The pitch of
the pin header on the shield is 2.54 mm. The sequence of the pin header is
the same as the Pico board’ s when wiring. The shield also comes with a
reset button, a PWR power indicator and four holes.

The shield offers a variety of communication interfaces including 12C, UART,

40

Ml
o

www.keyestudio.com

SPI, analog 10 and digital IO, and provides an interface of power supply
ranging from 6.5V to 12V.

Specifications:

Output current: <500mA

DC input voltage: 6.5 - 12V

Output voltage: DC 3.3V/5V

Ambient temperature(recommended): -10°C ~ 50°C

Dimensions: 45.339MM *83.617MM

Pin pitch: 2.54mm

Schematic diagram

o —o
EREERBEEREREE | |
R —opalelofe bkl Rl kb : ££ HENNEN
3 o =l = = 1 =1 =
bbbkl bl ? EREEFER
) { I e SEEEEEFEEEEEBEER 2 =l 2
swoo SEPECEGEEEEBEBEEl SEEBEEEE kb EEE
‘ [2 GD 5 % SEEERE

41 SWCLK |“‘

L H] |
“FEFPFTEFFEFEFEL, -ERFPEFRERERRRL,
i - |
FEFFFRFFEREREE,, TRFFFFERRREEL,

TP
P15 |
TPe 7]
o
TPE T
T
T

) 4 GEN (SC) 4 GPI sCL) 6 __GPo (Csm) s ers o
Pl RX) 3 GPI0 (SDA) 3 GPI> (5DA) T GR RN P)
2 2 p TGPl (T FEETITE
Jie = = Lo ()
1 T T GP6 (CLK) 5_cro (o0
Ti g uca_:-,!.-j Hm_;!.-: i—||| —
w0 L i
£ 5

Pinout

41

Ml
o

www.keyestudio.com

Interfaces
for Raspberry
UART interfaces IO interfaces Pi Pico board DC power supply

W L W T e e TS R T e

FoF o 2 F R 8 R BRSO R AN

» SWCLK
Power indicator
» SWDIO

SPl interfaces «

IIC interfaces <«— i

I0interfaces ADC 2v-5v 2V POWer | pacet button

reference | power SUEply
I supply
voltage 3V3 EN 5V power
supply

As shown below, stack the Raspberry Pi Pico board onto the Raspberry Pi
Pico shield.

42

Ml
o

www.keyestudio.com

5. Projects

There are 42 sensors and modules in this kit. Next, we will analyze and
introduce how they work step by step. Interface sensors with the Raspberry
Pi Pico board and the Pico shield, run test codes and observe experimental
phenomenon.

Note: please wire up components according to the given connection

diagrams.

Project 1: Lighting up LED

*eras,
roaas L oess.

Overview

In this project, we will make an experiment to light up the white LED

43

Ml
o

www.keyestudio.com

module. The high and low levels can be controlled by programming, then
the state of the LED can be controlled.

Working Principle

The two circuit diagrams are given. The left one is wrong wiring-up
diagram. Why? Theoretically, when the S terminal outputs high levels, LED
will receive the voltage and light up.

Due to limitation of IO ports of Pico board, weak current can’ t make LED
brighten.

The right one is correct wiring-up diagram. GND and VCC are powered up.
When the S terminal is a high level, the triode Q1 will be connected and
LED will light up(note: current passes through LED and R3 to reach GND by
VCC not 10 ports). Conversely, when the S terminal is a low level, the triode
Q1 will be disconnected and LED will go off.

The triode Q1 is equal to a switch and R1 and R3 stand for limited resistors
which can curb the size of current to prevent from burning out

components

44

Ml
o

www.keyestudio.com

"l
§ sRlee l

TSN \IIH: M 8050

a03 1k

603 10k
_ 3 10kra)

GND

Correct wiring-up diagram

Components

3 DI
s
2 5t : ‘Qi“I'GED
0603 1k WHITE LED

Wrong connection diagram

Raspberry | Raspberry Pi
Pi Pico Pico Expansion

Board*1 Board*1

Keyestudio
Purple LED
Module*1

3P Micro
Dupont USB
Wire*1 | Cable*1

Connection Diagram

UARTO UARTI

lV! 3v3

(
rEE
:

Power_OUT

RESET,

. m>o.

#

fritzing

45

Ml
o

www.keyestudio.com

Test Code

Code 1:

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 1.1

*turn on led

*turn on led

* http://www.keyestudio.com
from machine import Pin
led = Pin(0, Pin.OUT)# create led, connect LED to pin 0, and set pin 0 to OUTPUT
led.value(1)# light up

Code 2.

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 1.2
* Blink
* http://www.keyestudio.com
from machine import Pin
import time

led = Pin(0, Pin.OUT)# create led, connect LED to pin 0, and set pin0 to OUTPUT
while True:

led.value(1)# led lights up

time.sleep(1)# wait for 1s

led.value(0)# led goes off

time.sleep(1)# wait for 1s

Code Explanation

Machine module is indispensable, we will use import machine or from

machine import... to program pico with microPython.

46

Ml
o

www.keyestudio.com

time.sleep() function is used to set delayed time, as time.sleep(0.01),

which means, the delayed time is 10ms.

1. led = Pin(0, Pin.OUT), created a pin example and we name led.
0 is indicative of connected pin GPO, Pin.OUT represents output mode,
can use .value() to output high levels (3.3V)led.value(1) or low levels

(OV)led.value(0).,

import machine is used to import modules. When creating pins examples,

it will change into led = machine.Pin(0, machine.Pin.OUT)

2. while True is loop function,

It means that sentences under this function will loop unless True changes
into False. For the function while, led.value(1), outputs high levels to the
pin O; then LED lights up. Then the delayed function time.sleep(1) will wait
for 1s. When led.value(0) output low levels to the pin 0, the LED will go off,

and the function time.sleep(1) will wait for 1s, cyclically, and LED will flash.

Test Result
Code 1: upload the code and power on, the purple LED on the module will

light up

47

Ml
o

www.keyestudio.com

Code 2: upload the code and power on, the purple LED will flash with the

interval of 1s.

Project 2: Traffic Lights Module

T AF IC
L GH

SGN L

Overview

In this lesson, we will learn how to control multiple LED lights and simulate
the operation of traffic lights.

Traffic lights are signal devices positioned at road intersections, pedestrian

crossings, and other locations to control flows of traffic.

48

Ml
o

www.keyestudio.com

In this kit, we will use the traffic light module to simulate the traffic light.

Working Principle

In previous lesson, we already know how to control an LED. In this part, we

only need to control three separated LEDs. Output high levels to the signal
R(3.3V), then the red LED will be on.

— — — — Header5

Components

49

Ml
o

www.keyestudio.com

Raspberry
Pi Pico
Board*1

Raspberry Pi
Pico
Expansion

Board*1

Keyestudio
DIY Traffic
Lights
Module*1

5P
Dupont
Wire*1

Micro
USB
Cable*1

Connection Diagram

-
T
Q
|
o
™
™
<
o
=

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 2
* Traffic_Light

* http://www.keyestudio.com

import machine
import time

led_red = machine.Pin(14, machine.Pin.OUT)
led_amber = machine.Pin(13, machine.Pin.OUT)

fritzing

50

Ml
o

www.keyestudio.com

led_green = machine.Pin(12, machine.Pin.OUT)
while True:
led_green.value(1) # the green LED lights up for 5s
time.sleep(5)# after 5s
led_green.value(0)# the green LED will go off
for i in range(3):#the yellow LED flashes for three times
led_amber.value(1)
time.sleep(0.5)
led_amber.value(0)
time.sleep(0.5)
led_red.value(1) # the red LED lights up for 5s

time.sleep(5)
led_red.value(0)

Code Explanation

Create pins, set pins mode and delayed functions.

We use the for loop.

The simplest form is for i in range().

In the code, we used range(3), which means the variable i starts from 0,

increase 1 for each time, to 2.

Test Result

Run the code, the green LED will be on for 5s then off, the yellow LED will

flash for 3s then go off and the red one will be on for 5s then off.

51

Ml
o

www.keyestudio.com

Project 3: Laser Sensor

Description

Lasers are widely used to cut, weld, surface treat, and more on specific materials.
The energy of the laser is very high. The toy laser pointer may cause glare to the
human eye, and it may cause retinal damage for a long time. my country also

prohibits the use of laser to illuminate the aircraft.

52

Ml
o

www.keyestudio.com

Working Principle
The laser head sensor module is mainly composed of a laser head with a

light-emitting die, a condenser lens, and a copper adjustable sleeve.

We can see the circuit schematic diagram of this module which is very similar to
the LED we have learned. They are all driven by triodes. A high-level digital signal
is directly input at the signal end, then the sensor will start to work; if inputting

low levels, the sensor won't work

Note: don’ t point an laser emitter at eyes of people.

VCC

10K

53

Ml
o

www.keyestudio.com

Components

o | E®

Raspberry Pi Keyestudio 3P Micro
Raspberry Pi
Pico Expansion DIY Laser Dupont USB
Pico Board*1
Board*1 Module*1 Wire*1 Cable*1

Connection Diagram

)’ UARTO UART1

V3 V3

HH==lH

fritzing

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 3
* Laser

* http://www.keyestudio.com

£

www.keyestudio.com

from machine import Pin

import time

laser = Pin(2, Pin.OUT)# create the laser, connect it to the pin 0 and set the pin 2 to OUTPUT
while True:

laser.value(1)# the laser module is on

time.sleep(2)# wait for 2s

laser.value(0)# the laser module is off

time.sleep(2)# wait for 2s

Test Result
Upload the test code and power up, the laser tube on the module emits a
red laser signal for 2 seconds, and stops emitting a red laser signal for 2

seconds.

© N
s - 2" T8

55

2l
o

www.keyestudio.com

Project 4: Button Sensor

Overview

In this kit, there is a Keyestudio single-channel button module, which
mainly uses a tact switch and comes with a yellow button cap.

In previous lessons, we learned how to make the pins of our single-chip
microcomputer output a high level or low level. In this experiment, we will
read the high level (3.3V) and low level (0V).

We can determine whether the button on the sensor is pressed by reading

the high and low level of the S terminal on the sensor.

Working Principle
The button module has four pins. The pin 1 is connected to the pin 3 and

the pin 2 is linked with the pin 4. When the button is not pressed, they are

56

£

www.keyestudio.com

disconnected. Yet, when the button is pressed, they are connected. If the

button is released, the signal end is high level.

vee
R1
0603 4.7K
| g
S | M v
1 ; . 3 C1 YRR G
© 0603 100NF [
2 4 =
2 4 GND
= GND
GND
Components

Do000000000000000000

Keyestudio DIY
Raspberry Pi Raspberry Pi Pico Button 3P Dupont Micro USB
Pico Board*1 Expansion Board*1 Modul e*1 Wire*1 Cable*1

57

Ml
o

www.keyestudio.com

Connection Diagram

P uarTo UART]

Wy
m Wil ‘:f .
] Cy
CDOS00DoOCooDoRG-,

cen cpis
GPz0 P4 ’
"

[

3V
F

Power_OUT
RESET,

fritzing

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 4
* button
* http://www.keyestudio.com
from machine import Pin
import time

button = Pin(15, Pin.IN, Pin.PULL_UP)
while True:
if button.value() == 0:
print("You pressed the button!") #Print information
else:

print("You loosen the button!")
time.sleep(0.1) #delay in 0.1s

Code Explanation

button = Pin(15, Pin.IN, Pin.PULL UP), we define the pin of the button as

58

Ml
o

www.keyestudio.com

GP15 and set to PULL-UP mode

We can use button = Pin(15, Pin.IN) to set INPUT mode, at this time, the

pins are in high resistance state.

1. button.value(), read levels of buttons. Function returns High or Low

2. if..else.. sentence, when the logic judge is TRUE, the code under the if

will be activated; otherwise, the code udder the else will be activated.

3. When pico detects the button pressed, the signal end is low level (GP 15
is low level). button.value() is 0. If pico detects the button unpressed,

button.value() is 1 and else sentence will be activated.

Test Result

Upload the test code successfully. After powering on the USB cable, open the
serial monitor and set the baud rate to 9600. The serial monitor will display the
corresponding data and characters. When the button is pressed, val is 0, the
monitor will show “Press the button” ; when the button is released, valis 1,

the monitor will show “Loosen the button” ; as shown below

59

pv4
o

www.keyestudio.com

You
You
You
You
You
You
You
You
You
You
You

Shell 3¢ |

oot ot ol gt

ITOOCIT CEC DU TCORT .
loosen the button!

loosen the button!

loosen the button!

loosen the button!

loosen the button!

loosen the button!

loosen the button!

loosen the button!

pressed the button!

pressed the button!

pressed the button! I

60

pv4
o

www.keyestudio.com

Project 5: Capacitive Sensor

@ ©2015 TES TOUCH ENE ED SOLUTION:

Description

In this kit, there is a capacitive touch module which mainly uses a
TTP223-BA6 chip. It is a touch detection chip, which provides a touch
button, and its function is to replace the traditional button with a variable
area button. When we power on, the sensor needs about 0.5 seconds to
stabilize. Do not touch the keys during this time period. At this time, all
functions are disabled, and self-calibration is always performed. The
calibration period is about 4 seconds. We display the test results in the

shell.

61

£

www.keyestudio.com

Working Principle

Ul _ .
Q TOoG — VCC
b _rz V55 VDD 3 -r
[R1 = A S J_ J_
0603 1K GND 7 c1 C2
1 e
TTP223N-BA6 i
18 100NF
& 1
. —@ _1_
= PAD =
| LED-RED GND
= T3
GND 22PF NPO
GND

When our fingers touch the module, the signal S outputs high levels, the red LED
on the module flashes. We can determine if the button is pressed or not by

reading high and low levels on the sensor.

Required Components

- | S

) o Keyestudio DIY)
Raspberry Pi Raspberry Pi Pico o 3P Dupont Micro USB
)) Capacitive]
Pico Board*1 Expansion Board*1 Wire*1 Cable*1
Modul e*1

62

Ml
o

www.keyestudio.com

Connection Diagram

8 u»nm UARTI

sPID sen

GP13
GP12
GPT
cp2 GPIO

12¢0 12€1

Test Code

Power_OUT
RESET,

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 5

* Touch sensor

* http://www.keyestudio.com
from machine import Pin
import time

button = Pin(3, Pin.IN, Pin.PULL_UP)

while True:
if button.value() ==
print("You pressed the button!")
else:
print("You loosen the button!")
time.sleep(0.1) #delay in 0.1s

Code Explanation

#press to print information

fritzing

63

£

www.keyestudio.com

When we touch the sensor, the Shell monitor will show “You pressed the

n
!

button!” , if not, “You loosen the button!” will be shown on the monitor.

Test Result

The shell monitor shows corresponding data and characters. In the
experiment, when the button is pressed, the red LED lights up and val is
1.Then the shell shows "You pressed the button!”; if the button is released,

the red LED is off and val is 0; “You loosen the button!” will be displayed

| Shell 3¢ |

| You loosen the button! al
¥ou loosen the button!
¥ou loosen the button!
¥ou loosen the button!
You pressed the button!
You pressed the button!
You pressed the button!
You pressed the button!
¥ou pressed the button!
¥ou pressed the button!

64

£

www.keyestudio.com

Project 6: Obstacle Avoidance Sensor

Overview

In this kit, there is a Keyestudio obstacle avoidance sensor, which mainly
uses an infrared emitting and a receiving tube. In the experiment, we will
determine whether there is an obstacle by reading the high and low level

of the S terminal on the sensor.

Working Principle

NE555 circuit provides IR signals with frequency to the emitter TX, then the
IR signals will fade with the increase of transmission distance. If

encountering the obstacle, it will be reflected back.

65

£

www.keyestudio.com

When the receiver RX meets the weak signals reflected back, the receiving

pin will output high levels, which indicates the obstacle is far away. On the

contrary, it the reflected signals are stronger, low levels will be output,

which represents the obstacle is close. There are two potentiometers on

the module, and one is for adjusting emission power, another one is for

receiving frequency.

[R-BX
RX

VCC

p—y | K

c7 T
03 10UFGND

GND

=) a3
-|__‘_ -
2]
)

= VCC
0603 10k

w

VCC

IR4
0603 22k

GhD'Il é O %VCC
3 o
\,Ccth‘ESSS 3
R7 Ul
1 Spachifiable. 4ok
1

%3 INF

GND

3 10NF

66

Ml
o

www.keyestudio.com

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY
Obstacle
Avoidance

Sensor*1

3P Dupont
Wire*1

Micro USB
Cab le*1

Connection Diagram

Test Code

a UARTO UART1
v V3
GND| GND

GP9

12co
ap21 GPI5
P20

EE

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 6

* Infrared obstacle avoidance sensor

* http://www.keyestudio.com

from machine import Pin

import time

sensor = Pin(16, Pin.IN)

while True:

if sensor.value() == 0:

print("There are obstacles")

else:

print("All going well")

time.sleep(0.1)

3
b

000000000000
~ R @ 000000C

fritzing

Ml
o

www.keyestudio.com

Note:
Upload the test code and wire up according to the connection diagram.
After powering on, we start to adjust the two potentiometers to sense

distance.

1. Adjust the potentiometer transmitting power. Make the P LED at the

critical point of ON and OFF states.

2. Adjust the potentiometer receiving frequency. Rotate it clockwise, the
frequency will increase. Make the S LED at the critical point of ON and OFF

states, then the 38KHz square wave can be produced.

Test Result

Upload the code and open the Shell monitor. When the sensor detects the
obstacle, the monitor will show “There are obstacles” ; if the obstacle is not

detected, "All going well” will be shown.

68

www.keyestudio.com

pv4
o

Shell 3

411 going
411 going
411 going
411 going
411 going
411 going

There
There
There
There
There

are
are
are
are
are

well
well
well
well
well
well
obstacles
obstacles
obstacles
obstacles
obstacles

69

Ml
o

www.keyestudio.com

Project 7: Line Tracking Sensor

Description

In this kit, there is a DIY electronic building block single-channel line
tracking sensor which mainly uses a TCRT5000 reflective black and white
line recognition sensor element.

In the experiment, we judge the color (black and white) of the object
detected by the sensor by reading the high and low levels of the S terminal

on the module; and display the test results on the shell.

70

Ml
o

www.keyestudio.com

Working Principle

GN

'd

-

4

E31 S 2
—F 3 4
—"h805 330R Pt

]

TCR5000 =
o

d

When a black or no object is detected, the signal terminal will output high
levels; when white object is detected, the signal terminal is low level; its
detection height is 0-3cm. We can adjust the sensitivity by rotating the
potentiometer on the sensor. When the potentiometer is rotated, the
sensitivity is best when the red LED on the sensor is at the critical point

between off and on.

Required Components

o | B®

) o Keyestudio DIY)
Raspberry Pi Raspberry Pi Pico)) 3P Dupont Micro USB
)) Line Tracking .
Pico Board*1 Expansion Board*1 Wire*1 Cab le*1
Sensor*1

71

Ml
o

www.keyestudio.com

Connection Diagram

uunm u.m'n

SPIO sen

- R \AH‘:'[iF"J‘vH‘.E"‘L‘L’
- s
oPR2
i .
GP1l
i - =
D -
i
=

12co

T
5v G
Gp21 GP1s 5 .
c T
i s A 2 G Power_OUT

RESET,

Line Tracking

fritzing
Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 7
* Line Tracking sensor
* http://www.keyestudio.com
from machine import Pin

import time
sensor = Pin(3, Pin.IN, Pin.PULL_UP)
while True:
if sensor.value() ==
print("0O White") #print information
else:

print("1 Black")
time.sleep(0.1) #delay in 0.1s

Test Result

Upload test code, the shell displays the corresponding data and characters.

In the experiment, when the sensor doesn’ t detect an object or detects a

72

£

www.keyestudio.com

black object, the val is 1, and the shell will display "Black" ; when a white

object (can reflect light) is detected, the val is 0, and the shell displays

"White" ;

- e, =
-

DD DoDHEE R
=
I
'—l
o
m

73

Ml
o

www.keyestudio.com

Project 8: Photo Interrupter

With Shield
Current flow o
in the phototransistor @]
Description

This kit contains a photo interrupter which mainly uses 1 ITR-9608

photoelectric switch. It is a photoelectric switch optical switch sensor.

Working Principle

When the paper is put in the slot, C is connected with VCC and the signal end S of

the sensor are high levels; then the red LED will be off. Otherwise, the red LED

will be on.

74

£

www.keyestudio.com

g El1 0603 180R

GND

S "
—{vCC [I]RIE
» 0603 4.7k
= ~A DI
&> “MRep o
— Ul
[IR3 E fhs 1 C
|L‘rﬁ[}3 1k GND |
veek 4 P e
1{{0}1’5 Photo Interrupter
GND

Required Components

Raspberry Pi
Pico Board*1

Keyestudio DIY
Photo
Interrupter*1

Raspberry Pi Pico

Expansion Board*1

3P Dupont
Wire*1

Micro USB
Cable*1

Connection Diagram

Ml
o

www.keyestudio.com

UARTD UARTI

v

Power_OUT

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 8
* Photo_lInterrupt
* http://www.keyestudio.com
from machine import Pin

import time

sensor = Pin(3, Pin.IN, Pin.PULL_UP)
lastState =0

PushCounter =0

while True:
State = sensor.value()
if State !=lastState:
if State == 1:
PushCounter +=1
print(PushCounter) #press to print information

lastState = State

Code Explanation

g
[=%
=
E
1=
3
=
2
o
o

76

Ml
o

www.keyestudio.com

Logic setting:

Initial Setting

Set PushCounter to 0

Set State to 0 (value of the sensor)

Set lastState to 0

when an object

enters the slot

lastState is 0, State turns
into 1; lastState turns

into 1

Set

PushCounter to
PushCounter+1
print the value

of PushCounter

when the object

leaves the slot

lastState is 1 , State
becomes 0, two data are
not equal, lastState turns

into O.

PushCounterdo
esn’t change;

Don't print the
value of

PushCounter

When the object

goes through this

lastState is 0, State
becomes 1, two data are

not equal, lastState turns

Set
PushCounter to
PushCounter+1

And print the

slot again
into 1. value of
PushCounter
When the object | lastState is 1, State turns | PushCounter

77

£

www.keyestudio.com

leaves this slot|into 0, two data are not | doesn’t change;
again equal lastState turns into | Don't print the
0 PushCounter
value
Test Result

Wire up, upload test code, and the shell displays the PushCounter data.
Every time when the object passes through the slot of the sensor, the

PushCounter data will increase by 1 continuously, as shown below;

1
2
3
4
3
&
7
a8
9

78

Ml
o

www.keyestudio.com

Project 9: Tilt Module

Overview

In this kit, there is a Keyestudio tilt sensor. The tilt switch can output signals
of different levels according to whether the module is tilted. There is a ball
inside. When the switch is higher than the horizontal level, the switch is
turned on, and when it is lower than the horizontal level, the switch is
turned off. This tilt module can be used for tilt detection, alarm or other

detection.

Working Principle

79

Ml
o

www.keyestudio.com

Pl
[
— (o] I S
R1 i
i | G
1 0805 4.7K —L:_
GND N

) D1
LED-RED GND

0805 1K

The working principle is pretty simple. When pin 1 and 2 of the ball switch
P1 are connected, the signal S is low level and the red LED will light up;
when they are disconnected, the pin will be pulled up by the 4.7K R1 and
make S a high level, then LED will be off.

Components

— = B

Raspberry | Raspberry Pi | Keyestudio
3P Dupont | Micro USB
Pi Pico | Pico Expansion Tilt
Wire*1 Cable*1
Board*1 Board*1 Sensor*1

Connection Diagram

80

Ml
o

www.keyestudio.com

UARTO UART1

3v3 V3

GND GND

]]

youms jjiL

GPO (]

SPID spi

GP13 o
GPz

aps
GP4
D
GP3 cPn
| &
opz) B
|
vz 3v3
GND GND o >
0

12¢1

12C0
Gp21 GP15
GP20 cP14

GND u ono]

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 9
* Tilt switch
* http://www.keyestudio.com
from machine import Pin
import time

TiltSensor = Pin(17, Pin.IN)
while True:
value = TiltSensor.value()
print(value, end =" ")
if wvalue==0:
print("The switch is turned on")
else:

print("The switch is turned off")
time.sleep(0.1)

Test Result
Upload the test code and observe Shell
When the tilt module is inclined to one side, the red LED on the module will

be off and the monitor will display “1 The switch is turned off” . In contrast,

81

Ml
o

www.keyestudio.com

if you make it incline the other side, the red LED will light up and the

monitor will display "0 The switch is turned on” .

Shell 3

0 The switch is turned on
0 The switch is turned on
0 The switch is turned on
0 The switch is turned on
1 The =switch is turned off
1 The switch is turned off
1 The =switch is turned off
1 The =switch is turned off
1 The =switch is turned off
1 The =switch is turned off
1 The =switch is turned off

82

Ml
o

www.keyestudio.com

Project 10: Collision Sensor

g I!‘ '! -

o=

Description

The collision sensor uses a tact switch. This sensor is often used as a limit
switch in 3D printers. In the experiment, we judge whether the sensor
shrapnel is pressed down by reading the high and low levels of the S

terminal on the module; and, we display the test results in the shell.

Working Principle

It mainly uses a tact switch. When the shrapnel of the tact switch is pressed,
2 and 3 are connected, the signal terminal S is low level, and the red LED on
the module lights up; when the touch switch is not pressed, 2 and 3 are not

connected, and 3 is pulled up to a high level by the 4.7K resistor R1, that is,

83

£

www.keyestudio.com

the sensor signal terminal S is a high level, and the built-in red LED will be

off at this time.

P1
3 P S
2 \
] R1 | G
e] |
sxge 0805 4.7k = —_—
collision _1__ R g3} =
— LED-RED GND

GND

0805 1k

Components Required

Raspberry | Raspberry Pi | Keyestudio

3P Dupont | Micro USB
Pi Pico | Pico Expansion | Collision

Wire*1 Cable*1
Board*1 Board*1

Sensor*1

Connection Diagram

84

Ml
o

www.keyestudio.com

UARTO UART1
33

o
=3
&
]
=

12c0 1zc1

con cos M amam

JooBoBbE0aEEE

onD [N one i

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 10
* collision sensor
* http://www.keyestudio.com
from machine import Pin

import time
TiltSensor = Pin(17, Pin.IN)

while True:

value = TiltSensor.value()
print(value, end =" ")
if value==0:

print("The end of his!")
else:

print("All going well")
time.sleep(0.1)

Power_OUT
RESET,

fritzing

85

£

www.keyestudio.com

Test Result

Run the test code, the shell displays the corresponding data and characters.
In the experiment, when the shrapnel on the sensor is pressed down, val is
0, the red LED of the module is on, and "The end of his!" is printed; when
the shrapnel is released, the val is 1, the red LED of the module is off, and

"All going well" is printed. !" character, as shown below.

| shell 3¢ |

¥

1 211 going well
1 211 going well
1 A1l going well
1 211 going well
0 The end of his!
0 The end of his!
0 The end of his!
0 The end of his!
0 The end of his!

86

pv4
o

www.keyestudio.com

Project 11: Hall Sensor

Description

In this kit, there is a Hall sensor which mainly adopts a A3144 linear Hall
element. The element P1 is composed of a voltage regulator, a Hall voltage
generator, a differential amplifier, a Schmitt trigger, a temperature
compensation circuit and an open-collector output stage. In the
experiment, we use the Hall sensor to detect the magnetic field and display
the test results on the shell.

Working Principle

When the sensor detects no magnetic field or a north pole magnetic field,
the signal terminal will be high level; when it senses a south pole magnetic

field, the signal terminal will be low levels.

87

£

www.keyestudio.com

The stronger the magnetic field strength is, induction distance is longer.

Required Components

g

Dl |

Pl 1 1 = 4 g v
e | e —
L | 3 LED-RED

Hall Sensor D

Raspberry Pi Raspberry Pi Pico Keyestudio DIY 3P Dupont Micro USB
Pico Board*1 Expansion Board*1 Hall Sensor*1 Wire*1 Cab le*1

Connection Diagram

Ml
o

www.keyestudio.com

UARTO UART]

3vs

GND

GP1

12co

i 5V GND
GP21 CP1S
GND o
5 B B : A Power_OUT

RESET,

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 10
* Hall magnetic
* http://www.keyestudio.com
from machine import Pin
import time

hall = Pin(5, Pin.IN)
while True:
value = hall.value()
print(value, end =" ")
if value ==
print("A magnetic field")
else:
print("There is no magnetic field")

time.sleep(0.1)

Test Result

89

£

www.keyestudio.com

Upload the test code, when the sensor detects no magnetic fields or the
north pole magnetic field, Shell will show “1 There is no magnetic field” and
the LED on the sensor will be off; When it detects the south pole magnetic
field, the Shell will show “0 A magnetic field” and the LED on the sensor will
be off.

| Shell ¢ |
-~ R B L e) B L [Al
1 There i=s no magnetic field
There iz no magnetic field
magnetic field
magnetic field
magnetic field
magnetic field
magnetic field
magnetic field
magnetic field

=T = R T I R
oo e

90

Ml
o

www.keyestudio.com

Project 12: Reed Switch Module

Overview

In this kit, there is a Keyestudio reed switch module, which mainly uses a
MKA10110 green reed component.

The reed switch is the abbreviation of the dry reed switch. It is a passive
electronic switch element with contacts.

It has the advantages of simple structure, small size and easy control.

Its shell is a sealed glass tube with two iron elastic reed electric plates.

In the experiment, we will determine whether there is a magnetic field near
the module by reading the high and low level of the S terminal on the

module; and, we display the test result in the shell.

91

Ml
o

www.keyestudio.com

VOO
—
g LR
0603 4.7k | 0603 1k
b gt
s BED LED
b
v
l: []L']
GND Read Switch Module

S

GND
Working Principle
Reed switch is an abbreviation of the dry reed contacts a passive
electronic switching elements, and has the advantages of simple structure,
small size and ease of control, its shell is a sealed glass tube, the tubes are
installed two iron elastic reed plate, but also filling called rhodium metal
inert gas. In peacetime, the glass tube in the two reeds made of special

materials are separated.

When a magnetic substance close to the glass tube, in the role of the
magnetic field lines, the pipe within the two reeds are magnetized to
attract each other in contact, the reed will suck together, so that the

junction point of the connected circuit communication. After the

92

Ml
o

www.keyestudio.com

disappearance of the outer magnetic reed because of their flexibility and

separate, the line is disconnected. Therefore, as a use of the magnetic field

signals to control the line switching device, reed tube can be used as a

sensor for counting the number, spacing, etc., and also are widely used in a

variety of communication devices.

Components

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY
Reed Switch
Modul e*1

3P Dupont
Wire*1

Micro USB
Cab le*1

Connection Diagram

el
@
@
=1
1]
2
=
[2]
:r.

UARTO UARTI
33 %
GND| GND

ap =]

SPI0 sePn

P13
GP12

3 - g

12¢0 Fa}
P21 GPI5

Gp20

Power_OUT

RESET,

fritzing

93

Ml
o

www.keyestudio.com

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 11
* Reed Switch
* http://www.keyestudio.com
from machine import Pin
import time

ReedSensor = Pin(18, Pin.IN)
while True:
value = ReedSensor.value()
print(value, end =" ")
if value == 0:
print("A magnetic field")
else:

print("There is no magnetic field")
time.sleep(0.1)

Test Result

Upload the code and observe the Shell monitor. When the sensor detects a
magnetic field, val is 0 and the red LED of the module lights up, "A
magnetic field" will be displayed; when no magnetic field is detected, val is
1, and the LED on the module goes out, "There is no magnetic field" will be

shown, as shown below.

94

Ml
o

www.keyestudio.com

Shell 3

-

There i
There i

magnetic field
magnetic field
There i magnetic field
There i magnetic field
There is no magnetic field
A magnetic field

4 magnetic field

4 magnetic field

4 magnetic field
3
3

magnetic field
magnetic field

000000 KR

Project 13: PIR Motion Sensor

Overview

Ml
o

www.keyestudio.com

In this kit, there is a Keyestudio PIR motion sensor, which mainly uses an
RE200B-P sensor elements. It is a human body pyroelectric motion sensor
based on pyroelectric effect, which can detect infrared rays emitted by
humans or animals, and the Fresnel lens can make the sensor's detection
range farther and wider.

In the experiment, we determine if there is someone moving nearby by
reading the high and low levels of the S terminal on the module. The

detected results will be displayed on the Shell.

Working Principle

The upper left part is voltage conversion(VCC to 3.3V). The working voltage
of sensors we use is 3.3V, therefore we can’ t use 5V directly. The voltage

conversion circuit is needed.

When no person is detected or no infrared signal is received, and pin 1 of
the sensor outputs low level. At this time, the LED on the module will light
up and the MOS tube Q1 will be connected and the signal terminal S will
detect Low levels.

When one is detected or an infrared signal is received, and pin 1 of the

sensor outputs a high level. Then LED on the module will go off, the MOS

96

£

www.keyestudio.com

tube Q1 is disconnected and the signal terminal S will detect high levels.

XC6206P332MR. (662K) SOT-23

L
-t
ol

Ve 5
o G =z
g ol (5 g
i = c2 i
s |g GHL) & 3V3 =
Z =] 5V
= GND it
GND ~D1
| LED-RED
3V3
R1 5
0603 510R 10K 10K Pl
V3 U1 1 TFT S ;
g —1
Lyt VCCp— 2
2
s . BE Q1 MOS 3
— Header3
GND

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY
PIR Motion

Sensor*1

3P Dupont
Wire*1

Micro USB
Cab | e*1

Connection Diagram

97

Ml
o

www.keyestudio.com

.l
5.

3
A
3
=}
=
3
m

L]
< <
2
@

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 12
* PIR motion
* http://www.keyestudio.com
from machine import Pin

import time

PIR = Pin(19, Pin.IN)
while True:
value = PIR.value()
print(value, end =" ")
if value ==
print("Some body is in this area!")
else:
print("No one!")
time.sleep(0.1)

Test Result

Power_OUT
RESET,

fritzing

Upload the code and open the Shell monitor. When the sensor detects

someone nearby, value is 1, the LED will go off and the monitor will show

98

Ml
o

www.keyestudio.com

“Somebody is in this area!” . On the contrary, the value is 0, the LED will go

up and “0 No one!” will be shown.

| shell3¢ |

0 No one!
0 No one!
0 No one!
0 No one!
1 Some body is in this area!
1 Some body is in this area!
1 Some body is in this area!
1 Some body is in this area!
1 Some body is in this area!
1 Some body is in this area!
1 Some body is in this area!

Project 14: Active Buzzer

Overview

99

Ml
o

www.keyestudio.com

In this kit, it contains an active buzzer module and a power amplifier
module (the principle is equivalent to a passive buzzer). In this experiment,
we control the active buzzer to emit sounds. Since it has its own oscillating

circuit, the buzzer will automatically sound if given large voltage.

Working Principle

01 Active
SR050 E UZzZer

D603 10k

From the schematic diagram, the pin of buzzer is connected to a resistor
R2 and another port is linked with a NPN triode Q1. So, if this triode Q1 is

powered, the buzzer will sound.

If the base electrode of the triode connected to the R1 resistor is a high
level, the triode Q1 will be connected.If the base electrode is pulled down
by the resistor R3, the triode is disconnected.

When we output a high level from the IO port to the triode, the buzzer will

emit sounds; if outputting low levels, the buzzer won’ t emit sounds.

100

Ml
o

www.keyestudio.com

Components

OOOOOOOO00000a0nnnan
g Eﬂ ‘“‘Yﬁ“"“ .=ll' E / n
0O000000000000000000

. : . ABUZZER .

) o Keyestudio _
Raspberry Pi Raspberry Pi Pico Act | 3P Dupont Micro USB
ctive
Pico Board*1 Expansion Board*1 Wire*1 Cable*1
Buzzer*1

Connection Diagram

UARTO UARTI
3v3 V3

GND GND

H3ZzZNng-v
ONIHSVYM
H3il4dv
avas
JA0NW3Y

GND G

12€0

SND *
cP21 GP1s
GP20 .
V3 E e
o

fritzing

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 13

* Active buzzer

* http://www.keyestudio.com

from machine import Pin
import time

buzzer = Pin(20, Pin.OUT)
while True:

101

£

www.keyestudio.com

buzzer.value(1)
time.sleep(1)
buzzer.value(0)
time.sleep(1)

Code Explanation
In the experiment, we set the pin number to 20. When setting to high, the
active buzzer will beep; when setting to low, the active buzzer will stop

emitting sounds

Test Result

Upload the code and power on. The active buzzer will emit sound for 1

second, and stop for 1 second.

102

£

www.keyestudio.com

Project 15: 8002b Audio Power Amplifier

Overview

In this kit, there is a Keyestudio 8002b audio power amplifier. The main
components of this module are an adjustable potentiometer, a speaker,
and an audio amplifier chip;

The main function of this module is: it can amplify the output audio signal,
with a magnification of 8.5 times, and play sound or music through the
built-in low-power speaker, as an external amplifying device for some
music playing equipment.

In the experiment, we used the 8002b power amplifier speaker module to

emit sounds of various frequencies.

Working Principle

103

Ml
o

www.keyestudio.com

In fact, it is similar to a passive buzzer. The active buzzer has its own
oscillation source.Yet, the passive buzzer does not have internal oscillation.
When controlling the circuit, we need to input square waves of different
frequencies to the positive pole of the component and ground the
negative pole to control the buzzer to chime sounds of different

frequencies.
J1

GND ||
™
| wee |k
I Control IN
—L— Cl J_ I_Ll — J
Control IN = == ShtD | VO2 .
i GND 1IUF | i = el ; vee , BEEL
_RP-3386P C2 Rl — IN+ VDD — " Io
= | — IN- Vo1 e T
5 BEE
7 0603 20K —
= GND
GND R2
| (E— |
0603 20K
J1
GND
2 T“I'GI\D
I Control IN
i | | B el |
Control TN e = ShtD Vo2 >
RP1 GND 1UF | '_; BYP CND g YCC 2 BEE1
RP-3386P C2 Ri — IN+ VDD HL " Io
= 1T |_?| IN- VOl — —UF B
\UF 0603 20K BNTIES
= GND
GND R2
| ——
| S|

0603 20K

104

Ml
o

www.keyestudio.com

Components

e
g gﬂ keygémio L] =ll. E.

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio
8002b Audio
Power
Amplifier*1

3P Dupont Wire*1

Micro USB
Cable*1

Connection Diagram

layeadg

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 14

* Passive buzzer

* http://www.keyestudio.com

from machine import Pin, PWM

5V GND

3
G I
|

. -8

r =
" I
|

Power_OUT

RESET,

fritzing

105

Ml
o

www.keyestudio.com

from time import sleep
buzzer = PWM(Pin(21))

buzzer.duty_u16(1000)

buzzer.freq(523)#DO
sleep(0.5)
buzzer.freq(586)#RE
sleep(0.5)
buzzer.freq(658)#Ml
sleep(0.5)
buzzer.freq(697)#FA
sleep(0.5)
buzzer.freq(783)#SO
sleep(0.5)
buzzer.freq(879)#LA
sleep(0.5)
buzzer.freq(987)#SI
sleep(0.5)
buzzer.duty_u16(0)

Code Explanation

1. In this experiment, we use the PWM class of the machine module, buzzer
= PWM(Pin(21)) to create an instance of the PWM class, and the buzzer pin
is connected to GP21.

The buzzer.duty u16(1000): set the duty cycle, and the duty cycle is
1000/65535. The larger the value, the louder the buzzer. When set to 0, the
buzzer does not emit sound. buzzer.freq() is the frequency setting

method.

106

£

www.keyestudio.com

In the experiment, we use the PWM on the machine module. buzzer =

PWM(Pin(21))

Test Result

Upload the test code successfully and power on. The power amplifier
module will emit the sound of the corresponding frequency corresponding
to the beat:

DO for 0.5s, Re for 0.5s, Mi for 0.5s, Fa for 0.5s, So for 0.5s, La 0.5s and Si for
0.5s

107

Ml
o

www.keyestudio.com

Project 16: 130 Motor

Description

The 130 motor driver module is compatible with servo motors, which has
high efficiency and good quality fans.

It adopts a HR1124S motor control chip. HR1124S is a single-channel
H-bridge driver chip for DC motor solutions. In addition, this chip has low
standby current and low quiescent current.

The module is compatible with various single-chip control boards. In the
experiment, we can control the rotation direction of the motor by
outputting the voltage directions of the two signal terminals IN+ and IN-

to make the motor rotate.

108

Ml
o

www.keyestudio.com

Working Principle

The chip is used to help drive the motor.

We can’ t drive it with a triode or an IO port due to its a large current of
need. It is very simple to make the motor rotate. Just apply voltage to both
ends of the motor. The direction of the motor is different in different
voltage directions. Within the rated voltage, the higher the voltage, the
faster the motor rotates; on the contrary, the lower the voltage, the slower
the motor rotates, or even unable to rotate.

So we can use the PWM port to control the speed of the motor. We haven't

learned PWM here, so we use the high and low levels to control the motor

first.
gy LI
I S —,_L
¥ NC/VOUTA | -] LT
IN- 2 | 1n- PGND |—L = s
Nt |3 e 4| = MOTOR
In+ AGND T :
+1 VvDDOUTB = o ——
[| I 100nf j—'
____ YX-75VI8HR11248
cl | [c2 C3
22uf [100nf __| 100nf

109

Ml
o

www.keyestudio.com

Required Components

- | S

Raspberry Pi Raspberry Pi Pico keyestudio DIY 4P Dupont)
])] Micro USB Cab | e*1
Pico Board*1 Expansion Board*1 130 Motor*1 Wire*1

Note: the motor is separated with its fan, you need to assemble it first.

Connection Diagram

1030W ue4 HA0ET

sPI0 B

Power_OuUT
RESET,

fritzing

110

Ml
o

www.keyestudio.com

Test Code
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 15
* 130-DC Motor
* http:/ /www.keyestudio.com
from machine import Pin

import time

#two pins of the motor
INA = Pin(14, Pin.OUT)

INB = Pin(15, Pin.OUT)

while True:
#turn anticlockwise for 2s
INA.value(1)
INB.value(0)
time.sleep(2)
#stop 1s

INA.value(0)

111

Ml
o

www.keyestudio.com

INB.value(0)
time.sleep(1)

#turn clockwise for 2s
INA.value(0)
INB.value(1)
time.sleep(2)

#stop 1s
INA.value(0)
INB.value(0)

time.sleep(1)

Code Explanation
Set pins to 14 and 15, when the pin 14 outputs high levels and the pin 15 outputs
low levels, the motor will rotate counterclockwise; when both pins are set to low,

the motor stops rotating.

Test Result

Wire up, upload test code and test the 130 motor, the fan will rotate
counterclockwise for 2 seconds, stop for 1 second; and rotate clockwise for

2 seconds and stop for 1 second; cycle alternately.

112

pv4
o

www.keyestudio.com

ta R LA AARARRRR AR E S

g Russberr:
ol
=
%)

0

& OO

113

£

www.keyestudio.com

Project 17: RGB Module

Overview

Among these modules is a RGB module. It adopts a F10-full color RGB
foggy common cathode LED. We connect the RGB module to the PWM
port of MCU and the other pin to GND(for common anode RGB, the rest
pin will be connected to VCC). So what is PWM?

PWM is a means of controlling the analog output via digital means. Digital
control is used to generate square waves with different duty cycles (a signal

that constantly switches between high and low levels) to control the analog

114

Ml
o

www.keyestudio.com

output.In general, the input voltages of ports are OV and 5V. What if the 3V
is required? Or a switch among 1V, 3V and 3.5V? We cannot change

resistors constantly. For this reason, we resort to PWM.

Voltage

Time Duty Cycle: 05

For Arduino digital port voltage outputs, there are only LOW and HIGH
levels, which correspond to the voltage outputs of OV and 5V respectively.
You can define LOW as “0” and HIGH as “1' , and let the Arduino output
five hundred ‘0" or “1" within 1 second. If output five hundred ‘1" , that
is 5V; if all of whichis ‘0" ,thatis OV; if output 250 01 pattern, that is 2.5V.
This process can be likened to showing a movie. The movie we watch are
not completely continuous. Actually, it generates 25 pictures per second,
which cannot be told by human eyes. Therefore, we mistake it as a
continuous process. PWM works in the same way. To output different
voltages, we need to control the ratio of 0 and 1. The more ‘0" or ‘1’

output per unit time, the more accurate the control.

115

£

www.keyestudio.com

Working Principle

For our experiment, we will control the RGB module to display different

colors through three PWM values.

Components

Common cathode RGB

GND

" . ——150R N
: s L=
: |I: exp I—I:ﬁgm = g

] i =

—200R. |
= Terminal

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio
Gommon Cathode
RGB Module *1

4P Dupont
Wire*1

Micro USB
Cab le*1

116

Ml
o

www.keyestudio.com

Connection Diagram

000UOOO0O

SWCLK
GND

SWDIO g
2
3
4

RGB LED

fritzing

Test Code 1.
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 16.1
* RGB
* http:/ /www.keyestudio.com
from machine import Pin

from time import sleep

red = Pin(9, Pin.OUT)
green = Pin(10, Pin.OUT)

blue = Pin(11, Pin.OUT)

117

Ml
o

www.keyestudio.com

while 1:

red.value(1)
green.value(0)
blue.value(0)
sleep(1)
red.value(0)
green.value(1)
blue.value(0)
sleep(1)
red.value(0)
green.value(0)
blue.value(1)

sleep(1)

Code 2:

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 16.2

* RGB

* http:/ /www.keyestudio.com

118

Ml
o

www.keyestudio.com

from machine import Pin, PWM
from time import sleep

pwm_r = PWM(Pin(9))
pwm_g = PWM(Pin(10))

pwm_b = PWM(Pin(11))

pwm_r.freq(1000)
pwm_g.freq(1000)
pwm_b.freq(1000)

def light(red, green, blue):
pwm_r.duty_ul6(red)
pwm_g.duty_ul6(green)
pwm_b.duty_ul6(blue)

while 1:
light(65535, 0, 0)#red
sleep(1)
light(65535, 25088, 0)#orange
sleep(1)
light(65535, 65535, 0)#yellow

sleep(1)

119

Ml
o

www.keyestudio.com

light(0, 65535, 0)#green

sleep(1)

light(0, 0, 65535)#blue

sleep(1)

light(0, 65535, 65535)#cyanogen
sleep(1)

light(41216, 8448, 61696)#purple

sleep(1)

Explanation

Code 1:

In the code 1, red, green and blue represent the red, green and blue ports.
According to the wiring diagram, we have connected to GP9, GP10 and
GP11,thensetto 9, 10 and 11.Use the function .value(1) to set three LEDs.If
the corresponding digital port is high level, and the corresponding LED will

be on.

The RGB module displays red color for 1 second, green color for 1 second,

and blue color for 1 second, cycle alternately.

120

Ml
o

www.keyestudio.com

Code 2.

1. In the code 2, we use PWM output, and set frequency
to .freq(1000), .duty u16()
The number in the brackets means the proportion of the color of LED. The

larger the duty cycle data we set, the larger the proportion of the color.

(Note: the duty cycle above we set is maximum to .duty u16(65535),
this value is 256*256 - 1, thatis 0~65535. As for the following the

RGB color table, you only need to make values below multiply by 256

In the experiment, we adjust the ratio of red, green and blue colors on the
RGB LED by setting the corresponding values, so as to control the RGB LED
to display corresponding colors. So theoretically, there are 256*256*256
colors that can be set (for details, please refer to the common RGB color

table below)

RGB Color Chart

121

£

www.keyestudio.com

Hex Code|Decimal Code L
Color Hamae Lolor Name
RGB RGH

Rads
IndianRed 205,92,92

Hex Code|Decimal Coda

RGH

173,255 47

1272550

I 260,128,114
: |E996TA |233.150,122

LightSalrron FFADTA |255,160,122

Crimson DC143C 220,20,60

152.251, 152

Riad FFooDD 25500

144 236,144

FireBnick Ba22xr AT8.34 3

DarkRed EBOORO 13900
Pinks
Pink 255,192 203 SeaGreen
LLightPink 265.182.193 ForostGraen
fotPink |FF63B4 | 255,105,180 Graen DOB0GO

CaepHink LK ‘.EEr.'_":_EEII 147 Dk Groen Q0EA00

MeveDrab

60,179,113
45,139,87
,139,34
0,128,0

0100 0

10714235

Clear BOE000
Dk OlrmGeaen RERDAT

1281280
#6107 47

DiagkCyran O0EBER
Teal 00B0S0

Yellows BluasiCyans

Gald FFOT00 §2556.2150

‘32178170
0139139
0.428.128

pe=scherne. cfmlcolarMame=ForestGreen 25510

122

pv4
o

www.keyestudio.com

omsitk FFFEDC |255.248 220
lanchedAimond|FFEBCD 255,235 205
Bisque FFE4C4 25522819
avapiWhite [FFDEAD (285 222 173
FEDEB3 245222179

| S-S, -

DarkGoldennod
Feru
Chocolate

= addianown
Slenna

Srowem

Bidn0H
COBS3IF
DMIE
aB4513
Al 220

el =]

FFFFFF

188,143,143

184,134, 11

205,133,563

21010530
139 89 149
10,82 45

165,42 .42

255 255 2556

FFEAFA

265,250,250

FOFFFQ

240,255,240

FSFFFA

245 255 250

FOFFFF

240,255 255

FOFFF

240 248 255

GhaostWWhite

FEFEFF

248 248 255

teSmoke

FSFSFES

245 245 245

Ml
o

www.keyestudio.com

Test Result

Upload the code 1, the RGB on the module will show red, green and blue
color with an interval of 1s.
Upload the code 2, the RGB on the module will show red, orange, yellow,

green, cyan-blue, blue, purple and white color with an interval of 1s.

124

Ml
o

www.keyestudio.com

Project 18: Potentiometer

Overview

The following we will introduce is the Keyestudio rotary potentiometer
which is an analog sensor.

The digital 10 ports can read the voltage value between 0 and 3.3V and the
module only outputs high levels. However, the analog sensor can read the
voltage value through ADC analog ports(GP26~GP28) on the pico board.

In the experiment, we will display the test results on the Shell.

125

£

www.keyestudio.com

Working Principle

It uses a 10K adjustable resistor. We can change the resistance by rotating

the potentiometer. The signal S can detect the voltage changes(0-3.3V)

which are analog quantity

Components

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio
Rotary

Potentiometer*1

3P Dupont
Wire*1

Micro USB
Cab le*1

126

Ml
o

www.keyestudio.com

Connection Diagram

u»nm UART1

-
Q
=
[
3
=
o
=)
[
2
@
o

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 17
* Rotary potentiometer
* http://www.keyestudio.com
import machine
import utime

potentiometer = machine.ADC(26)
while True:
pot_value = potentiometer.read_u16()

print(pot_value)
utime.sleep(0.1)

Code Explanation

In the experiment, we will create ADC example, connect GP26 ADC(26).

127

Ml
o

www.keyestudio.com

That means ADC(0).

.read_ul16() is used to read analog values, in the range of 0~65535.

potentiometer.read u16() means that reading the analog value of

ADC(26) pin then assign it to the variable pot value

1. utime.sleep() is the delay function which works as same as the

function time.sleep()

Test Result

Run the test code, observe the analog value in the Shell monitor. In the
experiment , run the test code then observe the analog value. Rotate the knob of
the potentiometer clockwise to increase the analog value. On the contrary, the
analog value will be reduced by rotating the potentiometer anticlockwise. The

value is in the range of 0-65535.

Code Explanation

analogvVal means analog value. The rotary potentiometer outputs analog
values(0~4095), therefore, we set pins to analog ports. For example, we connect

to ADCO(GP26)

128

Ml
o

www.keyestudio.com

analogRead(pin): read the value of the specified analog pin. The pico board
contains a multi-channel, 12-bit converter. This means that it will map the
input voltage between 0 and the working voltage (5V or 3.3V) to an
integer value between 0 and 4095. For example, this will produce a

resolution among readings: 3.3V/4096 stands for 0.0008V per unit.

Pin: the name of analog input pin. GP26 is connected to GP28, GP29

measures VSYS voltage and ADC4 measures the internal temperature.

Test Result

Upload the code power up by a USB cable, open the serial monitor and set
baud rate to 9600.

In the experiment, rotate the potentiometer clockwise, the analog value
increases, and turn the potentiometer counterclockwise, the analog value

decreases(0-4095), as shown in the figure below.

129

Ml
o

www.keyestudio.com

Jajswonueiog

[Shell 3¢ |

65535 o
65535
65535
65535
63503
61422
59566
5E366
57341
55581
52872

130

Ml
o

www.keyestudio.com

Project 19: Steam Sensor

ﬁescription

This is a commonly used steam sensor. Its principle is to detect the amount
of water by bare printed parallel lines on the circuit board. The more the
water is, the more wires will be connected. As the conductive contact area
increases, the output voltage will gradually rise. It can detect water vapor in
the air as well. The steam sensor can be used as a rain water detector and
level switch. When the humidity on the sensor surface surges, the output
voltage will increase.

In the experiment, we connect the signal terminal (S terminal) of the sensor to
the analog port of the pico development board. The analog value detected will be

displayed on the serial monitor.

131

Ml
o

www.keyestudio.com

This is a DIY electronic building block water drop sensor. It is an analog
(digital) input module, also called rain, rain sensor. It can be used to
monitor various weather conditions, detect whether it is raining and the
amount of rain, convert it into digital signal (DO) and analog signal (AO)
output, and is widely used in Arduino robot kits, raindrops, rain sensors,
and can be used for various It can monitor various weather conditions, and
convert it into digital signal and AO output, and can also be used for
automobile automatic wiper system, intelligent lighting system and
intelligent sunroof system. In the experiment, we input the sensor signal
terminal (S terminal) to the analog port of the pico development board,
sense the change of the analog value, and display the corresponding

analog value on the shell.

Its principle is to detect the amount of water through the exposed printed parallel
lines on the circuit board. The more water there is, the more wires will be
connected, and the conductive contact area increases. The voltage output by pin
2 will gradually increase. The larger the analog value detected by the signal

terminal S is.

It can also detect steam in the air. Two position holes are used to install on the

other devices

132

£

www.keyestudio.com

C

b

i e
0805 100NF
R
= ||- GND

[FER ST

steam sensor

Required Components

Raspberry Pi Raspberry Pi Pico | Keyestudio DIY 3P Dupont Micro USB
Pico Board*1 Expansion Board*1 | Steam Sensor *1 Wire*1 Cable*1

Connection Diagram

133

Ml
o

www.keyestudio.com

I
@
o
o
3
w
o
=
wn
°
e

fritzing

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 18

* Steam sensor

* http://www.keyestudio.com

import machine
import utime

sensor = machine.ADC(26)#ADCO
while True:
value = sensor.read_u16()

print(value)
utime.sleep(0.1)

Test Result

Wire up, run the test code, then the output analog value is displayed in the
shell. The more water volume, the greater the output voltage and the

analog value, as shown below.

134

Ml
o

www.keyestudio.com

Shell 3¢ |

AR)

1
1152
928
944
49051
49067
48027
48443
48283

1

Project 20: Sound Sensor

Overview

135

Ml
o

www.keyestudio.com

In this kit, there is a sound sensor. In the experiment, we test the analog
value corresponding to the sound level in the current environment with it.

The louder the sound, the larger the analog value;

Working Principle

1206 10UF 16V A-typel0% 1206 10UF 16V A-typel07
o | . Cé
il i _]I IJ__|||.GT\'D
VCC ' '
- I
= (R i i . VCC
= 7] i VEC
c2 G‘_\'D.Il 5 O g VeC 2
__ i ;: 3 _.J o603 4708
Z s 0603 100NF [=5 s
= e 2 e 5
= = LM386 D603 100NF ::EE:D“Y o
o [Microphone GND o = RO CrEeT
4 == GND
s, 0603 100NEF GND
GND
Rotary potentiometer
1 EP1l -
!_|;|||- GND w2
Dl s vCC ;
IN4143 T4 |_
ol GND
GND

It uses a high-sensitive microphone component and an LM386 chip.

We build the circuit with the LM386 chip and amplify the sound through
the high-sensitive microphone. In addition, we can adjust the sound
volume by the potentiometer. Rotate it clockwise, the sound will get

louder.

136

Ml
o

www.keyestudio.com

Components

Microphone

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY
Sound Sensor*1

3P Dupont Wire*1

Micro USB
Cab |l e*1

Connection Diagram

uunm UARTI

P21

GP20

3vs

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 19
* MicroPhone

* http://www.keyestudio.com

auoydoidi

fritzing

137

Ml
o

www.keyestudio.com

import machine
import utime

MicroPhone = machine.ADC(27)
while True:
value = MicroPhone.read_u16()

print(value)
utime.sleep(0.1)

Test Result
Upload the code and observe the analog value on the Shell monitor.
Rotate clockwise the potentiometer and speak at the MIC. Then you can

see the analog value get larger, as shown below

138

£

www.keyestudio.com

| shell3¢ |
| se0 -

464

Project 21: Photoresistor

Structure of a photoresistor

_ Electrode
Resin

P
Substrate

CDS

Description

In this kit, there is a photoresistor which consists of photosensitive

resistance elements. Its resistance changes with the light intensity. Also, it

139

Ml
o

www.keyestudio.com

converts the resistance change into a voltage change through the
characteristic of the photosensitive resistive element. When wiring it up, we
interface its signal terminal (S terminal) with the analog port of pico, so as
to sense the change of the analog value, and display the corresponding
analog value in the shell.

Working Principle

If there is no light, the resistance is 0.2MQ and the detected voltage at the
terminal 2 is close to 0. When the light intensity increases, the resistance of

photoresistor and detected voltage will diminish.

5V

Photoresistor 0805

Ny ¢/ . PH
9
71)
< j A6
2 —]vee =C2 RI
] 0603 100NF 10K
L e
GND | -

GND

GND

Components

140

2l
o

www.keyestudio.com

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY

Photoresistor*1

3P Dupont
Wire*1

Micro USB Cab | e*1

Connection Diagram

uAnm UARTI

Onﬂﬂﬂ,ﬂﬂﬂﬂﬁ“"ﬂﬂf

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 20

* Photoresistance

* http://www.keyestudio.com

import machine
import utime

photoresistance = machine.ADC(28)

l1220304d

fritzing

141

Ml
o

www.keyestudio.com

while True:
value = photoresistance.read_u16()
print(value)
utime.sleep(0.1)

Test Result
Wire up, run the test code, observe the Shell monitor. Then you will view
the analog value of the light intensity. The brighter the light, the greater

the analog value

Shell 3
1oe%
1744
1792
1728
1712
1664
1600
3360
18596
30023
35608
40821
45185
44106

w

142

Ml
o

www.keyestudio.com

Project 22: NTC-MF52AT Thermistor

Overview

In the experiment, there is a NTC-MF52AT analog thermistor. We connect
its signal terminal to the analog port of the Raspberry Pi Pico Board and

read the corresponding analog value.

We can use analog values to calculate the temperature of the current

143

Ml
o

www.keyestudio.com

environment through specific formulas. Since the temperature calculation
formula is more complicated, we only read the corresponding analog

value.

Working Principle

Pl 1 g

Analog temperature

4.7K 1
1 0603 100NF

This module mainly uses NTC-MF52AT thermistor elements. The
NTC-MF52AT thermistor element can sense the changes of the
surrounding environment temperature. Resistance changes with the
temperature, causing the voltage of the signal terminal S to change.

This sensor uses the characteristics of NTC-MF52AT thermistor element to

convert resistance changes into voltage changes.

Components

144

Ml
o

www.keyestudio.com

a T -
”ﬂ Lo E — = i , n
DOOOO0ODO00000000000

I . Temperature

) o Keyestudio
Raspberry Pi Raspberry Pi Pico 3P Dupont)
)) NTC-MF52AT] Micro USB Cab | e*1
Pico Board*1 Expansion Board*1) Wire*1
Thermistor*1

Connection Diagram

UARTO UART]

(‘PBE g

5PI0 sPil
PS5 GP13 lx:[l\nl Pi

- &
P4 cpiz

Pico ® 2020 QOTSEL @ @
' i Y i
GP3 GP1) GND
GP2 cP10 = & & SWDIQ]
g -
3v 3v3 L
.

1

12c0

5V_GND

GP15

GPl4 . _ o= ‘
[2]) o =
=3 2 3 d - -

fritzing

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 21
* Temperature sensor
* http://www.keyestudio.com
import machine
import utime

145

Ml
o

www.keyestudio.com

import math

sensor = machine.ADC(0)

while True:
temp = sensor.read_u16()
print("Temperature ADC: ",end="")
print(temp)
utime.sleep(0.1)

Test Result
Upload the code and observe the Shell monitor. The higher the

temperature, the larger the analog value.

USRBTO UARTL

g
3 w
[.
50} : A 4 -

-]
Temperature O

146

pv4
o

www.keyestudio.com

Shel X |
lemprerdlLure Al . £013% -
Temperature ADC: 26166
Temperature ADC: 26182
Temperature ADC: 26158
Temperature ADC: 26158
Temperature ADC: 26262
Temperature ADC: 26262
Temperature ADC: 26262
Temperature ADC: 26294
Temperature ADC: 26278
Temperature ADC: 26278
Temperature ADC: 26254
Temperature ADC: 26254
Temperature ADC: 26310

Project 23: Thin-film Pressure Sensor

Overview

In this kit, there is a Keyestudio thin-film pressure sensor. The thin-film
pressure sensor composed of a new type of nano pressure-sensitive
material and a comfortable ultra-thin film substrate, has waterproof and

147

Ml
o

www.keyestudio.com

pressure-sensitive functions.
In the experiment, we determine the pressure by collecting the analog
signal on the S end of the module. The smaller the analog value, the

greater the pressure; and the displayed results will shown on the Shell.

Working Principle

When the sensor is pressed by external forces, the resistance value of
sensor will vary. We convert the pressure signals detected by the sensor
into the electric signals through a circuit. Then we can obtain the pressure

changes by detecting voltage signal changes.

vCeC
3
il 510K 1651 Ve
1 & i N+ VCC J
; = GND g
o [papE== = E
GND GND LM321
Rl B2
| = 1
1K 10K

148

Ml
o

www.keyestudio.com

Components

DOOOOOODODOOoOnonoonn
a Eﬂ - =
DODOOOODOOOOOODoooonn

Raspberry Pi Raspberry Pi Pico
Pico Board*1 Expansion Board*1

Keyestudio
Thin—film Pressure

Sensor*1

3P Dupont
Wire*1

Micro USB
Cab le*1

Connection Diagram

UARTO UARTI

12c0
cp2l cP1s

cpP20 cP4

GND

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 22

* Film pressure sensor

o
El
B
@
]
e
£
£l

fritzing

149

£

www.keyestudio.com

* http://www.keyestudio.com

import machine

import utime

film = machine.ADC(1)
while True:
value = film.read_u16()
print(value)
utime.sleep(0.1)

Test Result

Upload the code and observe the Shell monitor. When the thin-film is pressed

by fingers, the analog value will decrease, as shown below;

150

£

www.keyestudio.com

Project 24: Flame Sensor

Description

In daily life, it is often seen that a fire broke out without any precaution. It will
cause great economic and human loss. So how can we avoid this situation? Right,
install a flame sensor and a speaker in those places that easily break out a fire.
When the flame sensor detects a fire, the speaker will alarm people quickly to put
out the fire.

So in this project, you will learn how to use a flame sensor and an active buzzer
module to simulate the fire alarm system.

151

Ml
o

www.keyestudio.com

Working Principle

This flame sensor can be used to detect fire or other light sources with
wavelength stands at 760nm ~ 1100nm. Its detection angle is about 60°. You can
rotate the potentiometer on the sensor to control its sensitivity. Adjust the
potentiometer to make the LED at the critical point between on and off state. The
sensitivity is the best.

From the below figure, power up. When detecting fire, the digital pin outputs low
levels, the red LED2 will light up first, the digital signal terminal DO outputs a low
level, and the red LED1 will light up. The stronger the external infrared light, the

smaller the value; the weaker the infrared light, the larger the value.

VCC VCC
—| vRi R1
Adjustable e
potentiometer 10K § 2803 4.7k oo
Yy
3 DD| 1 " T
e 2 | @ 1 R2
AD 3] C1 0603 10k
4 3
o 0603 100MF
= o
GND BA103%3F S0OIC-3-130mil
GND
YCC
NCC
3 AD

.
__Jos03 1K R4 '
0603 470R 2 i
J? ~LEDI — 0603 100NE

AQ o 0603 Red —

11 D0 ~LED2 2 Flame sensor
a] =
3 I'\'EC 0603 Red 1
1 — e
] I = GND
FI = oND
GND

152

Ml
o

www.keyestudio.com

Required Components

é§ - ; . E >
E Eg 2o b i : E L ; n

Raspberry Pi Raspberry Pi Pico keyestudio DIY 4P Dupont)
))] Micro USB Cable*1
Pico Board*1 Expansion Board*1 Flame Sensor*1 Wire*1

Connection Diagram

[UARTO UART1

-
3
[+
0000000000000,

)

Power_OUT = _r/

fritzing

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 23
* Flame sensor
* http://www.keyestudio.com
import machine
import utime

flame_D = machine.Pin(22, machine.Pin.IN)
flame_A = machine.ADC(26)

153

£

www.keyestudio.com

while True:
digitalval = flame_D.value()
analogVal = flame_A.read_u16()
print(digitalval,end =" ")
print(analogVal)
utime.sleep(0.1)

Code Explanation
Two pins we use are defined as 22 and 26 according to the wiring-up

diagram, and print digital signals and analog signals respectively.

Test Result

Upload the test code and power up, LED2 is on and LED1 is off. Open the
monitor and set baud rate to 9600. When fire is detected, LED1 will be on.
the digital value will change from 1 to 0, and the analog value will become

smaller, as shown in the figure below.

154

£

www.keyestudio.com

| Shell 3¢ |
(et RGIN =
65535
65535
3152
2544
2864
2960
2544
2088
2992

L T T e o s Y s s T s

Project 25: MQ-2 Gas Sensor

Description

This analog gas sensor - MQ2 is used in gas leakage detecting equipment
in consumer electronics and industrial markets.
This sensor is suitable for detecting LPG, I-butane, propane, methane,

alcohol, Hydrogen and smoke. It has high sensitivity and quick response.

155

Ml
o

www.keyestudio.com

In addition, the sensitivity can be adjusted by rotating the potentiometer.

In the experiment, we read the analog value at the AO port and the DO port

to determine the content of gas.

Working Principle

VCC
&5
_Jos03 1k
. ~LED2
AD 0603 Red
4—a o
3 | DO
2 —]vce
1
PJ4 :I_—
GND
VCC
R4
0603 470R
~LEDI
| 0603 Red
GND

WVCC

—} VEI

vCC

Adjustable
potentiometer 10K

3

AD

Rl
0603 10k

O

AD

Ul

0603 1,35k

4

0603 100N

-

.,||_.

2
J

Gas sensor

The greater the concentration of smoke, the greater the conductivity, the

lower the output resistance, the greater the output analog signal.

When in use, the A0 terminal reads the analog value of the corresponding

156

Ml
o

www.keyestudio.com

gas; the DO terminal is connected to an LM393 chip (voltage comparator),

we can adjust the alarm threshold of the measured gas through the

potentiometer, and output the digital value at DO. When the measured gas

content exceeds the critical point, the DO terminal outputs a low level;

when the measured gas content does not exceed the critical point, the DO

terminal outputs a high level.

Required Components

Raspberry Pi
Pico Board*1

Raspberry Pi Pico
Expansion Board*1

keyestudio
DIY Analog
Gas Sensor*1

4P Dupont
Wire*1

Micro USB
Cable*1

Connection Diagram

157

Ml
o

www.keyestudio.com

UARTO UART1

o o a oo a0 a
3v3 - -
. -
[
ooooowmwoow i

pv 4

P21 GP15
GPz0 P14
—

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 24
* Gas sensor
* http://www.keyestudio.com
import machine
import utime

mg2_D = machine.Pin(22, machine.Pin.IN)
mg2_A = machine.ADC(26)

while True:
digitalVal = mg2_D.value()
analogVal = mq2_A.read_u16()

print(digitalval,end =" ")
print(analogVal,end =" ")
if digitalval ==

print("Exceeding")
else:

print("Normal")
utime.sleep(0.1)

Test Result

158

£

www.keyestudio.com

Run the test code, the yellow-green LED on the module lights up, observe
the shell, and display the corresponding data and characters. In the
experiment, we can see that when the simulated value of the test is less
than or equal to 45627, the gas content does not exceed the critical point,
and the red LED is off; when the simulated value of the test is greater than
or equal to 45627, the gas content exceeds the critical point, and the red
LED lights up. ; Then it means that the analog value of the critical point of
gas content is between 43018-45627, we can adjust the critical point by

rotating the potentiometer on the sensor.

| Shell 3¢

30007 Normal
35544 Normal
39857 Normal
43018 Normal
45627 Exceeding
47547 Exceeding
48091 Exceeding
45756 Exceeding
5031¢ Exceeding

[

L s T e s L e T S

159

Ml
o

www.keyestudio.com

Project 26: MQ-3 Alcohol Sensor

Description

In this kit, there is a MQ-3 alcohol sensor, which uses the gas-sensing
material is tin dioxide (SnO2) which has a low conductivity in clean air.
When there is alcohol vapor in the environment where the sensor is
located, the conductivity of the sensor increases with the increase of the
alcohol gas concentration in the air. The change in conductivity can be
converted into an output signal corresponding to the gas concentration
using a simple circuit.

In the experiment, we read the analog value at the A0 end of the sensor
and the digital value at the DO end to judge the content of alcohol vapor in

the air and whether they exceed the standard.

160

Ml
o

www.keyestudio.com

Working Principle

0603 100NF

5

R4
0603 470R AQD

~LED!
N LR

0603 1.5k

2

At a certain temperature, the conductivity changes with the composition of
the ambient gas. When in use, A0 terminal reads the analog value
corresponding to alcohol vapor; DO terminal is connected to an LM393
chip (comparator), we can adjust and measure the alcohol vapor alarm
threshold through the potentiometer, and output the digital value at DO.
When the measured alcohol vapor content exceeds the critical point, the
DO terminal outputs a low level; when the measured alcohol vapor content

does not exceed the critical point, the DO terminal outputs a high level.

Components Required

161

Ml
o

www.keyestudio.com

. o keyestudio
Raspberry Pi Raspberry Pi Pico
)) Alcohol
Pico Board*1 Expansion Board*1
Sensor*1

Dupont
WiredP*1

Micro USB Cab | e*1

Connection Diagram

UARTO UART1

C
E E QQDWQQQMWQQﬂ o

spIo sen
c,p|3 t\ aspberry

co.’. ap12

GP3 GPT

GP2 GP10

3vs 3V3)

GpP21 GP1S
GP20 GP14
GND

2 2 3 2 @

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 26
* Alcohol Senso
* http://www.keyestudio.com
import machine

import utime

mq2_D = machine.Pin(22, machine.Pin.IN)

pd
(1)
o
=
9

fritzing

162

Ml
o

www.keyestudio.com

mg2_A = machine.ADC(26)

while True:
digitalVal = mg2_D.value()
analogVal = mq2_A.read_u16()

print(digitalval,end =" ")
print(analogVal,end =" ")
if digitalval == 0:

print("Exceeding")
else:
print("Normal")

utime.sleep(0.1)

Test Result

Run the test code, the red LED on the module lights up, and the shell
displays the corresponding data and characters. In the experiment, when
the tested simulated value is less than or equal to 45387, the gas content
does not exceed the critical point, and the yellow-green LED will be off;
when the tested simulated value is greater than or equal to 45419, the gas
content exceeds the critical point, and the yellow-green LED will light up;
That means the critical point is in the range of 45387-45419. We can adjust

the critical point by rotating the potentiometer on the sensor.

163

2l
i

www.keyestudio.com

44954 HNormal =
45131 Normal

45275 Normal

45387 Normal

45413 Exceeding

45573 Exceeding

45973 Exceeding

45883 Exceeding

45851 Exceeding

COoOD0D O M =

Project 27: Five-key AD Button Module

164

Ml
o

www.keyestudio.com

Description

When we talked about analog and digital sensors earlier, we talked about
the single-channel key module. When we press the key, it outputs a low
level, and when we release the key, it outputs a high level. We can only
read these two digital signals. In fact, the key module ADC acquisition can
also be performed. In this kit, a DIY electronic building block five-way AD
button module is included.

We can judge which key is pressed through the analog value. In the

experiment, we print out the key press information in the shell.

GXD
= It's S00 actually
= . Prass SW1.5V R Prass SWZ:4V
5 VT =
: iy A e (]
| h . 0603 S10R. | | .
Header 3 C1 L | '
e I I 3 IR
o ||l e—— — SR
'-"-“T"||I 0603 2k e SELECT OUT LEF] RO+RI= 1333
Rl R
0607 B2IR
DOWN RIGHT UP
3 1 1 1
I 3 I3 ¥)
, RS . R4 -
] j T L = 1 g 4 - L 3 i 4
3 4 [}]))
S0 03 4. 15K SW4 p SW3
RI+RI-R4+RI= 8000 RI+R3+R4= 1000
=tk AT m .
Prass SWa:1y Prass SW4:2V Prass SW2:3v

165

Ml
o

www.keyestudio.com

Working Principle

Let’s look at the schematic diagram, when we do not press the key, the OUT of S
output to the signal end is pulled down by R1. At this time, we read the low level
0V. When we press the key SW1, the OUT of the output to the signal end S is
directly connected to the VCC. At this time, we read the high level 3.3V(the figure
is marked as a 10-bit ADC(0~1023) and VCC is 5V. The principle is the same. Here
we have VCC of 3.3V and ADC mapped to 16 bits), which is an analog value of
65535.

Next,when we press the key SW2, the OUT terminal voltage of the signal we read
is the voltage between R2 and R1, namely VCC*R1/(R2+R1), which is about

2.64V, and the analog value is about 52219.

When we press the key SW3, the OUT terminal voltage of the signal we read is
the voltage between R2+R3 and R1, namely VCC*R1/(R3+R2+R1), which is

about 1.99V, and the analog value is about 39360.

When we press the key SW4, the OUT terminal voltage of the signal we read is
the voltage between R2+R3+R4 and R1, namely VCC*R1/(R4+R3+R2+R1),

about 1.31V, and the analog value is about 26109.

Similarly, when we press the key SW5, the OUT terminal voltage of the signal we
read is the voltage between R2+R3+R4+R5 and R1l, namely

166

£

www.keyestudio.com

VCC*R1/(R5+R4+R3+R2+R1), which is about 0.68V, and the analog value is

about 13415.

Components Required

keyestudio
Raspberry Pi Pico
Raspberry Pi 5-Channel | 3P Dupont Micro USB
Expansion
Pico Board*1 AD Button Wire*1 Cable*1
Board*1
Modu |l e*1

Connection Diagram

167

Ml
o

www.keyestudio.com

UARTO UART1

Test Code™

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 27
* AD key
* http://www.keyestudio.com
import machine

import utime

ad_key = machine.ADC(26)

while True:

value = ad_key.read_u16()
print(value, end = ")
if value <= 6000:

print(" no key is pressed")
elif value <= 20000:

print(" SWS5 is pressed")
elif value <= 32000:

print(" SWA4 is pressed")
elif value <= 45000:

print(" SW3 is pressed")
elif value <= 59000:

168

Ml
o

www.keyestudio.com

print(" SW2 is pressed")
else:
print(" SW1 is pressed")

utime.sleep(0.1)

Code Explanation

We assign the read analog value to the variable val, and the shell displays
the value of val, (our default setting is 9600, which can be changed). We
judge the read analog value. When the analog value is lower than 6000, we
judge that the button is not pressed; when the analog value is between
6000 and 20000, we judge that the button SW5 is pressed; Between 20000
and 32000, we judge that the button SW4 is pressed; when the analog
value is between 32000 and 45000, we judge that the button SW3 is
pressed; when the analog value is between 45000 and 59000, we judge
that the button SW2 is pressed. Press; otherwise, when the analog value is
above 59000, we judge that the button SW1 is pressed; if we only use a

fixed value, there will inevitably be errors, so we use the interval to judge.

Test Result
After uploading the test code successfully,when the button is pressed, the
shell prints out the corresponding information, as shown in the figure

below.

169

Ml
o

www.keyestudio.com

Shell 3¢ |

48 no key 1is pressed
48 no key i3 pressed
0 no key 13 pressed
52412 S5SW2 i3 pressed
48 no key 1is pressed
48 no key 1is pressed
39529 S5SW3 is pressed
39497 SW3 1is pressed
64 no key 1is pressed

Project 28: Joystick Module

Overview

170

Ml
o

www.keyestudio.com

Game handle controllers are ubiquitous.

It mainly uses PS2 joysticks. When controlling it, we need to connect the X
and Y ports of the module to the analog port of the single-chip
microcomputer, port B to the digital port of the single-chip microcomputer,
VCC to the power output port(3.3-5V), and GND to the GND of the MCU.
We can read the high and low levels of two analog values and one digital
port) to determine the working status of the joystick on the module.

In the experiment, two analog values(x axis and y axis) will be shown on

Shell.

Working Principle

171

Ml
o

www.keyestudio.com

1-._':_':1 s vee
) | KI ﬂ
3 = 9 Y
Gy [+ 11 | 3
S I C3
Cl gm sl I R e 0603 100NF
0603 100NF 4 TK Joytick s
—— vl —|||-Gm T
= P GND I
= b =
GND .. 220R
z X c2
; Y C
g Z J;!LED
2 VCC 0603-LED
| [_GND b
R GND GND

In fact, its working principle is very simple. Its inside structure is equivalent
to two adjustable potentiometers and a button. When this button is not
pressed and the module is pulled down by R1, low levels will be output; on
the contrary, when the button is pressed, VCC will be connected (high
levels), When we move the joystick, the internal potentiometer will adjust

to output different voltages, and we can read the analog value.

Components

172

Ml
o

www.keyestudio.com

R

Raspberry | Raspberry Pi | Keyestudio
5P Dupont | Micro USB
Pi Pico | Pico Expansion | Joystick
Wire*1 Cable*1
Board*1 Board*1 Module*1

Connection Diagram

UARTO UART!
3v3 EVE]

GND GND
GP1 GP:

cl
GP8

fritzing

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 25

* Joystick

* http://www.keyestudio.com

173

Ml
o

www.keyestudio.com

import machine
import utime

B = machine.Pin(22, machine.Pin.IN)
X = machine.ADC(26)
Y = machine.ADC(27)
while True:
B_value = B.value()
X_value = X.read_u16()
Y_value = Y.read_u16()
print("button:",end="")

print(B_value, end =" ")
print("X:",end="")
print(X_value, end =" ")

print("Y:",end="")
print(Y_value)
utime.sleep(0.1)

Code Explanation

In the experiment, according to the wiring diagram, the x pin is set to
ADC(26), the y pin is set to ADC(27) and the pin of the joystick is set to
GP22.

Then print() function will print without changing lines.

Test Result
Run the test code and observe Shell monitor to display corresponding value. Move
the joystick, analog values at X and Y axis will change then press the button, the

digital value is 1, on the contrary, the value will be 0. as shown below;

174

Ml
o

www.keyestudio.com

[Shell 3¢ |

UARTE

DuLLoLig
button:
button:
button:
button:
button:
button:
button:
button:
button:
button:
button:
button:
button:

L e e e o - T O o

EEDEL)
33016
33080
33016
33048
33048
33112
33080
33064
33032
33080
33048
33048
33048

R VIY]
33048
33048
33000
33032
33176
33048
33048
323032
33016
33032
33064
32808
33032

175

Ml
o

www.keyestudio.com

Project 29: Ultraviolet Sensor

UVC Rays

Description

There is a ultraviolet Sensor used for UV index monitoring, UV radiation
dose measurement, flame detection. Suitable for measuring UV index of
smart wearable devices, such as UV index detection of watches,
smartphones and outdoor equipment. It can also be used to monitor the
intensity of UV light, or as a UV flame detector when UV sanitizing items.
The sensor has a specific spectral response. In the experiment, we use the
purple led module to test the UV module, and then display the results on

the shell.

176

Ml
o

www.keyestudio.com

Working Principle

The output current of the UV sensor is proportional to the light intensity,
and the output of the product has a very high consistency. The module
circuit has been set up, and we directly use the ADC to collect the analog

signal.
J1 S

=t b LD
-
0
O

Ultraviolet u g

1
-
.
]
e
d
— b L
Iw|w
o
7
=

\I 1 S
| “ sensor -
N pg SGME521
i
1 100of
GND bzl

Required Components

177

Ml
o

www.keyestudio.com

. o Keyestudio . Keyestudio DIY
Raspberry Pi Raspberry Pi Pico) 3P Dupont Micro USB
)) Ultraviolet) Purple LED*1
Pico Board*1 Expansion Board*1 Wire*2 Cable*1
Sensor*1

Connection Diagram

vvvvv

» o 8 35 3 3 3 3 2 2 3R 23

MH B S Es 3333 I FFeloEs
%
oo [crs) : X 'y
L moomc
ceo cps ommoo“ 3

son 5 O

uuuuu

Ultraviolet

fritzing

(V of led module is connected to VUSB(5V) to make the LED brighter)

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 26
* UV_sensor
* http://www.keyestudio.com
import machine
import utime

led = machine.Pin(27, machine.Pin.OUT)
sensor = machine.ADC(26)
led.value(1)#light up LED

while True:
analogVal = sensor.read_u16()
print(analogVal)
utime.sleep(0.1)

178

£

www.keyestudio.com

Test Result
After running the test code, the Shell displays the corresponding UV value.
When we make the LED close to the ultraviolet module. Then view the data on

the Shell monitor, as shown below:

|mmux'
il =
224

a8

1120
1840
2240
2320
2640
2704
2800

Project 30: SK6812 RGB Module

179

Ml
o

www.keyestudio.com

Overview

In previous lessons, we learned about the plug-in RGB module and used
PWM signals to color the three pins of the module.

There is a Keyestudio 6812 RGB module whose the driving principle is
different from the plug-in RGB module. It can only control with one pin.
This is a set. It is an intelligent externally controlled LED light source with
the control circuit and the light-emitting circuit. Each LED element is the
same as a 5050 LED lamp bead, and each component is a pixel. There are
four lamp beads on the module, which indicates four pixels

In the experiment, we make different lights show different colors.

Working Principle

From the schematic diagram, we can see that these four pixel lighting
beads are all connected in series. In fact, no matter how many they are, we
can use a pin to control a light and let it display any color. The pixel point
contains a data latch signal shaping amplifier drive circuit, a high-precision
internal oscillator and a 12V high-voltage programmable constant current
control part, which effectively ensures the color of the pixel point light is

highly consistent.

The data protocol adopts a single-wire zero-code communication method.

180

£

www.keyestudio.com

After the pixel is powered up and reset, the S terminal receives the data

transmitted from the controller. The first 24bit data sent is extracted by the

first pixel and sent to the data latch of the pixel.

D1 D2 D3 D4
GNJ:J-|||—J vss pout [GND-|||—l vss pour [GND-IH L vss pour [er:-l”—1 vss pouT -
sv v sy sv
i 2)pw wop { 21l pn voD { Llpw voD { 2]lpw vDD {
WS2812B4P Bl WS2312B4P o2 WS2812B4P s WS2812B4P ol
I:-s:;:: N I:-s:. 0ONF I:s;: 100NE I:s:: 100NF
GND GND GND GND

) o Keyestudio
Raspberry Pi Raspberry Pi Pico 3P Dupont
)) 6812 RGB) Micro USB Cable*1
Pico Board*1 Expansion Board*1 Wire*1
Modul e*1

Connection Diagram

181

Ml
o

www.keyestudio.com

=]
iy
N
]
]
o]
-
[
o

121

GP21 GP15 a
GP20 ’

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 27
* 6812 RGB LED
* http://www.keyestudio.com
import array, time
from machine import Pin
import rp2

Configure the number of sk6812 LEDs, pins and brightness.
NUM_LEDS =4

PIN_NUM =16

brightness = 0.1

@rp2.asm_pio(sideset_init=rp2.P1I0.OUT_LOW, out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=24)
def sk6812():

T1=2

T2=5

T3=3

wrap_target()

label("bitloop")

out(x, 1) .side(0) [T3-1]
jmp(not_x, "do_zero") .side(1) [T1-1]
jmp("bitloop") .side(1) [T2-1]

label("do_zero")

182

£

www.keyestudio.com

nop() .side(0) [T2-1]
wrap()

Create the StateMachine with the sk6812 program, outputting on Pin(16).
sm = rp2.StateMachine(0, sk6812, freq=8_000_000, sideset_base=Pin(PIN_NUM))

Start the StateMachine, it will wait for data on its FIFO.

sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.
ar = array.array("1", [0 for _ in range(NUM_LEDS)])

def pixels_show():
dimmer_ar = array.array("1", [0 for _ in range(NUM_LEDS)])
fori,c in enumerate(ar):
r = int(((c >> 8) & OxFF) * brightness)
g = int(((c >> 16) & OxFF) * brightness)
b = int((c & OxFF) * brightness)
dimmer_ar[i] = (g<<16) + (r<<8) + b
sm.put(dimmer_ar, 8)
time.sleep_ms(10)

def pixels_set(i, color):
ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]

def pixels_fill(color):
foriin range(len(ar)):
pixels_set(i, color)

RED = (255, 0, 0)

GREEN = (0, 255, 0)
BLUE = (0, 0, 255)
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)

pixels_set(0, RED)
pixels_set(1, GREEN)
pixels_set(2, BLUE)
pixels_set(3, WHITE)
pixels_show()
time.sleep(5)

for i in range(len(ar)):

183

Ml
o

www.keyestudio.com

pixels_set(i, BLACK)
pixels_show()

Code Explanation

A few function ports and functions:

NUM LEDS = 4, there are four LED beads, so we set to 4.
PIN_ NUM = 16, this is the pin number, we connect to GP16
brightness = 0.1, brightness setting. 1 implies brightest
pixels show(), this function is used to refresh

pixels set(i, color), this function is used to set locations and color of LED

beads.

pixels fill(color), display colors of LED beads

184

Ml
o

www.keyestudio.com

Test Result
Run the test code, wire up and power up. Then we can see four LED beads

show red, green, blue and white color; as shown below;

185

Ml
o

www.keyestudio.com

Project 31: Rotary Encoder

Overview
In this kit, there is a Keyestudio rotary encoder, dubbed as switch encoder.
It is applied to automotive electronics, multimedia audio, instrumentation,

household appliances, smart home, medical equipment and so on.

In the experiment, it it used for counting. When we rotate the rotary
encoder clockwise, the set data falls by 1; if you rotate it anticlockwise, the
set data is up 1; and when the middle button is pressed, the value will be

show on Shell.

186

Ml
o

www.keyestudio.com

Working Principle

603 10K .
v R2 603 10K
]
. 603 10K
CLK | [_sw LS
L\Dlll',r— C.) SW
SRR rr— VECh————
Rotary encoder-5 e
GND =

The incremental encoder converts the displacement into a periodic electri
c signal, and then converts this signal into a counting pulse, and the num
ber of pulses indicates the size of the displacement.This module mainly us
es 20-pulse rotary encoder components. It can calculate the number of pu
Ises output during clockwise and reverse rotation. There is no limit to cou

nt rotation. It resets to the initial state, that is, starts counting from 0.

Components

187

Ml
o

www.keyestudio.com

& o #

Rotary encoder P

. Lo Keyestudio
Raspberry Pi Raspberry Pi Pico Rot 5P Dupont
otar
Pico Board*1 Expansion Board*1 y Wire*1
Encoder*1

Micro USB
Cable*1

Connection Diagram

UARTO UARTI

Japodua Aiejoy

12co izc1

GP21 G Pls
cpP20 G F'la
3v3

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 28

* Encoder

* http://www.keyestudio.com

import time

from rotary_irq_rp2 import RotarylRQ

from machine import Pin

SW=Pin(20,Pin.IN,Pin.PULL_UP)

r = RotarylRQ(pin_num_clk=18,
pin_num_dt=19,
min_val=0,
reverse=False,

fritzing

188

Ml
o

www.keyestudio.com

range_mode=RotarylIRQ.RANGE_UNBOUNDED)
val_old = r.value()
while True:
try:
val_new = r.value()
if SW.value()==0 and n==0:
print("Button Pressed")
print("Selected Number is : ",val_new)
n=1
while SW.value()==0:
continue
n=0
if val_old != val_new:
val_old = val_new
print('result =', val_new)
time.sleep_ms(50)
except Keyboardinterrupt:
break

Code Explanation

In the experiment, we need to add the rotary encoder to pico, then import
the module.

You only need to save the .py file to pico

1. After adding the rotary encoder, click File

Raspberry Pi Pico = 2€ if SW.value()==0 and n==0:
: print("Button Pressed")
b lib print("Selected Number is : ",val new)
& nt16k33_matrixpy 5 1
& matrix_fonts.py 24 while SW.value()==8:
® rotary py [shell 3¢ |
@ rotary_irg_rp2.py 33>
& urtc.py
>

2. We will see the file rotary.py and rotary irq rp2.py. This means the we

189

Ml
o

www.keyestudio.com

save them in the pico successfully. Then we can use from rotary irq rp2

import RotarylRQ

3. SW=Pin(20,Pin.IN,Pin.PULL UP) indicates that the SW pin is
connected to GP20, pin num clk=18 indicates that the pin CLK is
connected to GP18, and pin num dt=19 means that the DT pin is

connected to GP19. We can change these pin numbers.

4. try/except is the python language exception capture processing
statement, try executes the code, except executes the code when an

exception occurs, and when we press Ctrl+C, the program exits.

5. r.value() returns the value of the encoder

Test Result

Run the test code, observe the Shell below. Rotate the encoder clockwise,
the displayed data decrease; rotate the encoder counterclockwise, the
displayed data increase; press the button of the encoder, the displayed

data is the value of the encoder, as shown in the figure below.

190

Ml
o

www.keyestudio.com

Shell 3¢ |

>33

Button Pressed

Select
result

ed

result =

result
result
result
result
result

Humber is : 0

L T N o S A

-1

Button Pressed
Selected Number is : -1

191

£

www.keyestudio.com

Project 32: Servo Control

Overview

Servo motor is a position control rotary actuator. It mainly consists of a
housing, a circuit board, a core-less motor, a gear and a position sensor. Its
working principle is that the servo receives the signal sent by MCU or
receiver and produces a reference signal with a period of 20ms and width
of 1.5ms, then compares the acquired DC bias voltage to the voltage of the

potentiometer and obtain the voltage difference output.

In general, servo has three lines in brown, red and orange. The brown wire
is grounded, the red one is a positive pole line and the orange one is a

signal line.

192

£

www.keyestudio.com

(OV) GND
180° (+5V)
(PWM)
0 degrees 45 degrees 180 degrees
o
o
o
s]ala]
o
8
high |
™ T ps

Working Principle

When the motor speed is constant, the potentiometer is driven to rotate
through the cascade reduction gear, which leads that the voltage
difference is 0, and the motor stops rotating. Generally, the angle range of

servo rotation is 0° --180 °

The rotation angle of servo motor is controlled by regulating the duty cycle
of PWM (Pulse-Width Modulation) signal. The standard cycle of PWM
signal is 20ms (50Hz). Theoretically, the width is distributed

between 1ms-2ms, but in fact, it's between 0.5ms-2.5ms. The width

193

£

www.keyestudio.com

corresponds the rotation angle from 0° to 180°. But note that for different

brand motors, the same signal may have different rotation angles.

Controlling principle of Servo Angles of the servo

are differant at
PWM waves w0 different time period

The time of
high levels is
ms =2ms.
This time
pgr'"j.d : T of !

decides the 8 eTosme i P
angles of
the servo

The tirmee of high bevels = 125ms

hake sure the frequancy 50Hz

The calculation fermula of angles of the sarvo:
degree = fhigh lewal time) 2ms) TB0TE;

Components

Raspberry Pi Raspberry Pi Pico)
)) Servo*1 Micro USB Cab |l e*1
Pico Board*1 Expansion Board*1

Connection Diagram

194

£

www.keyestudio.com

UARTO UARTI

Power_OUT
RESET,

Test Code 1//:

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 29.1
* Servo test 1
* http://www.keyestudio.com
from machine import Pin, PWM
import time
pwm = PWM(Pin(0))

pwm.freq(50)

0° ----2.5%----1638
45° ----5%----3276

90° ----7.5%----4915
135° ----10%----6553
180° ----12.5%----8192
angle_0=1638
angle_90 = 4915
angle_180 = 8192

while True:

pwm.duty_ul6(angle_0)

fritzing

195

£

www.keyestudio.com

time.sleep(1)
pwm.duty_ul6(angle_90)
time.sleep(1)
pwm.duty_ul6(angle_180)

time.sleep(1)

Code 2:

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 29.2
* Servo test 2
* http://www.keyestudio.com
from utime import sleep
from machine import Pin
from machine import PWM

pwm = PWM(Pin(0))#the pin of the servo is connected with GPO
pwm.freq(50)#20ms, frequency is 50Hz
Duty cycles that angles correspond
0°----2.5%----1638
45°----5%----3276
90°----7.5%----4915
135°----10%----6553
180°----12.5%----8192
Considering the error, set the duty cycle at 1000~9000, so that it can rotate 0~180 degrees smoothly
set rotation angles of the servo
def setServoCycle (position):
pwm.duty_ul6(position)
sleep(0.01)

calculate rotation angles into duty cycle
def convert(x, i_m, i_M, o_m, o_M):

return max(min(o_M, (x-i_m) * (o_M-o0_m) // (i_M -i_m) + o_m), o_m)

while True:
for degree in range(0, 180, 1):#rotate from 0° to 180°
pos = convert(degree, 0, 180, 1000, 9000)
setServoCycle(pos)

196

Ml
o

www.keyestudio.com

for degree in range(180, 0, -1):#frotate from 180° to 0°
pos = convert(degree, 0, 180, 1000, 9000)
setServoCycle(pos)

Code Explanation

Code 1:

According to the angle of the signal pulse width, it is converted into a duty
cycle. The formula is: 2.5+angle/180*10. The PWM pin resolution of Pi Pico
is 2216 = 65535. When converted to 0 degree, its duty cycle is 65535 *
2.5% = 1638.375 , when the angle is 180 degrees, its duty cycle value is
65535 * 12.5% = 8191.875, these two values will be related to the program,
considering the error and rotation angle, | set the duty cycle at 1000

Between 9000 and 9000, the servo can rotate smoothly 0~180 degrees

Code 2:
1. convert(x,i m,i M, o m, o M): x is the value we want to map;i m,i M
are the lower and upper limits of the current value; o m, o M are the lower

and upper limits of the target range we want to map to.

197

Ml
o

www.keyestudio.com

Test Result 1:

Run the test code successfully, the servo rotates cyclically from 0 degrees,

90 degrees, and 180 degrees.

Test Result 2:
Run the test code successfully, the servo rotates back and forth from 0 to

180 degrees, one degree every 10ms.

Project 33: Ultrasonic Sensor

Overview

In this kit, there is a keyes HC-SR04 ultrasonic sensor, which can detect obstacles

198

Ml
o

www.keyestudio.com

in front and the detailed distance between the sensor and the obstacle. Its
principle is the same as that of bat flying. It can emit the ultrasonic signals that
cannot be heard by humans. When these signals hit an obstacle and come back
immediately. The distance between the sensor and the obstacle can be calculated
by the time gap of emitting signals and receiving signals.

In the experiment, we use the sensor to detect the distance between the sensor
and the obstacle, and print the test result.

Ultrasonic detector module can provide 2cm-450cm non-contact sensing
distance, and its ranging accuracy is up to 3mm, very good to meet the normal
requirements. The module includes an ultrasonic transmitter and receiver as well

as the corresponding control circuit.

Working Principle

The most common ultrasonic ranging method is the echo detection. As
shown below; when the ultrasonic emitter emits the ultrasonic waves
towards certain direction, the counter will count. The ultrasonic waves
travel and reflect back once encountering the obstacle. Then the counter
will stop counting when the receiver receives the ultrasonic waves coming

back.

199

Ml
o

www.keyestudio.com

The ultrasonic wave is also sound wave, and its speed of sound V is related
to temperature. Generally, it travels 340m/s in the air. According to time t,
we can calculate the distance s from the emitting spot to the obstacle.
s=340t/2.

The HC-SR04 ultrasonic ranging module can provide a non-contact
distance sensing function of 2cm-400cm, and the ranging accuracy can
reach as high as 3mm; the module includes an ultrasonic transmitter,

receiver and control circuit. Basic working principle:

1. First pull down the TRIG, and then trigger it with at least 10us high level
signal;

2. After triggering, the module will automatically transmit eight 40KHZ
square waves, and automatically detect whether there is a signal to return.
3. If there is a signal returned back, through the ECHO to output a high
level, the duration time of high level is actually the time from emission to
reception of ultrasonic.

Test distance = high level duration * 340m/s * 0.5.

200

£

www.keyestudio.com

EerSEIon Emitting pin

circuit
MCU Obstacle

Receiving
. circuit i~ I >'

Receiving pin

Components

keyestudio
SRO1
Raspb Pi Raspb Pi Pi 4P D t
?Sp erry Pi asp etl’ry i Pico . . upon Micro USB Cab | e*1
Pico Board*1 Expansion Board*1 Ultrason|c Wire*1
Sensorx

Connection Diagram

OIpN1SaAa)|

k¢

fritzing

201

Ml
o

www.keyestudio.com

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 30
* Ultrasonic
* http://www.keyestudio.com
from machine import Pin
import utime

ultrasonic ranging, unit: cm

def getDistance(trigger, echo):
produce 10us square waves
trigger.low() #preserve a short low level to secure a high level:
utime.sleep_us(2)
trigger.high()
utime.sleep_us(10)#pull up levels, wait for 10ms and set to low levels
trigger.low()

while echo.value() == 0: #build up a while loop pin 0 and record time
start = utime.ticks_us()
while echo.value() == 1: #build up a while loop pin 1 and record time
end = utime.ticks_us()
d = (end - start) * 0.0343 / 2 #travel time x sound speed(343.2 m/s, 0.0343cm for one ms), the distance is
divided by 2
returnd

set pins

trigger = Pin(14, Pin.OUT)

echo = Pin(13, Pin.IN)

main program

while True:
distance = getDistance(trigger, echo)
print("The distance is : {:.2f} cm".format(distance))
utime.sleep(0.1)

Code Explanation

The maximum distance of the sensor is 3-4m, the minimum distance is 2cm. The

202

Ml
o

www.keyestudio.com

distance value on the Shell is the distance between the sensor and the
obstacle

utime.ticks_us(): return the program to run

Test Result
Run the test code and observe the Shell monitor.

Display the distance between the sensor and the obstacle, the unitis cm, as

shown below;

[Shell 3¢ |

L0 giscance 45 = lZ. 00 Tl -
The distance i= :12.49 cm
The distance i=s :11.51 cm
The distance i= - 11.44 cm
The distance i= :8.71 cm
The distance i= [6.96 cm
The distance i= [6.29 cm
The distance i= :5.73 cm
The distance i= ! 5.20 cm
The distance i= : 4.96 cm
The distance i= @ 4.46 cm
The distance i= : 4.17 cm
The distance i= : 4.18 cm
The distance i= : 4.18 cm

203

£

www.keyestudio.com

Project 34: IR Receiver Module

Overview

There is no doubt that infrared remote control is ubiquitous in daily life. It
is used to control various household appliances, such as TVs, stereos, video
recorders and satellite signal receivers. Infrared remote control is
composed of infrared transmitting and infrared receiving systems, that is,
an infrared remote control and infrared receiving module and a single-chip

microcomputer capable of decoding.

In this experiment, we need to know how to use the infrared receiving

sensor. The infrared receiving sensor mainly uses the VS1838B infrared

204

Ml
o

www.keyestudio.com

receiving sensor element. It integrates receiving, amplifying, and
demodulating. The internal IC has already completed the demodulation,
and the output is a digital signal. It can receive 38KHz modulated remote
control signal. In the experiment, we use the IR receiver to receive the
infrared signal emitted by the external infrared transmitting device, and

display the received signal in the shell.

Working Principle

7133
E2
L R3 m O 7
L IX 47K
“~RED-0603 S A Rl
o ‘ | 22R
S 1l Y
—_- TR
GND =T 100nf
GND

The main part of the IR remote control system is modulation, transmission
and reception. The modulated carrier frequency is generally between
30khz and 60khz, and most of them use a square wave of 38kHz and a duty
ratio of 1/3. A 4.7K pull-up resistor R3 is added to the signal end of the

infrared receiver.

205

Ml
o

www.keyestudio.com

Initial signals

sscwoves |

Signals after ” I” ||| ””l” ”l ||| |
modulation

Components

= = |

- =S5
. Raspberry Pi . .
Raspberry Pi)) Keyestudio DIY 3P Dupont Micro USB Remote
. Pico Expansion .)
Pico Board*1 IR Receiver*1 Wire*1 Cable*1 Control*1
Board*1

Connection Diagram

UARTO UART1

18A1828. J|

P21 GPIs
GP20 P14 -‘
=

Power_OUT

RESET,

fritzing

206

£

www.keyestudio.com

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 31
* IR Receiver
* http://www.keyestudio.com
import utime
from machine import Pin

ird = Pin(16,Pin.IN)

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2": "LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":
"LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5": "LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":
"LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8": "LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":

"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

"0": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up": "LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":
"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":
"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok": "LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

" "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#": "LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):
wait=1
complete=0
seq0 =]
seql =[]

while wait == 1:
if ird.value() == 0:
wait=0
while wait == 0 and complete == 0:
start = utime.ticks_us()
while ird.value() == 0:
ms1 = utime.ticks_us()
diff = utime.ticks_diff(ms1,start)
seq0.append(diff)
while ird.value() == 1 and complete ==
ms2 = utime.ticks_us()
diff = utime.ticks_diff(ms2,ms1)
if diff > 10000:

207

Ml
o

www.keyestudio.com

complete=1

seql.append(diff)
code = nn
for val in seql:
if val < 2000:
if val < 700:

code +="L"

else:

code +="H"

print(code)
command =""
for k,v in act.items():

if code == v:

command = k

if command ==
command = code
return command

while True:

command = read_ircode(ird)

print(command)
utime.sleep(0.5)

Test Result

Find the infrared remote control, pull out the insulating sheet, and press

the button at the receiving head of the infrared receiving sensor. After

receiving the signal, the LED on the infrared receiving sensor also starts to

flash, as shown in the figure below.

208

Ml
o

www.keyestudio.com

LLLLLHHHHHHAHA LHALLLAHLHLLHAALH

LLLHHLLHHH
2

3
1

209

Ml
o

www.keyestudio.com

Project 35: DS18B20 Temperature Sensor

\

/
A
E

|

%]

&

[-]

e

e T

|

1= B
249

15°
107

;
\

/.
)~

Jrpuprprpegprpergge
< 9%

|
<

-10°
-15°

|
n
<

—25°

Description

The DS18B20 is a 1-wire programmable Temperature sensor from maxim
integrated. It is widely used to measure temperature in hard environments
like in chemical solutions, mines or soil etc. The constriction of the sensor is
rugged and also can be purchased with a waterproof option making the
mounting process easy. It can measure a wide range of temperature from
-55°C to +125° with a decent accuracy of +5°C. Each sensor has a unique
address and requires only one pin of the MCU to transfer data so it a very
good choice for measuring temperature at multiple points without

compromising much of your digital pins on the microcontroller.

210

Ml
o

www.keyestudio.com

Working Principle

+5

|

R65
4.7K 3
lware ; A
1 0
GND
U9
—— DS18B20

The hardware interface of the 1-Wire bus is very simple, just connect the

data pin of the DS18B20 to an 10 port of the microcontroller. The timing of

the 1-Wire bus is relatively complex. Many students can’ t understand the

timing diagram independently here. We have encapsulated the complex

timing operations in the library, and you can use the library functions

directly.

Schematic Diagram of DS18B20

This can save up to 12-bit temperature vale. In the register, save in code

complement. As shown below;

53 | 8% |2t |02 12 | a% | et
MSb (unit =°C) LSb
S| s|s|s|s|26]2°]2

LSB

MSB

211

Ml
o

www.keyestudio.com

A total of 2 bytes, LSB is the low byte, MSB is the high byte, where MSb is
the high byte of the byte, LSb is the low byte of the byte. As you can see,
the binary number, the meaning of the temperature represented by each
bit, is expressed. Among them, S represents the sign bit, and the lower 11
bits are all powers of 2, which are used to represent the final temperature.
The temperature measurement range of DS18B20 is from -55 degrees to
+125 degrees, and the expression form of temperature data, S represents
positive and negative temperature, and the resolution is 2 - 4, which is

0.0625.

Required Components

Keyestudio DIY

Raspberry Pi Raspberry Pi Pico 18B20 3P Dupont)
))) Micro USB Cab le*1
Pico Board*1 Expansion Board*1 Temperature Wire*1
Sensor*1

Connection Diagram

212

Ml
o

www.keyestudio.com

UARTO UART]

3v3

@
o
2
(=]
ST
=+]
@
2f
@D
.

D=

Power_OUT
RESET,

fritzing

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 32
* DS18B20

* http://www.keyestudio.com

import machine, onewire, ds18x20, time
ds_pin = machine.Pin(3)
ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin))
roms = ds_sensor.scan()
print('Found DS devices: ', roms)
while True:

ds_sensor.convert_temp()

time.sleep_ms(750)

for rom in roms:

#print(rom)

print(ds_sensor.read_temp(rom))

213

Ml
o

www.keyestudio.com

time.sleep(1)

Code Explanation

We need to import the DS18B20 module.

Raspberry Pi Pico
dht.py
ds18x20.py
htl1ek33_matrix.py
matrix_fonts.py

onewire.py

rotary.py
rotary_irq_rp2.py
urtc.py

» o olole o ele

Set the pin to 3.
Shell means temperature value, ds sensor.read temp(rom) is used to read

temperature value.

Test Result

Run the test code, the shell displays the temperature of the current

environment, as shown below.

214

Ml
o

www.keyestudio.com

Shell 3¢ |

o

21.0

21.0

21.0

21.0

22.125

25.4373

27.125

28.3125

29.4375 I

215

£

www.keyestudio.com

Project 36: XHT11 Temperature and Humidity Sensor

Description

This DHT11 temperature and humidity sensor is a composite sensor which
contains a calibrated digital signal output of the temperature and humidity.
DHT11 temperature and humidity sensor uses the acquisition technology
of the digital module and temperature and humidity sensing technology,
ensuring high reliability and excellent long-term stability.

It includes a resistive element and a NTC temperature measuring device.

216

Ml
o

www.keyestudio.com

VCC
4|4 || GND o 1
T 0603 4.7K 1
2 Y S
1 ? igem
GND | £
3
Cl ||
0603 100NF | |
GND

Working Principle

The communication and synchronization between the single-chip
microcomputer and XHT11 adopts the single bus data format. The
communication time is about 4ms. The data is divided into fractional part
and integer part.

Operation process: A complete data transmission is 40bit, high bit first out.
Data format: 8bit humidity integer data + 8bit humidity decimal data +
8bit temperature integer data + 8bit temperature decimal data + 8bit
checksum

8-bit checksum: 8-bit humidity integer data + 8-bit humidity decimal data
+ 8-bit temperature integer data + 8-bit temperature decimal data "Add

the last 8 bits of the result.

Required Components

217

Ml
o

www.keyestudio.com

Raspberry Pi Pico
Board*1

Raspberry Pi Pico
Expansion Board*1

Keyestudio
XHT11
Temperature and
Humidity Sensor

(compatible
with DHT11)*1

3P Dupont
Wire*1

Micro USB Cable*1

Connection Diagram

UAnTo UARTI

12c1

P21 GPIS

Gp20 GP14

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 33

* xht11

* http://www.keyestudio.com
import machine
import utime
import dht

ainjesaduwa)
Apruny

fritzing

218

Ml
o

www.keyestudio.com

pin = machine.Pin(22, machine.Pin.OUT, machine.Pin.PULL_DOWN)
sensor = dht.DHT11(pin)

while True:

print("temperature: {} ‘C humidity: {} %".format(sensor.temperature, sensor.humidity))

utime.sleep(1)

Code Explanation

1. In the experiment, we need to import the XHT11 library:

Raspberry Pi Pico

@

dht.py

ol R R R I

ds18x20.py
htlek33_matrix.py
matrix_fonts.py
onewire.py

rotary.py
rotary_irq_rp2.py

' urtc.py

1. We set the pin to GP22, read the temperature data sensor.temperature,

read the humidity data sensor.humidity.

Test Result

After running the test code, the shell displays the temperature and

humidity data, as shown below.

219

Ml
o

www.keyestudio.com

Shell 3¢ |

s
x>
temperature : 21.3 0 humidity: 47.3 %
temperature : 21.4 0 humidity: 47.4 %
temperature ! 21.3 0 humidity:@ 47.4 %
temperature : 21.2 0 humidity:@ 47.4 %
temperature ! 21.3 0 humidity:@ 47.4 %
temperature : 21.3 0 humidity: 47.4 %
temperature ! 21.3 0 humidity: 47.4 %
-

220

Ml
o

www.keyestudio.com

Project 37: DS1307 Clock Module

Overview

The DS1307 serial real-time clock (RTC) is a low-power, full binary-coded
decimal (BCD) clock/calendar plus 56 bytes of NV SRAM. Address and
data are transferred serially through an 12C, bidirectional bus.

The clock/calendar provides seconds, minutes, hours, day, date, month,

221

Ml
o

www.keyestudio.com

and year information. The end of the month date is automatically

adjusted for months with fewer than 31 days, including corrections for leap

year. The clock operates in either the 24-hour or 12-hour format with

AM/PM indicator. The DS1307 has a built-in power-sense circuit that

detects power failures and automatically switches to the backup supply.

Timekeeping operation continues while the part operates from the backup

supply.

Working Principle

32.768kHz "
Y1
3.3V

Detailed address and data:

: 0 <t
= X1 VCC = YA
4 x2 saw =
! I :r VBATT SCL
GND SDA
___gfij__* DS1307S08

222

Ml
o

www.keyestudio.com

Serial real-time clock records year, month, day, hour, minute, second and
week; AM and PM indicate morning and afternoon respectively; 56 bytes of
NVRAM store data; 2-wire serial port; programmable square wave output;
power failure detection and automatic switching circuit; battery current is

less than 500nA.

Pins description: X1, 32.768kHz crystal terminal ;
VBAT:X2: +3V input;

SDA: serial data;

SCL: serial clock;

SQW/OUT: square waves/output drivers

ADDRESS | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO [FUNCTION | RANGE
00h CH 10 Seconds Seconds Seconds 00-59
01h 0 10 Minutes Minutes Minutes 00-59

10
12 1-12
02h 0 o 10 Hours Hours +AM/PM
24 PM/ Hour 00-23
AM
03h 0 0 0 0 0| DAY Day 01-07
04h 0 0 10 Date Date Date 01-31
10
05h 0 0 0 A Month Month 01-12
06h 10 Year Year Year 0099
07h ouT | 0o | 0 [sawe 0 | o | RSt [RSO Control =
RAM
08h—3Fh et 00h—FFh
Components

223

£

www.keyestudio.com

) o Keyestudio
Raspberry Pi Raspberry Pi Pico 4P Dupont .
]) DS1307 Clock] Micro USB Cab|e*1
Pico Board*1 Expansion Board*1 Wire*1
Modul e*1

Connection Diagram

)
ABOCOCOOODNONNL.

£ 5%

fritzing
VUSB is 5V, then connect the power to VUSB.
Test Code
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 34
* DS1307 Real Time Clock

* http://www.keyestudio.com

224

Ml
o

www.keyestudio.com

from machine import I2C, Pin
from urtc import DS1307

import utime

i2c = I2C(1,scl = Pin(15),sda = Pin(14),freq = 400000)

rtc = DS1307(i2c)

year = int(input("Year : "))

month = int(input("month (Jan --> 1, Dec --> 12): "))

date = int(input("date : "))

day = int(input("day (1 --> monday, 2 --> Tuesday ... 0 --> Sunday):
")

hour = int(input("hour (24 Hour format): "))

minute = int(input("minute : "))

second = int(input("second : "))

now = (year,month,date,day,hour,minute,second,0)

rtc.datetime(now)

#(year,month,date,day,hour,minute,second,pl) = rtc.datetime()
while True:

DateTimeTuple = rtc.datetime()

225

Ml
o

www.keyestudio.com

print(DateTimeTuple[0], end = '-'
print(DateTimeTuple[1], end = '-")
print(DateTimeTuple[2], end =" ")
print(DateTimeTuple[4], end = ":")
print(DateTimeTuple[5], end = ":")
print(DateTimeTuple[6], end ="' week:’)
print(DateTimeTuple[3])

utime.sleep(1)

Code Explanation

We need to import the urtc module, as shown below;

Raspberry Pi Pico = hour = int(input({"hour (24 Hour format): "})
: 5 minute = int(input("minute : "))
b L lip D [T e o T A TN
& ht16k33_matrixpy -)
& matrix_fonts.py Shell 3

@_ rotary.py Backend terminated or disconnected. Use "Stop/Bestart' to restart.

& rotary_irq_rp2.py

>>>

rtc.datetime(): Return a tuple of time. When the program is running, we set the
"please input" program, run the code, it will prompt us to input the time
and date, after the input is completed, the data will be printed every

second.

DateTimeTuple[0]: save time

226

£

www.keyestudio.com

DateTimeTuple[1]: save months
DateTimeTuple[2]: save days
DateTimeTuple[3]: save weeks
Rtc.GetDateTime().Month(): return months
DateTimeTuple[4]: save hours
DateTimeTuple[5]: save minutes

DateTimeTuple[6]: save seconds

Test Result
Upload the code and view the Shell monitor. We can see the displayed year,

month, day, hour, minute, second and week, as shown below;

227

pv4
o

www.keyestudio.com

Shell 3

date : 11 -
day (1 --> monday , 2 --> Tuesday ... 0 —-> Sunday): 4

hour (24 Hour format): 18

minute : 56

nnnnn d : 50
2021-11-11 18:56:50
2021-11-11 18:56:51
2021-11-11 18:56:52
2021-11-11 18:56:53
2021-11-11 18:56:54
2021-11-11 18:56:55
2021-11-11 18:56:56
2021-11-11 18:56:57
2021-11-11 18:56:58

I
fooo oo 0nn
FR R O R O 1)
ARRRRR AN
[S Y

Project 38: ADXL345 Acceleration Sensor

GHRAVITATION

FORCE

Ig
X=0g
Y=0g
£=-1q

GROUND

In this kit, there is a DIY electronic building block ADXL345 acceleration sensor

module, which uses the ADXL345BCCZ chip. The chip is a small, thin, low-power
3-axis accelerometer with a high resolution (13 bits) and a measurement range of
+ 169 that can measure both dynamic acceleration due to motion or impact as
well as stationary acceleration such as gravitational acceleration, making the

device usable as a tilt sensor.

228

Ml
o

www.keyestudio.com

,..
W,

2
3]
24
e

e}

Working Principle

The ADXL345 is a complete 3-axis acceleration measurement system with a
selection of measurement ranges of £2 g, =4 g, =8 gor £16 g. Its digital
output data is in 16-bit binary complement format and can be accessed through

an SPI (3-wire or 4-wire) or I12C digital interface.

The sensor can measure static acceleration due to gravity in tilt detection
applications, as well as dynamic acceleration due to motion or impact. Its high
resolution (3.9mg/LSB) enables measurement of tilt Angle changes of less than

1.0°.

Components Required

229

2l
o

www.keyestudio.com

DXL345 ‘ _é)

Keyestudio
Raspberry Pi Raspberry Pi Pico ADXL345 4P Dupont)
)))) Micro USB Cable*1
Pico Board*1 Expansion Board*1 Acceleration Wire*1
Modul e*1

Connection Diagram

> UARTO i, S - A

E - - GND . 77777777777777777 i

~ | |

© - = Oﬁﬂﬁbﬁlnﬁﬁﬁllﬁﬁ%
(. i} 5

z

uuuuuuuuuuu
mmumwgﬁugg;q Power_OUT

RESET,

fritzing
Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 38
* ADXL345
* http://www.keyestudio.com
from machine import Pin
import time
from ADXL345 import adxI345

scl = Pin(21)

sda = Pin(20)

bus=0

snsr = adxlI345(bus, scl, sda)
while True:

230

Ml
o

www.keyestudio.com

X,Y,Z = snsr.readXYZ()
print('x:',x,'y:"y,'z:",z,'uint:mg')
time.sleep(0.1)

Code Explanation
* http://www.keyestudioc.cor
Raspberry Pi Pico = L
L lib from machine import Pin

[@ apxis4s.py import time
I from ADXL345 import adx1345

scl = Pin(21)

Import the library of the ADXL345 acceleration sensor
Set IIC pins, select IICO, sda-->20, scl-->21, then assign the value to x, y and z.

The shell shows the value of x,y and z, unit is mg.

Test Result
Run the test code and watch the shell.
The shell displays the corresponding value of the three-axis acceleration in

mg, as shown in the following figure.

231

Ml
o

www.keyestudio.com

I AbbALAALE Lidd
(@

Shell 3¢ |
%: 70.2 y: 35.1 z: 1056.9 uint:mg i
x: T0.7 w: 35.1 2: 1045.2 uint:mg
X2 74,1 w: -982.8 z: 1072.5 nint:mg
X: 54.60001 y= 35.1 z: 1076.4 uint:mg
Xxs 507 ws 19.% Zz= 10B0:3-uint:mg
X: 66.30001 y: 23.4 z: 1072.5 uint:mg
x: T0.2 w: 54.60001 z: 1068.6 uint:mg

232

Ml
o

www.keyestudio.com

Project 39: TM1650 4-Digit Tube Display

Overview

This module is mainly composed of a 0.36 inch red common anode 4-digit
digital tube, and its driver chip is TM1650. When using it, we only need two
signal lines to make the single-chip microcomputer control a 4-bitdigit
tube, which greatly saves the IO port resources of the control board.

TM1650 is a special circuit for LED (light emitting diode display) drive
control. It integrates MCU input and output control digital interface, data
latch, LED drivers, keyboard scanning, brightness adjustment and other

circuits.

TM1650 has stable performance, reliable quality and strong

233

Ml
o

www.keyestudio.com

anti-interference ability.

It can be applied to the application of long-term continuous working for 24

hours.

TM1650 uses 2-wire serial transmission protocol for communication (note

that this data transmission protocol is not a standard 12C protocol). The

chip can drive the digital tube and save MCU pin resources through two

pins and MCU communication.

Working Principle

TM1650 adopts IIC treaty and SDA and SCL wire

Data command setting is 0x48. This means that lighting up the tube

display not perform its button scanning function.

. 7
{Dh}; " CLK GKD
1] DAT FKla
GND -|| — GND EXIS
DIG. 5 | pic2 Dkl
DIG3 6 2 Zen
BTG DI63 CKn
— DIGd veC
] AKI BED
TMI650

DiGl DPREP

CLK 7
IO |
‘.T‘r}—"——' ?
4
L
16 SEGS ONP
™5 SEGT
14 SEGG
7T SECR
12 SEGH
11_SEG3
10 e
s SEor T —1Vee
1
Ulfll:l:'-[Dﬂﬂ.f
GRD

4-digit

Dioss o,

LED]
SEGH _ ¢ [pie] —12.DIG]
SEG42 _ 2 1 SEG1
SEGS _ ndo g —10SEG6
SEG34 _ . —prey —2DIG2
SEGTS G 2 By 8 DIG3
7 SEG2

commeon cathode

234

Ml
o

www.keyestudio.com

Data command setting: 0x48 means that we light up the digital tube,

instead of enable the function of key scanning

B7 | B& | B5 | B4 | B3 | B2 | B1 | BO | Function Description
X0 (V|0 b A Eight-level brightness
® |G 0%y) ® | ¥ One-level brightness
X0 |11 0 L Two-level brightness
X0 4|1 x| % Three-level brightness
{ i i i Brightness setting

x(1 |0 |0 X | X Four-level brightness
* (1 |0 . 1 x| X Five-level brightness
X |1 |1 |D | X | % Sin-level brightness
X (1T |1 |1 L Seven-level brightness
X | _El | % | % | 7/8 segment 8-segment display way
% 1 w | ow display control bit 7-segment display way
b oo | |0 . Off display

- - [T CON/OFF display bit
4 ® [x| On display

Command display setting:

bit[6:4]: set the brightness of tube display, and 000 is brightest
bit[3]: set to show decimal points

bit[0]: start the display of the tube display

Components

235

Ml
o

www.keyestudio.com

Keyestudio
Raspberry Pi Raspberry Pi Pico | TM16504-Digit 4P Dupont Micro USB
Pico Board*1 Expansion Board*1 Segment Wire*1 Cable*1
Display*1

Connection Diagram

aqny |eubig-¢

L.:‘

A] ™ L) F 3
Ooo000000000000-

Bl 5V_GND

000000000000000°

e
3
5 =
o
. #.7
e c
333 888" 3§

fritzing

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 35
* TM1650 Four digital tube

* http://www.keyestudio.com

from machine import Pin

import time

236

Ml
o

www.keyestudio.com

definitions for TM1650
ADDR_DIS = 0x48 #mode command

ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST =0
BRIGHT_TYPICAL = 2

BRIGHTEST =7

on =1

off =0

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6¢c,0x6e]

DIG = [0x6e,0x6c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15
dioPin = 14
clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

237

Ml
o

www.keyestudio.com

DisplayCommand = 0

def writeByte(wr_data):
global clk,dio
for i in range(8):
if(wr_data & 0x80 == 0x80):
dio.value(1)
else:
dio.value(0)
clk.value(0)
time.sleep(0.0001)
clk.value(1)
time.sleep(0.0001)
clk.value(0)
wr_data <<=1

return

def start():
global clk,dio
dio.value(1)

clk.value(1)

238

Ml
o

www.keyestudio.com

time.sleep(0.0001)
dio.value(0)

return

def ack():
global clk,dio
dy=0
clk.value(0)
time.sleep(0.0001)
dio = Pin(dioPin, machine.Pin.IN)
while(dio.value() == 1):
time.sleep(0.0001)
dy +=1
if(dy>5000):
break
clk.value(1)
time.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, machine.Pin.OUT)

return

def stop():

239

Ml
o

www.keyestudio.com

global clk,dio
dio.value(0)
clk.value(1)
time.sleep(0.0001)
dio.value(1)

return

def displayBit(bit, num):
global ADDR_DIS
if(num > 9 and bit > 4):

return

start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
if(DOT[bit-1] == 1):

writeByte(NUM[num] | 0x80)

240

Ml
o

www.keyestudio.com

else:
writeByte(NUM[num])

ack()

stop()

return

def clearBit(bit):

if(bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()
stop()

return

241

Ml
o

www.keyestudio.com

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff

return

def displayDot(bit, OnOff):
if(bit > 4):
return
if(OnOff == 1):

DOT[bit-1] = 1;

242

Ml
o

www.keyestudio.com

else:
DOT[bit-1] = 0;

return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):
clearBit()

return

def ShowNum(num): #0~9999

displayBit(1,num%10)

if(num < 10):
clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)

clearBit(4)

243

Ml
o

www.keyestudio.com

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
clearBit(4)

if(num > 999 and num < 10000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

InitDigitalTube()

while True:
#displayDot(1,0n) = on or off,
DigitalTube.Display(bit,number); bit=1---4 number=0---9
for i in range(0,9999):
ShowNum(i)

time.sleep(0.01)

Code Explanation
clkPin = 15, dioPin = 14 is pin number, CLK is connected to GP15, DIO is

connected to GOP14. We can set any pin at random.

244

Ml
o

www.keyestudio.com

displayBit(bit, num): show numbers at bit(1~4) bit num(0~9)
clearBit(bit): clear up bit(1~4)

setBrightness(): brightness setting

displayOnOFF() 0 means OFF, 1 means ON

displayDot(bit, OnOff)shows dots, 0 means OFF, 1 means ON

ShowNum(num): show integer num, in the range of 0~9999

Test Result
Run the test code, wire up and power on. The 4-digit tube display will show
integer from 0 to 99999, an increase of 1 for each 10ms, then start from 0

once reaching 99999

245

£

www.keyestudio.com

Project 40: HT16K33 8X8 Dot Matrix Module

246

Ml
o

www.keyestudio.com

Overview

What is the dot matrix display?

The 8X8 dot matrix is composed of 64 light-emitting diodes, and each
light-emitting diode is placed at the intersection of the row line and the
column line. When the corresponding row is set to 1 level, and a certain

column is set to 0 level, the corresponding diode will light up.

Working Principle

As the schematic diagram shown, to light up the LED at the first row and column,
we only need to set C1 to high level and R1 to low level. To turn on LEDs at the
first row, we set R1 to low level and C1-C8 to high level.

16 IO ports are needed, which will highly waste the MCU resources.

Therefore, we designed this module, using the HT16K33 chip to drive an 8*8 dot
matrix, which greatly saves the resources of the single-chip microcomputer.
There are three DIP switches on the module, all of which are set to 12C
communication address. The setting method is shown below.

A0, Aland A2 are grounded, that is, the address is 0x70

247

Ml
o

www.keyestudio.com

AO| Al| A2| A0| A1| A2| A0O| Al| A2
(1) (2) (3) (1) (2) (3) (1) (2) (3)
0 0 0 1 0 0 0 1 0
(OFF| (OFF| (OFF| (ON| (OFF| (OFF| (OFF| (ON| (OFF
)))
OX70 OX71 OX72
AO| Al1| A2| AO0| A1| A2| A0O| Al| A2
(1) (2) (3) (1) (2) (3) (1) (2) (3)
1 1 0 0 0 1 1 0 1
(ON| (ON| (OFF| (OFF| (OFF| (ON| (ON| (OFF| (ON
)))
OX73 OX74 OX75
AO| Al| A2| A0| A1| A2
(1) (2) (3) (1) (2) (3)
0 1 1 1 1 1
(OFF| (ON| (ON| (ON| (ON| (ON
))
OX76 OX77

248

2l
o

www.keyestudio.com

Components

Keyestudio
HT16K33_
8X8 Dot Matrix*1

Raspberry Pi Raspberry Pi Pico
Pico Board*1 Expansion Board*1

4P Dupont
Wire*1

Micro USB Cab | e*1

Connection Diagram

 ERERRRER]
 ERERRRE
ARERRRN
 EERRRN
 ERBRRRE
B EEEEN
 EERRRRN
(AR EREE

Dot matrix

UARTO UART]

g 3 3 3 &

1zco 12e1

uuuuuuuuuuu

A3 I @ @3 B N g RS gm

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

A aoaoooooaaoaono
x ﬂ o 2] o o o 2] 2] Y < m
ll 58

fritzing

249

Ml
o

www.keyestudio.com

* lesson 36
* HT16K33 8*8 dot matrix
* http:/ /www.keyestudio.com
import machine
import time
import json
import matrix_fonts
from ht16k33_matrix import ht16k33_matrix
Tool To Make Sprites https://gurgleapps.com/tools/matrix
#i2c config
clock_pin = 21
data_pin = 20
bus=0
i2c_addr_left = 0x70

use_i2c = True

def scan_for_devices():

i2c =
machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_
pin))

devices = i2c.scan()

250

Ml
o

www.keyestudio.com

if devices:
for d in devices:
print(hex(d))
else:

print('no i2c devices')

if use_i2c:
scan_for_devices()
left_eye = ht16k33_matrix(data_pin, clock_pin, bus,

i2c_addr_left)

def show_char(left):
if use_i2c:

left_eye.show_char(left)

def scroll_message(font,message="hello’',delay=0.05):
left_message ="' '+ message
right_message = message +"' '

length=Ilen(right_message)

char_range=range(length-1)

for char_pos in char_range:

right_left_char=font[right_message[char_pos]]

251

Ml
o

www.keyestudio.com

right_right_char=font[right_message[char_pos+1]]
left_left_char=font[left_message[char_pos]]
left_right_char=font[left_message[char_pos+1]]
for shift in range(8):

left_bytes=[0,0,0,0,0,0,0,0]

right_bytes=[0,0,0,0,0,0,0,0]

for col in range(8):

left_bytes[col]=Ileft_bytes[col] | left_left_char[col]<<shift

left_bytes[col]=Ileft_bytes[col] | left_right_char[col]>>8-shift;

right_bytes[col]=right_bytes[col] | right_left_char[col]<<shift

right_bytes[col]=right_bytes[col] | right_right_char[col]>>8-shift;
if use_i2c:
left_eye.show_char(left_bytes)

time.sleep(delay)

while True:
show_char(matrix_fonts.textFont1['A'])

time.sleep(1)

252

Ml
o

www.keyestudio.com

show_char(matrix_fonts.textFont1['B'])
time.sleep(1)
show_char(matrix_fonts.textFont1['C'])
time.sleep(1)

scroll_message(matrix_fonts.textFontl, ' Hello World ')

1. Code Explanation
We need to import the dot matrix module, matrix_fonts is the module file

for all characters

Raspberry Pi Pico = use_i2c = True

b4 i 9 def scan_for_devices():

& ht16k33_matrix.py y i2c¢ = machine.I2C(bus,sda=machine.Pin(data_pin),scl=mach
& matrix_fonts.py 4

& rotary.py [Shell

& rotary_irq_rp2.py serial.serialutil.SerialTimecutException: Write timeout

& urtc.py

e

show char(): displayed characters , for instance
show char(matrix fonts.textFont1['A']) shows A

scroll message(font,message="hello’,delay=0.05): scroll to display, 0.05
is the speed of the scroll, massage is character string and font is module

file.

Test Result

Wire up and run the test code. The dot matrix displays "A" for one second,

253

Ml
o

www.keyestudio.com

"B" for one second, "C" for one second, and then scroll to display the "Hello

World" pattern.

Project 41: LCD_128X32_DOT Module

This is a 128*32 pixel LCD module, which uses IIC communication mode and
ST7567A driver chip . At the same time, the code contains all the English letters
and common symbols of the library that can be directly called. When used, we

254

Ml
o

www.keyestudio.com

can also set English letters and symbols to display different text sizes in our
code. To make it easy to set up the pattern display, we also provide a mold
capture software that can convert a specific pattern into control code and then

copy it directly into the test code for use.

In the experiment, we will set up the display screen to display various English

words, common symbols and numbers.

LCD LCD 128*32 dot

o~ S

. Lo Keyestudio)
Raspberry Pi Raspberry Pi Pico 4P Dupont Micro USB
)) LCD_128X32_DO)
Pico Board*1 Expansion Board*1 Wire*1 Cable*1
T Module*1

Connection Diagram

255

2l
o

www.keyestudio.com

ZTEXS8ZTL A

T ¥ T 3 3 £ @ 9 0 0 a0 00 @
oo S 5 9.3 §ER 4R B

6.5--12V

0ﬂ00ﬂ0@ﬁﬂﬁ0@0@@~

33"'
o

5V GNI
: ‘llllI' gl -
a 0 g8 a0 o0of o6 p S m e < R wiA= g

3 5
: 232288828 B8R *=ZE Power_OUT

@ a 3 3 ® 8 8 K8 &% e 0

RESET,

fritzing

Test Code'"’
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 41
* LCD 128*%32
* http:/ /www.keyestudio.com
import machine
import time
import lcd128_32_fonts

from lcd128_32 import Icd128_32

#i2c config
clock_pin = 21

256

Ml
o

www.keyestudio.com

data_pin = 20
bus =0
i2c_addr = 0x3f

use_i2c = True

def scan_for_devices():

i2c =
machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_
pin))

devices = i2c.scan()

if devices:

for d in devices:
print(hex(d))
else:

print('no i2c devices')

if use_i2c:
scan_for_devices()

lcd = lcd128_32(data_pin, clock_pin, bus, i2c_addr)

Icd.Clear()

257

Ml
o

www.keyestudio.com

lcd.Cursor(0, 7)

Icd.Display("KEYES")

lcd.Cursor(1, 0)
Ilcd.Display("ABCDEFGHIJKLMNOPQR")
lcd.Cursor(2, 0)
Icd.Display("123456789+-*%/<>=$@")
lcd.Cursor(3, 0)

Icd.Display("%~&(){}:;'| 2,.~\\[1")

while True:
scan_for_devices()

time.sleep(0.5)

Code Explanation

Raspberry Pi Pico =
B lib

Import library | | @ icd128_32.0y

@ lcd128_32 _fonts.py

1.scan_for _devices() This function is an IIC addressing function; if an IIC
device is identified, the [IC address of the device is printed, as shown in the

figure:

258

Ml
o

www.keyestudio.com

Shell 3

>33

0x3f

w

If the device is not recognized, print no i2c devices, and then report an

error, as shown in the figure:

" A28 B9 ™
£1ie 10l S£.P

il HY 1
0SError: [Errno 5] EIO

1.lcd.Cursor(0, 7)

In order to set the cursor function, that is, to set the position where the
character is displayed on the Icd, the first parameter is the parameter of the
row, the second is the parameter of the column, then it is expressed as, the

first row, the seventh column starts to display the characters
lcd.Display("KEYES")
In order to set the character content to be displayed, "KEYES" is displayed

here

Test Result

259

£

www.keyestudio.com

Wire up to the wiring diagram and run the test code, the first line of the
128X32LCD module displays "KEYES", the second line displays
"ABCDEFGHIJKLMNOPQR", the third line displays
"123456789+-*/<>=$@", the fourth line displays
"123456789+-*/<>=%$@", the fourth line displays "KEYES" The line displays

"% &\){}:'?,.~\[]" as shown in the following image:

""UUUUV'""?VV"WTI
B E, Gle |
b @

260

pv4
o

www.keyestudio.com

Project 42: RFID Module

r -
! §
|

|

Description

RFIDRFID-RC522 radio frequency module adopts a Philips MFRC522
original chip to design card reading circuit, easy to use and low cost,
suitable for equipment development and card reader development and so
on.

RFID or Radio Frequency Identification system consists of two main
components, a transponder/tag attached to an object to be identified, and

a Transceiver also known as interrogator/Reader.

In the experiment, the data read by the card swipe module is 4
hexadecimal numbers, and we print these four hexadecimal numbers as

strings. For example, we read the data of the IC card below: 0x8d, Oxfe,

261

Ml
o

www.keyestudio.com

Ox6¢, 0x4d, and the information string displayed in the shell is 8dfe6c4d;
the data read from the keychain is: Oxbc, 0x33, 0x76, Ox6e, and the

information is displayed in the shell The string is bc33766e.

Working Principle

RFID (Radio Frequency Identification)

Radio frequency identification, the card reader is composed of a radio
frequency module and a high-level magnetic field. The Tag transponder is
a sensing device, and this device does not contain a battery. It only
contains tiny integrated circuit chips and media for storing data and
antennas for receiving and transmitting signals. To read the data in the tag,
first put it into the reading range of the card reader. The reader will
generate a magnetic field, and because the magnetic energy generates
electricity according to Lenz's law, the RFID tag will supply power, thereby

activating the device.

Last Minute
ENGINEERS .com

RFID Tag
Antenna RFID Reader/Writer

Components Required

262

Ml
o

www.keyestudio.com

Qe

Raspberry Pi Pico
Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY
RFID Module*1

4P Dupont Wire*1

Micro USB Cable*1

Key*1

IC Card*1

Connection Diagram

UARTO UART1

Test Code

s
I
]

SN
X
7N
D o &

<
S
—

_!W

ritzing

Ml
o

www.keyestudio.com

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 42

* rfid rc522 test

* http:/ /www.keyestudio.com
import machine
import time

from mfrc522_i2c import mfrc522

#i2c config
addr = 0x28
scl=5

sda =4

rc522 = mfrc522(scl, sda, addr)
rc522.PCD_Init()
rc522.ShowReaderDetails()

MFRC522 Card Reader details

while True:

if rc522.PICC_IsNewCardPresent():

#print("Is new card present!")

Show details of PCD -

264

Ml
o

www.keyestudio.com

if rc522.PICC_ReadCardSerial() == True:

print("Card UID:")

print(rc522.uid.uidByte[0 : rc522.uid.size])

#time.sleep(1)

Code Explanation

First import the module of RFID522,

>

@
&
&

Raspberry Pi Pico

lib
mirc322_config.py
mfrc522_i2c.py
soft_jic.py

mfrc522 config.py; This is a configuration file that defines some

parameters and commands

mfrc522 i2c.py; Initialization and read and write functions

Soft iic.py; It is the bottom-level read and write function of software 12C.

We use the io port to simulate 12C here.

Test Result

When we make the IC card close to the RFID module, the information will

be printed out, as shown in the figure below.

265

£

www.keyestudio.com

| Shell 3¢ |

MrKLFZ SOLCWATE VEFAION:L146 = V2.0 -
Card UID:

[29, 75, 135, 90]
Card UID:

(29, 75135, 90
Card UID:

[76, 115, 76, 99]
Card UID:

[76, 115, 76, 99]

6. Comprehensive Experiments

The previous projects are related to single sensor or module. In the
following part, we will combine various sensors and modules to create

some comprehensive experiments to perform special functions.

266

Ml
o

www.keyestudio.com

Project 43: Breathing LED

Overview

A “breathing LED" is a phenomenon where an LED's brightness smoothly
changes from dark to bright and back to dark, continuing to do so and
giving the illusion of an LED "breathing. This phenomenon is similar to a
lung breathing in and out. So how to control LED’ s brightness? We need

to take advantage of PWM.

267

Ml
o

www.keyestudio.com

Components

Raspberry Pi
Pico Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio
White LED
Modul e*1

3P Dupont
Wire*1

Micro USB Cab|e*1

Connection Diagram

LD

Test Code

UARTO UART1

chs op aspberry P

] cpn =
P2 GP10
GND

121

GP21 GPI5
GP20 cPl4
— e

@l

Power_OUT
RESET,

fritzing

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 38

268

Ml
o

www.keyestudio.com

* Breath
* http:/ /www.keyestudio.com
import machine

import time

pwm = machine.PWM(machine.Pin(15))

pwm.freq(1000)

duty =0
direction = 1
while True:
duty += direction
if duty > 255:
duty = 255
direction = -1
elif duty < 0:
duty =0
direction = 1
pwm.duty_ul6(duty * duty)

time.sleep(0.01)

269

Ml
o

www.keyestudio.com

Code Explanation

The larger the set duty cycle, the brighter the LED will be, with a maximum of
65535. The duty increases from 0 to 255 at the beginning, with an increase of 1,
and delay in 10 milliseconds for each time, the LED on the module will gradually

become brighter.

After PWM is 255*255, i starts to decrease from 255 to 0, decreasing by 1 each
time, and delaying 10 milliseconds each time, the LED on the module gradually
gets dark. Then it gradually becomes brighter, cycle alternately, just like the
human breathes.

We can change the delayed time in the code. There are two ways:

Change the step length or reduce the delayed time.

The step length is supposed to divided by 255, for instance direction = -2 or

direction = 2.

Test Result
Run the test code, the LED on the module gradually gets dimmer then

brighter, cyclically, like human breathe

270

Ml
o

www.keyestudio.com

271

Ml
o

www.keyestudio.com

Project 44: Button-controlled LED

Overview
In this lesson, we will make an extension experiment with a button and an
LED. When the button is pressed and low levels are output, the LED will

light up; when the button is released, the LED will go off. Then we can

control a module with another module.

272

Ml
o

www.keyestudio.com

Components

Raspberry Pi
Pico Board*1

Raspberry Pi
Pico Expansion
Board*1

Keyestudio
Purple LED
Modul e*1

Keyestudio
DIY Button
Modul e*1

3P Dupont
Wire*2

Micro USB
Cable*1

Connection Diagram

Test Code

Power_OUT

RESET,

fritzing

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

273

Ml
o

www.keyestudio.com

* lesson 39

* button control LED

* http:/ /www.keyestudio.com
from machine import Pin

import time

button = Pin(16, Pin.IN)
LED = Pin(15, Pin.OUT)

touch = False

def toggle_handle(pin):

global touch

touch = not touch

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle_handle)

while True:

LED.value(touch)

time.sleep(0.01)

274

Ml
o

www.keyestudio.com

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle_handle):

trigger mode is when high levels change into low levels, the trigger interrupts

toggle_handle: when entering the interrupt mode, the on and off of the LED

can be controlled.

Test Result
Run the test code and press the button, LED will light up; if the button is

pressed again, the LED will go out.

Code Explanation

Set 10 ports according to connection diagram and configure pins mode

attachlInterrupt(digitalPinToInterrupt(button), toggle_handle,
FALLING)

The trigger mode is when a high level becomes a low level. When the trigger
interrupts, the interrupt function will be activated.

toggle_handle: when entering the interrupt mode, the on and off of the LED

can be controlled.

275

Ml
o

www.keyestudio.com

Test Result
Upload the code wire up and power up with a USB cable. When the button

is pressed, the LED will light up; when pressed again, the LED will go off

Project 45: Alarm Experiment

Overview

276

Ml
o

www.keyestudio.com

In the previous experiment, we control an output module though an input
module. In this lesson, we will make an experiment that the active buzzer

will emit sounds once an obstacle appears.

Components

et

Keyestudio

) Raspberry Pi Keyestudio 3P)
Raspberry Pi)) Obstacle] Micro USB
. Pico Expansion . Active Dupont
Pico Board*1 Avoidance) Cable*1
Board*1 Buzzer*1 Wire*2
Sensor*1

Connection Diagram

T

-

Obstacle avoidance

Power_OUT
RESET,

fritzing
Test Code

277

Ml
o

www.keyestudio.com

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 40
* Avoiding alarm
* http://www.keyestudio.com
from machine import Pin

import time

buzzer = Pin(16, Pin.OUT)

sensor = Pin(15, Pin.IN)

while True:
buzzer.value(not(sensor.value()))

time.sleep(0.01)

Code Explanation
When an obstacle is detected, sensor.value() will return a low level signal.
So when an obstacle is detected, the GP16 connected to the buzzer pin will

output a high level signal, the buzzer will emit sounds.

Test Result

Run the test code. The active buzzer will emit sound if detecting obstacles;

278

£

www.keyestudio.com

otherwise, it won't emit sound

Code Explanation
Set |0 ports according to connection diagram then configure pins mode
The value is 0 when pressing the button, So, we can determine the key

value(0) through if (item == 0) and make the buzzer beep.

Test Result

Upload the test code, if the obstacle is detected, the active buzzer will

chime; if not, it won’ t beep

Project 46: Ultraviolet Alarm

Description

We can use a UV sensor to control the buzzer to achieve the effect of UV

279

Ml
o

www.keyestudio.com

alarm.

Required Components

@ 1]

REMOVE =
SEAL
AFTER —
WASHING e -

A-BUZZER .

) o Keyestudio Keyestudio)
Raspberry Pi Raspberry Pi Pico)] 3P Dupont Micro USB
)) ultraviolet Active)
Pico Board*1 Expansion Board*1 Wire*x2 Cable*1
Sensor*1 Buzzer*1

Connection Diagram

43zzna-v

UARTO UARTI 2 =) o 2 INIHSYM
3v3 w3 L Y] d3Ldv
= avas

JA0NW3Y

GND

Power_OUT

fritzing

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

280

Ml
o

www.keyestudio.com

* lesson 41

* UV_alarm

* http:/ /www.keyestudio.com
from machine import Pin

import time

buzzer = Pin(3, Pin.OUT)

sensor = machine.ADC(26)

while True:
analogVal = sensor.read_ul6()
print(analogVal)
if analogVal > 1000:
buzzer.value(1)
else:
buzzer.value(0)

time.sleep(0.5)

Code Explanation
The code settings in the experiment are similar to the previous

experiments. This time, the module we input is used as an analog sensor.

281

£

www.keyestudio.com

By setting a threshold, the alarm exceeds the threshold.

Test Result
Wire up and run the test code. When detecting ultraviolet rays through he
ultraviolet sensor and reaching the strength we set, the active buzzer will

emit sound

| Shell %€ |
224
240
240
e08
1344
2448
1008
21352
1552

3

282

pv4
o

www.keyestudio.com

Project 47: Intrusion Detection

Description

In this experiment, we use a PIR motion sensor to control an active buzzer

to emit sounds and the onboard LED to flash rapidly.

Required Components

283

Ml
o

www.keyestudio.com

) Keyestudio)
. Raspberry Pi Keyestudio .
Raspberry Pi)) DIY PIR) 3P Dupont Micro USB
) Pico Expansion) DIY Active)
Pico Board*1 Motion Wire*2 Cab le*1
Board*1 Sensor*1
Sensor*1

Connection Diagram

UARTO UARTI

SEAL
AFTER
WASHING

A-BUZZER

Power_OQUT

RESET,
PIR motion

fritzing

Test Code
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 42
* PIR alarm
* http:/ /www.keyestudio.com
import machine

284

Ml
o

www.keyestudio.com

import utime

sensor_pir = machine.Pin(15, machine.Pin.IN,
machine.Pin.PULL_DOWN)
led = machine.Pin(25, machine.Pin.OUT)

buzzer = machine.Pin(16, machine.Pin.OUT)

def pir_handler(pin):
utime.sleep_ms(100)
if pin.value():
print("Warning! Intrusion detected! ")
buzzer.value(1)
for i in range(20):
led.toggle()

utime.sleep_ms(100)

sensor_pir.irq(trigger=machine.Pin.IRQ_RISING,

handler=pir_handler)

while True:
led.toggle()

buzzer.value(0)

285

Ml
o

www.keyestudio.com

utime.sleep(2)

Code Explanation
sensor_pir.irq(trigger=machine.Pin.IRQ_RISING,
handler=pir_handler): low levels change into high levels. pir_handler is the

interrupt function which can make the buzzer emit and LED flash

Test Result

After programming, the LED flashes slowly, the detector starts to work, and
the interrupt trigger mode is IRQ_RISING. When there is an intrusion, the
output level of the PIR changes from 0 to 1, the pir_handler() function will

be called, the buzzer will emit sound, and the LED will flash quickly.

286

Ml
o

www.keyestudio.com

Speaker Module

Project 48

287

Ml
o

www.keyestudio.com

Introduction

We learned about controlling the speaker module to make sounds, play
beats and adjust its volume. In fact, each song is a combination of specific
beats and tones (frequencies). In this experiment, we use this speaker
module to play a song.

The frequency of each tone is shown below.

Bass:

Key

Note

A 221 248 278 294 330 371 416

B 248 278 294 330 371 416 467

C 131 147 165 175 196 221 248

D 147 165 175 196 221 248 278

E 165 175 196 221 248 278 312

F 175 196 221 234 262 294 330

288

£

www.keyestudio.com

G 196 221 234 262

Midrange :

Key 1 2 3 4

Note

A 441 495 556 589

B 495 556 624 661

C 262 294 330 350

D 294 330 350 393

E 330 350 393 441
F 350 393 441 495
G 393 441 495 556

294

661

724

393

441

495

556

624

330

724

833

441

495

556

624

661

371

833

935

495

556

624

661

724

289

£

www.keyestudio.com

Treble:

ey 1#* o# 3 2* c# 6" 7#
Note

A 882 990 1112 1178 1322 1484 1665
B 990 1112 1178 1322 1484 1665 1869
C 525 589 661 700 786 882 990
D 589 661 700 786 882 990 1112
E 661 700 786 882 990 1112 1248
F 700 786 882 935 1049 1178 1322
G 786 882 990 1049 1178 1322 1484

Beats are the time delay for each note. The larger the number, the longer
the delay time. A note without a line in the spectrum is a beat, with a delay
of 1s. while a beat with an underline is 1/2 of a beat without a line, with a
delay of 0.5s, and a beat with two underlines is 1/4 of a beat without a line,
with a delay of 0.25s. The 1/8 of a beat is with a delay of 0.125s.

We will take Happy Birthday Song as an example.

290

Ml
o

www.keyestudio.com

Components

- S5

Keyestudio 8002b
Audio Power 3P Dupont Wire*1 | Micro USB Cable*1
Amplifie*1

Raspberry Pi Raspberry Pi Pico
Pico Board*1 Expansion Board*1

Connection Diagram

Power_QUT
RESET,

fritzing

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 43

291

Ml
o

www.keyestudio.com

* play music

* http:/ /www.keyestudio.com

from machine import Pin, PWM
from utime import sleep

buzzer = PWM(Pin(15))

tones = {

"D1":
"D2":
"D3":
"D4":
"D5":
"D6":

llD7ll:

"M1":
"M2":
"M3":
"M4":
"M5":
"M6":

IIM7":

262,
293,
329,
349,
392,
440,
494,
523,
586,
658,
697,
783,
879,
987,

292

Ml
o

www.keyestudio.com

"H1": 1045,
"H2": 1171,
"H3": 1316,
"H4": 1393,
"H5": 1563,
"H6": 1755,
"H7": 1971
>

song = [" D5",ll D5ll,ll D6"," D5ll,llM 1"," D7",
1] D5",ll D5ll,ll D6"," D5ll,llM 2","M 1",
n D5",ll D5ll,llM5","M3ll,llM 1"," D7ll,ll D6ll,

"M4ll,llM4","M3",llM 1","M2ll,llM 1"

durt = [0.25, 0.25, 0.5, 0.5, 0.5, 1,
0.25, 0.25, 0.5, 0.5, 0.5, 1,
0.25, 0.25, 0.5, 0.5, 0.5, 0.5, 0.5,
0.25, 0.25, 0.5, 0.5, 0.5, 1

def playtone(frequency):

293

Ml
o

www.keyestudio.com

buzzer.duty_u16(1000)

buzzer.freq(frequency)

def bequiet():
buzzer.duty_u16(0)

def playsong(mysong):
for i in range(len(mysong)):
playtone(tones[mysong[i]])
sleep(durt[i])
bequiet()

playsong(song)

Code Explanation

We list frequencies of all D keys. Then list the frequencies and beats

according to the musical notation. The beat we use is 500ms and can be

adjusted. The corresponding beat are looped to become a song.

294

pv4
o

www.keyestudio.com

Test Result
Connect the components according to the connection diagram and run the

test code, the audio power amplifier module will play a birthday song.

Project 49: Extinguishing Robot

295

Ml
o

www.keyestudio.com

Description

Today we will use Arduino simulation to build an extinguishing robot that

will automatically sense the fire and start the fan. In this project we will

learn how to build a very simple robot using pico, (detecting flames with a

flame sensor, blowing out candles with a fan) can teach us basic concepts

about robotics. Once you understand the basics below, you can build more

complex robots.

Components Required

Raspberry Pi
Pico Board*1

Raspberry Pi Pico
Expansion Board*1

130
Motor*1

Flame

Sensor*1

4P Dupont
Wire*2

Micro USB
Cable*1

Connection Diagram

296

Ml
o

www.keyestudio.com

Flame

<8?§.

fritzing

Test Code
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 49
* Self-extinguishing
* http:/ /www.keyestudio.com
from machine import Pin

import time

#two pins of the motor

INA = Pin(20, Pin.OUT)

297

Ml
o

www.keyestudio.com

INB = Pin(21, Pin.OUT)

flame_A = machine.ADC(26)

while True:

value = flame_A.read_ul6()

print(value)

if value < 30000:
#start
INA.value(0)
INB.value(1)

else:
#stop
INA.value(0)
INB.value(0)

time.sleep(0.1)

Code Explanation

In the code, we set the threshold value to 30000. When the analog value detected
by the flame sensor is lower than the threshold value, the fan will be
automatically turned on; otherwise, it will be turned off. For the driving method of

the fan, please refer to the 130 Motor.

298

Ml
o

www.keyestudio.com

Test Result

Wire up and upload the test code, the shell shows the flame value. When this

value is less than 30000, the fan will works to blow out the fire. Basically, the

flame value can be set by yourself.

Shell % |

62271 ™
62271

62287

5057

4129

4817

3824

299

pv4
o

www.keyestudio.com

Project 50: Rotary Encoder

Introduction

In this lesson, we will control the LED on the RGB module to show different
colors through a rotary encoder.

When designing the code, we need to divide the obtained values by 3 to
get the remainders. The remainder is 0 and the LED will become red. The
remainder is 1, the LED will become green. The remainder is 2, the LED will

turn blue.

Components

300

Ml
o

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico
Expansion

Board*1

Keyestudio
Common
Cathode RGB
Module*1

Keyestudio
Rotary Encoder

Module*1

Qo

5P Dupont
Wire*1

4P Dupont Wire*1

Micro USB
Cable*1

Connection Diagram

RGB LED

vec

GND
Rotary encoder .

Power_OUT
RESET,

fritzing

301

Ml
o

www.keyestudio.com

Test Code
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 44
* Encoder control RGB
* http:/ /www.keyestudio.com
import time
from rotary_.irq_rp2 import RotaryIRQ

from machine import Pin, PWM

pwm_r = PWM(Pin(9))
pwm_g = PWM(Pin(10))

pwm_b = PWM(Pin(11))

pwm_r.freq(1000)
pwm_g.freq(1000)
pwm_b.freq(1000)

def light(red, green, blue):
pwm_r.duty_ulé6(red)

302

Ml
o

www.keyestudio.com

pwm_g.duty_ul6(green)
pwm_b.duty_ul6(blue)

SW=Pin(20,Pin.IN,Pin.PULL_UP)

r = RotaryIRQ(pin_num_clk=18,
pin_num_dt=19,
min_val=0,
reverse=False,

range_mode=RotaryIRQ.RANGE_UNBOUNDED)

while True:

val = r.value()

print(val%3)

if val%3 == 0:
light(65535, 0, 0)

elif val%3 ==
light(0, 65535, 0)

elif val%3 ==
light(0, 0, 65535)

time.sleep(0.1)

303

£

www.keyestudio.com

Code Explanation

In the experiment, we set the val to the remainder of Encoder Count
divided by 3. Encoder Count is the value of the encoder. Then we can set
pin 9(red), 10(green) and 11(blue) according to remainders.

Colors of LED can be controlled by remainders.

Test Result
Wire up, run the code and open the serial monitor. Rotate the knob of the

rotary encoder to display the reminders, which can control colors of LED.

| shell 3¢ |

v

O R DR O

304

pv4
o

www.keyestudio.com

Project 51: Rotary Potentiometer

1

Introduction

In the previous courses, we did experiments of breathing light and
controlling LED with button. In this course, we do these two experiments
by controlling the brightness of LED through an adjustable potentiometer.
The brightness of LED is controlled by PWM values, and the range of
analog values is the same as the PWM" s, from 0 to 65535.

After the code is set successfully, we can control the brightness of the LED

on the module by rotating the potentiometer.

305

Ml
o

www.keyestudio.com

Required Components

Raspberry Pi) Keyestudio
. . Keyestudio)
Raspberry Pi Pico p | Rotary 3P Dupont Micro USB
urple
Pico Board*1 Expansion LE;;1 Potentiomete Wire*2 Cable*1
Board*1 r*1

Connection Diagram

1ajowonuajod

fritzing

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 45
* adjust the light

* http://www.keyestudio.com

306

Ml
o

www.keyestudio.com

import machine

import utime

potentiometer = machine.ADC(26)

pwm = machine.PWM(machine.Pin(15))
pwm.freq(1000)

while True:
pot_value = potentiometer.read_ul16()
pwm.duty_ul6(pot_value)

utime.sleep(0.1)

Code Explanation

It is easy to control the brightness of the LED light by a potentiometer.

Here we can find that MicroPython unifies the value range of the ADC

between 0 and 65535, and assigns values directly, which is simple and

convenient.

307

pv4
o

www.keyestudio.com

Test Result
Run the test code and turn the potentiometer on the module to adjust the

brightness of the LED on the LED module.

Project 52: Smart Windows

Description

308

Ml
o

www.keyestudio.com

In life, we can see all kinds of smart products, such as smart home. Smart
homes include smart curtains, smart windows, smart TVs, smart lights, and
more. In this experiment, we use a steam sensor to detect rainwater, and

then achieve the effect of closing and opening the window by a servo.

Required Components

. Lo Keyestudio .
Raspberry Pi Raspberry Pi Pico 3P Dupont Micro USB
. . Steam Servo*1)
Pico Board*1 Expansion Board*1 Wire*1 Cab | e*1
Sensor*1

Connection Diagram

fritzine

309

Ml
o

www.keyestudio.com

Test Code
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 46
* Smart_window
* http:/ /www.keyestudio.com
import utime
from machine import Pin

from machine import PWM

pwm = PWM(Pin(9))#the pin of the servo is connected to GP9
pwm.freq(50)#20ms, frequency is 50Hz

sensor = machine.ADC(26)#ADCO

The duty cycle corresponding to the angle

0° ----2.5%----1638

45° ----5%----3276

90° ----7.5%----4915

135° ----10%----6553

180° ----12.5%----8192

Take consideration into errors , set duty cycle in the range of

310

Ml
o

www.keyestudio.com

1000~9000, then rotate 0~180°
angle_0 = 1638

angle_90 = 4915

angle_180 = 8192

while True:

value = sensor.read_ul6()

print(value)

if value > 2000:
pwm.duty_ul6(angle_0)
utime.sleep(0.5)

else:
pwm.duty_ul6(angle_180)

utime.sleep(0.5)

Code Explanation

We can control a servo to rotate by a threshold

311

Ml
o

www.keyestudio.com

Test Result

Wire up and run the test code. When the sensor detects a certain amount

of water, the servo rotates to achieve the effect of closing or opening

windows.

Project 53: Sound Activated Light

EEpLEESS = 2 —

312

Ml
o

www.keyestudio.com

Introduction

In this lesson, we will make a smart sound activated light using a sound
sensor and an LED module. When we make a sound, the light will
automatically turn on; when there is no sound, the lights will automatically
turn off. How it works? Because the sound-controlled light is equipped with
a sound sensor, and this sensor converts the intensity of external sound
into a corresponding value. Then set a threshold, when the threshold is
exceeded, the light will turn on, and when it is not exceeded, the light will

go out.

Components

L
Raspberry | Raspberry | Keyestudio | Keyestudio

3P Dupont | MicroUSB
Pi Pico Pi Pico Sound White LED

Wire*2 Cable*1
Board*1 Shield*1 Sensor*1 Module*1

313

Ml
o

www.keyestudio.com

Connection Diagram

RS

UL

auoydosdiy

.@{LU .

fritzing

Test Code
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 47
* sound-controlled lights
* http:/ /www.keyestudio.com
import machine

import time

MicroPhone = machine.ADC(26)

led = machine.Pin(15,machine.Pin.OUT)

while True:

314

Ml
o

www.keyestudio.com

value = MicroPhone.read_ul16()
print(value)
if value > 5000:
led.value(1)
time.sleep(3)
else:
led.value(0)

time.sleep(0.1)

Code Explanation

We set the analog threshold value to 5000. If more than 5000, LED will be

on 3s; on the contrary, it will be off.

Test Result
Run the test code, the shell monitor displays the corresponding volume
value. When the analog value of sound is greater than 5000, the LED on the

LED module will light up, otherwise it will go off.

315

Ml
o

www.keyestudio.com

Shell 3 |

Bl -
720

384

0

0

1072

448

10242

Project 54: Fire Alarm

Description
In this experiment, we will make a fire alarm system. Just use a flame sensor

to control an active buzzer to emit sounds.

Required Components

316

Ml
o

www.keyestudio.com

> @

REMOVE

SEAL

AFTER
WASHING

A-BUZZER .

Raspberry Pi Pico Raspberry Pi Pico Expansion | Keyestudio DIY Eg keyestudio DIY

Board*1 Board*1 Active Buzzer*1 Flame Sensor*1
= — Q=
Micro USB Cable*1 3P Dupont Wire*1 4P Dupont Wire*1

Connection Diagram
¥3azznag-v

UARTO UARTI

INIHSVYM
H3ldv
avas

12c0

= | =
i [
- -
N
Qﬂﬁﬂﬂﬂﬂﬁﬂ*
orzo [ome . A
3] N m

power_our H I
RESET,

fritzing

Test Code

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 48

317

Ml
o

www.keyestudio.com

* Flame_alarm
* http:/ /www.keyestudio.com
from machine import Pin

import time

buzzer = Pin(3, Pin.OUT)

sensor = Pin(22, Pin.IN)

while True:
analogVal = sensor.value()
print(analogVal)
if analogVal ==
buzzer.value(1)
else:
buzzer.value(0)

time.sleep(0.5)

Code Explanation
This flame sensor uses an analog pin and a digital pin. When a flame is

detected, the digital pin outputs a low level. In this experiment we will use

318

£

www.keyestudio.com

the digital port.

Test Result
Wire up, run the test code and power on. The sensor detects the flame, and
the external active buzzer will emit sounds, otherwise the active buzzer will

not emit sounds.

319

£

www.keyestudio.com

Project 55: Smoke Alarm

Description
In this experiment, we will make a smoke alarm by a TM16504-Digit segment

module, a gas sensor and an active buzzer.

320

Ml
o

www.keyestudio.com

Required Components

@]

WASHING

A-BUZZER .

Raspberry Pi Pico
Board*1

Raspberry Pi Pico Expansion
Board*1

Keyestudio Active

Buzzer*1

Keyestudio
TM16504-Digit
Segment Module*1

—

a0 =

keyestudio Analog

Gas Senso*1

3P Dupont Wire*1

4P Dupont Wire*2

Micro USB Cable*1

Connection Diagram

aqny |eybig-y

Test Code

§ 353339990939 9883$3
uuuuuuuuuuuuuuuu

nnnnnnnnnn
uuuuuuuuuuuuuuu
25

¥3azzng-v

ONIHSYM
ENEL
avas

fritzing

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

321

Ml
o

www.keyestudio.com

* lesson 49

* smoke_alarm

* http:/ /www.keyestudio.com
from machine import Pin

import time

mq2 = machine.ADC(26)
buzzer = Pin(3, Pin.OUT)
definitions for TM1650
ADDR_DIS = 0x48 #mode command

ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST =0
BRIGHT_TYPICAL = 2

BRIGHTEST =7

on =1

off =0

number:0~9

322

Ml
o

www.keyestudio.com

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6¢c,0x6e]

DIG = [0x6e,0x6c¢c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15
dioPin = 14
clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):
global clk,dio
for i in range(8):
if(wr_data & 0x80 == 0x80):
dio.value(1)
else:
dio.value(0)
clk.value(0)
time.sleep(0.0001)

clk.value(1)

323

Ml
o

www.keyestudio.com

time.sleep(0.0001)
clk.value(0)
wr_data <<=1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
time.sleep(0.0001)
dio.value(0)

return

def ack():
global clk,dio
dy=0
clk.value(0)
time.sleep(0.0001)
dio = Pin(dioPin, machine.Pin.IN)
while(dio.value() == 1):
time.sleep(0.0001)

dy +=1

324

Ml
o

www.keyestudio.com

if(dy>5000):
break
clk.value(1)
time.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, machine.Pin.OUT)

return

def stop():
global clk,dio
dio.value(0)
clk.value(1)
time.sleep(0.0001)
dio.value(1)

return

def displayBit(bit, num):
global ADDR_DIS
if(num > 9 and bit > 4):
return
start()

writeByte(ADDR_DIS)

325

Ml
o

www.keyestudio.com

ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
if(DOT[bit-1] == 1):
writeByte(NUM[num] | 0x80)
else:
writeByte(NUM[num])
ack()
stop()

return

def clearBit(bit):
if(bit > 4):
return
start()
writeByte(ADDR_DIS)
ack()

writeByte(DisplayCommand)

326

Ml
o

www.keyestudio.com

ack()

stop()

start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()

stop()

return

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

def displayOnOFF(OnOff = 1):

327

Ml
o

www.keyestudio.com

global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff

return

def displayDot(bit, OnOff):
if(bit > 4):
return
if(OnOff == 1):
DOT[bit-1] = 1;
else:
DOT[bit-1] = 0;

return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):
clearBit()

return

def ShowNum(num): #0~9999

328

Ml
o

www.keyestudio.com

displayBit(1,num%10)

if(num < 10):
clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)

clearBit(4)

if(num > 999 and num < 10000):

displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

InitDigitalTube()

while True:

value = mqg2.read_ul6()//16

329

Ml
o

www.keyestudio.com

print(value)

ShowNum(value)

if value > 1000:
buzzer.value(1)

else:
buzzer.value(0)

time.sleep(0.1)

Code Explanation

Define an integer variable val to store the analog value of the smoke sensor, and
then we display the analog value in the four-digit digital tube, and then set a

threshold, and when the threshold is reached, the buzzer will sound.

Test Result

Run the test code, wire up and power on. When the concentration of
combustible gas exceeds the standard, the active buzzer module will give
an alarm, and the four-digit digital tube will display the concentration

value.

330

£

www.keyestudio.com

Description

In the last experiment, we made a smoke alarm. In this experiment, we
combine the active buzzer, the MQ-3 alcohol sensor, and a four-digit
digital tube to test the alcohol concentration through the alcohol sensor.

Then, the concentration to control the active buzzer alarm and the

331

Ml
o

www.keyestudio.com

four-digit digital tube to display the concentration. So as to achieve the

simulation effect of alcohol detector.

Components Required

@]

WASHING

A-BUZZER .

Raspberry Pi Pico
Board*1

Raspberry Pi Pico Expansion
Board*1

Active Buzzer

Keyestudio TM1650
4-Digit Module*1

—

a0 =

keyestudio Alcohol

Sensor*1

3P Dupont Wire*1

4P Dupont Wire*2

Micro USB Cable*1

Connection Diagram

aqny |eubig-v

.m]

Test Code

oyooy

332

Ml
o

www.keyestudio.com

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 56
* breathalyzer
* http:/ /www.keyestudio.com
from machine import Pin

import time

mq3 = machine.ADC(26)
buzzer = Pin(3, Pin.OUT)
definitions for TM1650
ADDR_DIS = 0x48 #mode command

ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST =0
BRIGHT_TYPICAL = 2

BRIGHTEST =7

off =0

333

Ml
o

www.keyestudio.com

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6¢c,0x6e]

DIG = [0x6e,0x6c¢c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15
dioPin = 14
clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):
global clk,dio
for i in range(8):
if(wr_data & 0x80 == 0x80):
dio.value(1)
else:
dio.value(0)

clk.value(0)

334

Ml
o

www.keyestudio.com

time.sleep(0.0001)
clk.value(1)
time.sleep(0.0001)
clk.value(0)
wr_data <<=1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
time.sleep(0.0001)
dio.value(0)

return

def ack():
global clk,dio
dy=0
clk.value(0)
time.sleep(0.0001)
dio = Pin(dioPin, machine.Pin.IN)

while(dio.value() == 1):

335

Ml
o

www.keyestudio.com

time.sleep(0.0001)

dy +=1

if(dy>5000):

break

clk.value(1)
time.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, machine.Pin.OUT)

return

def stop():
global clk,dio
dio.value(0)
clk.value(1)
time.sleep(0.0001)
dio.value(1)

return

def displayBit(bit, num):
global ADDR_DIS
if(num > 9 and bit > 4):

return

336

Ml
o

www.keyestudio.com

start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
if(DOT[bit-1] == 1):
writeByte(NUM[num] | 0x80)
else:
writeByte(NUM[num])
ack()
stop()

return

def clearBit(bit):
if(bit > 4):
return
start()

writeByte(ADDR_DIS)

337

Ml
o

www.keyestudio.com

ack()
writeByte(DisplayCommand)
ack()

stop()

start()
writeByte(DIG[bit-1])

ack()

writeByte(0x00)

ack()

stop()

return

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

338

Ml
o

www.keyestudio.com

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff

return

def displayDot(bit, OnOff):
if(bit > 4):
return
if(OnOff == 1):
DOT[bit-1] = 1;
else:
DOT[bit-1] = 0;

return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):
clearBit()

return

339

Ml
o

www.keyestudio.com

def ShowNum(num): #0~9999

displayBit(1,num%10)

if(num < 10):
clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)

clearBit(4)

if(num > 999 and num < 10000):

displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

InitDigitalTube()

340

Ml
o

www.keyestudio.com

while True:
value = mq3.read_ul6()//16
print(value)
ShowNum(value)
if value > 3000:
buzzer.value(1)
else:
buzzer.value(0)

time.sleep(0.1)

Code Explanation
Define an integer variable val to store the analog value of the alcohol
sensor, then we display the analog value in the four-digit display module

and set a threshold.

Test Result

Wire up according to the wiring diagram and run the test code. When
different alcohol concentrations are detected, the active buzzer module
will alarm, and the four-digit digital display will show the concentration

value.

341

pv4
o

www.keyestudio.com

Project 57: 6812 Colorful LED

Description

We learned how to use the 6812 RGB module, we knew that this module
can light up each LED through a pin. In this experiment, we will control the
RGB module to display different colors. (Note: do not look directly at the

LEDs for a long time to avoid damage to our eyes.)

342

Ml
o

www.keyestudio.com

Required Components

et lE |

Keyestudio

Raspberry Pi | Raspberry Pi 3P Dupont | MicroUSB
6812 RGB

Pico Board*1 | Pico Shield*1 Wire*1 Cable*1
Module*1

Connection Diagram

a371994 2189

[}
&,
o
w
o

fritzing

Test Code
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 50
* SK6812 RGB
* http:/ /www.keyestudio.com

343

Ml
o

www.keyestudio.com

Example using PIO to drive a set of WS2812 LEDs.

import array, time
from machine import Pin

import rp2

Configure the number of WS2812 LEDs.
NUM_LEDS =4
PIN_NUM =15

brightness = 0.2

@rp2.asm_pio(sideset_init=rp2.P10.0UT_LOW,

out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=24)

def ws2812():
T1=2
T2=5
T3=3

wrap_target()
label("bitloop")
out(x, 1) .side(0) [T3-1]

jmp(not_x, "do_zero") .side(1) [T1-1]

344

Ml
o

www.keyestudio.com

jmp("bitloop") .side(1) [T2-1]
label("do_zero")
nop() .side(0) [T2-1]

wrap()

Create the StateMachine with the ws2812 program, outputting on
pin
sm = rp2.StateMachine(0, ws2812, freq=8_000_000,

sideset_base=Pin(PIN_NUM))

Start the StateMachine, it will wait for data on its FIFO.

sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.

ar = array.array("I", [0 for _ in range(NUM_LEDS)])

s chenafesagecgeuge g s s e rofe ool g ks e o kol ool g ks e el g g s
BHEBBEER BB ERBRGER RGBT B LTV RRR BRI
def pixels_show():

dimmer_ar = array.array("I", [0 for _ in range(NUM_LEDS)])

for i,c in enumerate(ar):

345

Ml
o

www.keyestudio.com

r = int(((c >> 8) & OxFF) * brightness)

g = int(((c >> 16) & OxFF) * brightness)

b = int((c & OxFF) * brightness)

dimmer_ar[i] = (g<<16) + (r<<8) + b
sm.put(dimmer_ar, 8)

time.sleep_ms(10)

def pixels_set(i, color):

ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]

def color_chase(color, wait):
for i in range(NUM_LEDS):
pixels_set(i, color)
time.sleep(wait)
pixels_show()

time.sleep(0.2)

def wheel(pos):
Input a value 0 to 255 to get a color value.
The colours are a transitionr-g-b - back tor.
if pos < 0 or pos > 255:
return (0, 0, 0)

346

Ml
o

www.keyestudio.com

if pos < 85:

return (255 - pos * 3, pos * 3, 0)
if pos < 170:

pos -= 85

return (0, 255 - pos * 3, pos * 3)
pos -= 170

return (pos * 3, 0, 255 - pos * 3)

def rainbow_cycle(wait):
for j in range(255):
for i in range(NUM_LEDS):
rc_index = (i * 256 // NUM_LEDS) + j
pixels_set(i, wheel(rc_index & 255))
pixels_show()

time.sleep(wait)

BLACK = (0, 0, 0)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)
GREEN = (0, 255, 0)
CYAN = (0, 255, 255)

347

Ml
o

www.keyestudio.com

BLUE = (0, 0, 255)

PURPLE = (180, 0, 255)

WHITE = (255, 255, 255)

COLORS = (BLACK, RED, YELLOW, GREEN, CYAN, BLUE, PURPLE,

WHITE)

print("chases")
for color in COLORS:

color_chase(color, 0.05)

print("rainbow")

rainbow_cycle(0)

Code Explanation
color chase(color, wait): show color

rainbow cycle(0): show the rainbow effect

Test Result
Wire up, run the test code. Then the four lamp beads will display flowing
lights, showing black, red, yellow, green, blue, blue, purple and white and

a rainbow light effect.

348

£

www.keyestudio.com

Project 58: Ultrasonic Radar

File Edit Sketch Tools Help

© RADAR BEST

Gust MEES A B LT Distance?2 cm

Description

349

£

www.keyestudio.com

We know that bats use echoes to determine the direction and the location

of their preys. In real life, sonar is used to detect sounds in the water. Since

the attenuation rate of electromagnetic waves in water is very high, it

cannot be used to detect signals, however, the attenuation rate of sound

waves in the water is much smaller, so sound waves are most commonly

used underwater for observation and measurement.In this experiment, we

will use a speaker module, an RGB module and a 4-digit tube display to

make a device for detection through ultrasonic.

Required Components

Raspberry Pi
Pico Board*1

Raspberry Pi
Pico Expansion
Board*1

Keyes brick
HC-SR04
Ultrasonic

Sensor*1

Keyestudio Audio
Power
Amplifier*1

Keyestudio DIY

Common Cathode
RGB Module *1

350

Ml
o

www.keyestudio.com

—

Keyestudio DIY
TM1650 4-Digit
Segment

Display*1

4P Dupont Wire*3

3P Dupont Wire*1

Micro USB
Cab |l e*1

Connection Diagram

Test Code

Power_OUT

* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico

* lesson 51

RESET,

351

Ml
o

www.keyestudio.com

* Ultrasonic radar
* http:/ /www.keyestudio.com
from machine import Pin, PWM

import utime

definitions for TM1650
ADDR_DIS = 0x48 #mode command

ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST =0
BRIGHT_TYPICAL = 2

BRIGHTEST =7

on =1

off =0

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6¢c,0x6e]

DIG = [0x6e,0x6c,0x6a,0x68]

352

Ml
o

www.keyestudio.com

DOT =[0,0,0,0]

clkPin = 15
dioPin = 14
clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):
global clk,dio
for i in range(8):
if(wr_data & 0x80 == 0x80):
dio.value(1)
else:
dio.value(0)
clk.value(0)
utime.sleep(0.0001)
clk.value(1)
utime.sleep(0.0001)
clk.value(0)

wr_data <<=1

353

Ml
o

www.keyestudio.com

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
utime.sleep(0.0001)
dio.value(0)

return

def ack():
global clk,dio
dy=0
clk.value(0)
utime.sleep(0.0001)
dio = Pin(dioPin, machine.Pin.IN)
while(dio.value() == 1):
utime.sleep(0.0001)
dy +=1
if(dy>5000):
break

clk.value(1)

354

Ml
o

www.keyestudio.com

utime.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, machine.Pin.OUT)

return

def stop():
global clk,dio
dio.value(0)
clk.value(1)
utime.sleep(0.0001)
dio.value(1)

return

def displayBit(bit, num):
global ADDR_DIS
if(num > 9 and bit > 4):

return

start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()

355

Ml
o

www.keyestudio.com

stop()
start()

writeByte(DIG[bit-1])

ack()

if(DOT[bit-1] == 1):
writeByte(NUM[num] | 0x80)

else:
writeByte(NUM[num])

ack()

stop()

return

def clearBit(bit):

if(bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()

stop()
start()

356

Ml
o

www.keyestudio.com

writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()

stop()

return

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff

return

357

Ml
o

www.keyestudio.com

def displayDot(bit, OnOff):
if(bit > 4):
return
if(OnOff == 1):
DOT[bit-1] = 1;
else:
DOT[bit-1] = 0;

return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):
clearBit()

return

def ShowNum(num): #0~9999
displayBit(1,num%10)
if(num < 10):

clearBit(2)

358

Ml
o

www.keyestudio.com

clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)

clearBit(4)

if(num > 999 and num < 10000):

displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

pwm_r = PWM(Pin(9))
pwm_g = PWM(Pin(10))

pwm_b = PWM(Pin(11))

pwm_r.freq(1000)
pwm_g.freq(1000)
pwm_b.freq(1000)

359

Ml
o

www.keyestudio.com

def light(red, green, blue):
pwm_r.duty_ulé6(red)
pwm_g.duty_ul6(green)
pwm_b.duty_ul6(blue)

ultrasonic ranging, unit: cm
def getDistance(trigger, echo):
produce 10us square waves
trigger.low() #preserve a short a low level to secure a high level:
utime.sleep_us(2)
trigger.high()
utime.sleep_us(10)#pull up high levels, wait for 10ms and set low
levels

trigger.low()

while echo.value() == 0: #build a while loop to detect pins are 0 or
not, record the current time
start = utime.ticks_us()
while echo.value() == 1: #build a while loop to detect pins are 1 or
not, record the current time

end = utime.ticks_us()

360

Ml
o

www.keyestudio.com

d = (end - start) * 0.0343 / 2 #travelling time x sound speed(343.2

m/s, 0.0343cm for each ms), double distance is divided by 2

returnd

set pins
trigger = Pin(20, Pin.OUT)

echo = Pin(19, Pin.IN)

buzzer = PWM(Pin(16))

def playtone(frequency):
buzzer.duty_u16(1000)

buzzer.freq(frequency)

def bequiet():
buzzer.duty_u16(0)

main program
InitDigitalTube()

while True:

distance = int(getDistance(trigger, echo))

ShowNum(distance)

361

Ml
o

www.keyestudio.com

if distance <= 10:
playtone(880)
utime.sleep(0.1)
bequiet()
light(65535, 0, 0)

elif distance <= 20:
playtone(532)
utime.sleep(0.2)
bequiet()
light(0, 0, 65535)

else:

light(0, 65535, 0)

Code Explanation
We set sound frequency and light color by adjusting different distance
range.

We can adjust the distance range in the code.

362

£

www.keyestudio.com

Test Result

Wire up according to the connection diagram upload the run the code and
power up. When the ultrasonic sensor detects different distances, the
buzzer will produce different frequencies of sound, the RGB will show
different colors, and the measured distances are displayed on the 4-digit

tube display.

363

£

www.keyestudio.com

Project 59: IR Remote Control

Introduction

In the previous experiments, we learned to turn on or turn off the LED,
adjust the brightness of a light through PWM, and how to use the infrared
receiver module. So in this experiment, we use an infrared remote control
to control an LED module.

When we receive a value, we set the PWM value by the corresponding

button value, thus you can adjust the brightness. Control the LED to turn

364

Ml
o

www.keyestudio.com

on or turn off is in the same way. If we want to use the same button to

control the LED to turn on or turn off, we can achieve it through the code.

Components

Raspberry Pi Pico
Board*1

Raspberry Pi Pico

Expansion Board*1

Keyestudio DIY
Purple LED Module*1

Keyestudio DIY IR
Receiver*1

:¥©0O0 ()
{0000

F¥000 [

—

Micro USB Cable*1

IR Remote Control*1

3P Dupont Wire*2

Connection Diagram

N1

—Q 0 1
)
e — N

Ir receiver

UARTO UARTI

cP El -—
ol <ol .

SPI0 spn

= =¥ o
by .
c
200000000000000 -,

fritzing

365

Ml
o

www.keyestudio.com

Test Code
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 52
* IR control LED
* http:/ /www.keyestudio.com
import time

from machine import Pin

led = Pin(14, Pin.OUT)

ird = Pin(16,Pin.IN)

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2":
"LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":
"LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5":
"LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":
"LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8":
"LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":

"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

366

Ml
o

www.keyestudio.com

"o": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up":
"LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":
"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":
"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok":
"LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

R "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#":

"LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):
wait =1
complete = 0
seq0 =[]
seql =[]

while wait ==
if ird.value() ==
wait=0
while wait == 0 and complete ==
start = time.ticks_us()
while ird.value() ==

ms1l = time.ticks_us()

367

Ml
o

www.keyestudio.com

diff = time.ticks_diff(ms1,start)
seq0.append(diff)
while ird.value() == 1 and complete ==
ms2 = time.ticks_us()
diff = time.ticks_diff(ms2,ms1)
if diff > 10000:
complete =1

seql.append(diff)

code — nn

for val in seql.:

if val < 2000:
if val < 700:
code +="L"
else:
code += "H"

print(code)
command = ""
for k,v in act.items():
if code ==
command = k

if command ==

368

Ml
o

www.keyestudio.com

command = code

return command

flag = False
while True:

& global flag

command = read_ircode(ird)

print(command, end ="
print(flag,end =" ")
if command == "Ok":
if flag == True:
led.value(1)
flag = False
print("led on")
else:
led.value(0)
flag = True
print("led off")

time.sleep(0.1)

")

369

£

www.keyestudio.com

Code Explanation
We define a boolean variable. There are two boolean variables. true (true)

or false (false), boolean flag = true.

2. When we press the OK button, the value of infrared reception is 64. At
this time, we need to set a boolean variable flag. When the flag is true
(true), the LED is turned on, and when it is false (false), the LED is turned off
and turned on. After the LED is on and set it to false. We press the OK key,
the LED will be off.

Test Result

Wire up, upload the test code and open the Shell monitor. Press the OK

button of the remote, the LED will be on; press it again, the LED will be off.

| Shell 3¢ |

|
| >»>

b

Ok False led off
Ck True led on
0k False led off
0k True 1led on
Ck False led off
0k True 1led on
0k False led off

370

£

www.keyestudio.com

Project 60: Heat Dissipation Device

Description

We will use a temperature sensor and some modules to make a smart
cooling device in this experiment. When the ambient temperature is higher
than a certain value, the motor is turned on, thereby reducing the ambient
temperature and achieving the heat dissipation effect. Then display the

temperature value in the four-digit segment display.

Required Components

371

Ml
o

www.keyestudio.com

Raspberry Pi Pico
Board*1

Raspberry Pi Pico Expansion
Board*1

keyestudio 130
Motor*1

Keyestudio
TM1650 4-Digit
Segment Display*1

e @
D=

18820
Temperature

—

a0 =

Keyestudio 18B20

Temperature Sensor*1

3P Dupont Wire*1

4P Dupont Wire*2

Micro USB Cable*1

Connection Diagram

aqny |enbig-¢

aunesadwal
[114: 38

2@

fritzing

372

Ml
o

www.keyestudio.com

Test Code
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 53
* heat_abstractor
* http:/ /www.keyestudio.com

import machine, onewire, ds18x20, time

ds_pin = machine.Pin(3)

ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin))

roms = ds_sensor.scan()

#two pins of the motor

INA = machine.Pin(20, machine.Pin.OUT)

INB = machine.Pin(21, machine.Pin.OUT)

definitions for TM1650

ADDR_DIS = 0x48 #mode command

ADDR_KEY = 0x49 #read key value command

373

Ml
o

www.keyestudio.com

definitions for brightness
BRIGHT_DARKEST =0
BRIGHT_TYPICAL = 2

BRIGHTEST =7

off =0

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6¢c,0x6e]
DIG = [0x6e,0x6c,0x6a,0x68]

DOT =[0,0,0,0]

clkPin = 15

dioPin = 14

clk = machine.Pin(clkPin, machine.Pin.OUT)

dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):

374

Ml
o

www.keyestudio.com

global clk,dio
for i in range(8):
if(wr_data & 0x80 == 0x80):
dio.value(1)
else:
dio.value(0)
clk.value(0)
time.sleep(0.0001)
clk.value(1)
time.sleep(0.0001)
clk.value(0)
wr_data <<=1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
time.sleep(0.0001)
dio.value(0)

return

375

Ml
o

www.keyestudio.com

def ack():
global clk,dio
dy=0
clk.value(0)
time.sleep(0.0001)
dio = machine.Pin(dioPin, machine.Pin.IN)
while(dio.value() == 1):
time.sleep(0.0001)
dy +=1
if(dy>5000):
break
clk.value(1)
time.sleep(0.0001)
clk.value(0)
dio = machine.Pin(dioPin, machine.Pin.OUT)

return

def stop():
global clk,dio
dio.value(0)
clk.value(1)

time.sleep(0.0001)

376

Ml
o

www.keyestudio.com

dio.value(1)

return

def displayBit(bit, num):

global ADDR_DIS

if(num > 9 and bit > 4):
return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

if(DOT[bit-1] == 1):
writeByte(NUM[num] | 0x80)

else:
writeByte(NUM[num])

ack()

stop()

377

Ml
o

www.keyestudio.com

return

def clearBit(bit):

if(bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()
stop()

return

def setBrightness(b = BRIGHT_TYPICAL):

global DisplayCommand,brightness

378

Ml
o

www.keyestudio.com

DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0Oxfe)+0OnOff

return

def displayDot(bit, OnOff):
if(bit > 4):
return
if(OnOff == 1):
DOT[bit-1] = 1;
else:
DOT[bit-1] = 0;

return

379

Ml
o

www.keyestudio.com

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):
clearBit()

return

def ShowNum(num): #0~9999

displayBit(1,num%10)

if(num < 10):
clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and nhum < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)

clearBit(4)

380

Ml
o

www.keyestudio.com

if(num > 999 and num < 10000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

InitDigitalTube()

print(‘Found DS devices: ', roms)

while True:
ds_sensor.convert_temp()
time.sleep_ms(750)
for rom in roms:
value = ds_sensor.read_temp(rom)
print(value)
ShowNum(int(value))
if value > 28:
INA.value(0)
INB.value(1)
else:
INA.value(0)

INB.value(0)

381

£

www.keyestudio.com

Code Explanation

The setting of variables and the storage of detection values are the same as
what we learned earlier. We also set a temperature threshold and control
the rotation of the motor when the threshold is exceeded, and then we use

the digital tube to display the temperature value.

Test Result

Wire up and run the test code. We can see the temperature of the current
environment (unit is Celsius) on the four-digit segment display, as shown

in the figure below. If this value exceeds the value we set, the fan will rotate

to dissipate heat.

382

pv4
o

www.keyestudio.com

Project 61: Intelligent Entrance Guard System

Description
In this project, we use the RFID522 card swiping module and the servo to
set up an intelligent access control system. The principle is very simple.We

use RFID522 swipe card module, an IC card or key card to unlock

Required Components

Raspberry Pi Pico Raspberry Pi Pico Expansion
Board*1 Board*1

& ~- | S

Key*1 IC Card*1

383

Ml
o

www.keyestudio.com

Keyestudio RFID

Servo*1 4P Dupont Wire*1 | Micro USB Cable*1
Modul e*1

Connection Diagram

fritzing

Test Code
/*
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 54
* Intelligent access control
* http:/ /www.keyestudio.com
*/
#include <Servo.h>
#include <Wire.h>
#include <MFRC522_I12C.h>

MFRC522 mfrc522(0x28);

384

Ml
o

www.keyestudio.com

Servo myservo;

String rfid_str = "";

void setup() {
Serial.begin(9600);
Wire.begin();
mfrc522.PCD_Init();
myservo.attach(10);//the digital port 10 of the servo
myservo.write(0);//initial angle is 0 degree

delay(500);

void loop() {
if (! mfrc522.PICC_IsNewCardPresent() | | !
mfrc522.PICC_ReadCardSerial()) {
delay(50);
return;
b
rfid_str = "";//characters string clear up
Serial.print(F("Card UID:"));
for (bytei = 0; i < mfrc522.uid.size; i++) {// save UID

rfid_str = rfid_str + String(mfrc522.uid.uidByte[i], HEX); //save

385

Ml
o

www.keyestudio.com

characters string
!/ Serial.print(mfrc522.uid.uidByte[i] < 0x10?" 0" : " ");
!/ Serial.print(mfrc522.uid.uidByte[i], HEX);

b

Serial.printin(rfid_str);

if (rfid_str == "8dfe6c4d" | | rfid_str == "bc33766e") {
myservo.write(180);
delay(500);

Serial.printin(" open the door!");

Code Explanation
In the previous experiment, our card swipe module has tested the
information of IC card and key. Then we use this corresponding

information to control the door.

Test Result

Upload the test code, wire up and power up with a USB cable, open the

shell and set the baud rate to 9600; the shell displays information.

386

£

www.keyestudio.com

When we use the IC card or blue key to swipe the card, the shell displays

the card information and "open the door", as shown in the figure below,

the servo rotates to the corresponding angle to simulate opening the door.

.
& COM75

Card UID:Bdfebcdd
open the door!
Card UID:bc33766e
open the door!

m

-

El Autoscroll D Show timesztamp

|Hewline

9800 baud

- Clear output

387

£

www.keyestudio.com

Project 62: Comprehensive Experiment

Introduction

We did a lot of experiments, and for each one we needed to re-upload the

code, so can we achieve different functions through an experiment? In this

experiment, we will use an external button module to achieve different

functions.

Components Required

Raspberry Pi
Pico Board*1

Raspberry Pi
Pico Expansion
Board*1

Keyestudio DIY
Purple LED
Modu | e*1

Keyestudio
Button Module*1

Keyestudio
Rotary
Encoder*1

Keyestudio
Obstacle
Avoidance

Sensor*1

388

Ml
o

www.keyestudio.com

scL.
g E
;

Y
DXL345 . -

Keyestudio IR

Receiver*1

Keyestudio DIY
Joystick
Modul e*1

keyes brick
HC—SR04

Ultrasonic

sensor *1

Keyestudio
DIYCommon
Cathode RGB
Module *1

Keyestudio
XHT11
Temperatur
e and
Humidity
Sensor

*1

Keyestudio
ADXL345
Acceleration

Sensor*1

a o

Micro USB
Cab le*1

3PDupont Wire*é6

4PDupont Wire*3

5PDupont Wire*1

Remote
Control*1

Connection Diagram

389

Ml
o

www.keyestudio.com

)1

—o 11
(—
e

Ir receiver

e
=2
£E
=

a
EE
]

Test Code
* Keyestudio 42 in 1 Starter Kit for Raspberry Pi Pico
* lesson 62
* Comprehensive experiment
* http://www.keyestudio.com
from machine import Pin, PWM

import time

390

Ml
o

www.keyestudio.com

import random
import dht

from ADXL345 import adxi345

scl = Pin(21)
sda = Pin(20)
bus=0

snsr = adxI345(bus, scl, sda)

pwm_r = PWM(Pin(2))
pwm_g = PWM(Pin(3))

pwm_b = PWM(Pin(4))

pwm_r.freq(1000)
pwm_g.freq(1000)
pwm_b.freq(1000)

pin = machine.Pin(19, machine.Pin.OUT, machine.Pin.PULL_DOWN)

xht = dht.DHT11(pin)

potentiometer = machine.ADC(28)

button = Pin(16, Pin.IN)

391

Ml
o

www.keyestudio.com

led = PWM(Pin(14))

led.freq(1000)

ird = Pin(11,Pin.IN)

B = machine.Pin(22, machine.Pin.IN)
X = machine.ADC(26)

Y = machine.ADC(27)

avoid = Pin(0, Pin.IN)

set pins of uktrasonic sensor
trigger = Pin(6, Pin.OUT)

echo = Pin(7, Pin.IN)

def light(red, green, blue):
pwm_r.duty_ul6(red)
pwm_g.duty_ul6(green)
pwm_b.duty_ul6(blue)

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2":

"LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":

"LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5":

"LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":

"LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

392

Ml
o

www.keyestudio.com

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8":
"LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":
"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

"o": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up":
"LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":
"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":
"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok":
"LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

Rt "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#":

"LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):
wait =1
complete = 0
seq0 =[]
seql =[]

while wait ==
if ird.value() ==
wait=0

while wait == 0 and complete ==

393

Ml
o

www.keyestudio.com

start = time.ticks_us()
while ird.value() ==
msl = time.ticks_us()
diff = time.ticks_diff(ms1,start)
seq0.append(diff)
while ird.value() == 1 and complete ==
ms2 = time.ticks_us()
diff = time.ticks_diff(ms2,ms1)
if diff > 10000:
complete =1

seql.append(diff)

code — nn

for val in seq1.:

if val < 2000:
if val < 700:
code +="L"
else:
code += "H"

print(code)
command =""

for k,v in act.items():

394

Ml
o

www.keyestudio.com

if code == v:
command = k
if command == "":
command = code

return command

ultrasonic ranging, unit: cm
def getDistance(trigger, echo):
produce 10us square waves
trigger.low() #preserve a short a low level to secure a high level:
time.sleep_us(2)
trigger.high()
time.sleep_us(10)#pull up high levels, wait for 10ms and set low
levels

trigger.low()

while echo.value() == 0: #Create a while loop to detect whether
the echo pin is 0, and record the current time
start = time.ticks_us()
while echo.value() == 1: #build a while loop to detect pins are 0 or

not, record the current time

395

Ml
o

www.keyestudio.com

end = time.ticks_us()
d = (end - start) * 0.0343 / 2 #travelling time x sound speed(343.2
m/s, 0.0343cm for each ms), double distance is divided by 2

returnd

keys =0

nums =0

print(keys % 8)

def toggle_handle(pin):
global keys
keys +=1

print(keys % 7)

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle_handle)

def showRGB():
R = random.randint(0,65535)
G = random.randint(0,65535)
B = random.randint(0,65535)
light(R, G, B)

time.sleep(0.3)

396

Ml
o

www.keyestudio.com

def showxht11():
print("temperature : {> C humidity
{3} %".format(xht.temperature, xht.humidity))

time.sleep(1)

def IRreceive():
command = read_ircode(ird)

print(command)

def showJoystick():
B_value = B.value()
X_value = X.read_u16()
Y_value = Y.read_ul16()
print("button:",end =" ")
print(B_value,end =" ")
print("X:", end =" ")
print(X_value,end =" ")
print("Y:",end =" ")
print(Y_value)

time.sleep(0.1)

397

Ml
o

www.keyestudio.com

def adjustLight():
pot_value = potentiometer.read_ul16()
print(pot_value)
led.duty_ul6(pot_value)

time.sleep(0.1)

def showAvoid():
if avoid.value() ==
print("There are obstacles")
else:
print("All going well™)

time.sleep(0.1)

def showDistance():
distance = getDistance(trigger, echo)
print("The distance is : {:.2f} cm".format(distance))

time.sleep(0.1)

def showADXL345():
X,Y,z = snsr.readXYZ()
print('x:',x,'y:",y,'z:",z,'uint:mg")

time.sleep(0.1)

398

Ml
o

www.keyestudio.com

while True:
nums = keys % 8 #Multiply the number of keysto8toget0123
4567
if nums == 0: #Display RGB
showRGB()
elif nums == 1: #Displays the value of infrared reception
IRreceive()
elif nums == 2: #Display temperature and humidity
showxht11()
elif nums == 3: #Display joystick value
showJoystick()
elif nums == 4: #potentiometer adjusts led
adjustLight()
elif nums == 5: #Display obstacle information
showAvoid()
elif nums == 6: #Display ultrasonic ranging value
showDistance()
elif nums == 7: #Display ultrasonic ranging value

showADXL345()

Code Explanation

399

£

www.keyestudio.com

1. Calculate how many times the button is pressed, divide it by 8, and get
the remainder which is 0, 1 2, 3, 4, 5, 6 and 7. According to different
remainders, construct five unique functions to control the experiment and
realize different functions.

2. We add dht and adx|345 library files in this project.

Test Result

Connect the wires according to the wiring diagram, use the USB to power
on, and run the test code. At the beginning, the number of keys is 0, the
remainder is 0, and the four lamp beads on the RGB module flash with

random colors.

400

Ml
o

www.keyestudio.com

| Shell 3¢ |

[E3]
b\ xe5"’

adx1345 found

83

adx1345 found

a

Press the button, 6812 stops flashing, press once, the remainder is 1. If we point

at IR receiver with the infrared remote control and press the button,the serial

monitor will display as follows.

Shell ¥
0k
Up

Left

Right
Down

Press a key twice, the time of pressing buttons is 2 and the remainder is 2.

Read temperature and humidity values. As shown below;

Note: we need to press any a key, because the IR reception function waits

for signals

| Shell 3¢ |
e

2
Ck

temperature :
temperature :
temperature :
temperature :
temperature :

22.
22.
22.
22.
22.

[==] == B Vo i V= X]

gddad

humidity :
humidity :
humidity :
humidity:
humidity :

47 .
Ao
47 .
A7
47 .

R

[2R I R

401

Ml
o

www.keyestudio.com

Press a key again, the time of pressing buttons is 3 and the remainder is 3.

Read digital values at x, y and z axis of the joystick module. As shown

below;
Shell ¥
button: 1 X: 32503 Y: 33848 =
button: 1 X: 32487 ¥: 33848
button: 1 X: 32471 Y: 34024
button: 1 X: 32487 Y: 33816
button: 1 X: 32471 ¥: 393¢
button: 1 X: 32487 Y: 272
button: 0 X: 324533 Y: 272
button: 0 X: 32503 Y: 288

Press the key for the fourth time, the remainder is 4. Then the
potentiometer can adjust the PWM value at the GP14 port to control LED

brightness of the purple LED

Shell ¥

T713

12034
17156
22117
25830
28166
29911
31855

Press the key for the fifth time, the remainder is 5. Then the obstacle

avoidance sensor can detect obstacles, as shown below;

402

Ml
o

www.keyestudio.com

Shell ¥
e ey
211 going well
211 going well
211 going well
There are obstacles
There are cbstacles
There are obstacles
There arese ckhstacles
There are obstacles

Press the key for the sixth time, the remainder is 6. Then the ultrasonic

sensor can detect distance away from obstacles, as shown below;

Shell ¥

The distance 1s ! 12.67 cm
The distance is ! 12.1% cm
The distance is : 10.46 cm

The distance 1s ! 8.71 cm
The distance is : 7.25 cm
The distance 1s ! 5.33 cm
The distance is : 4.58 cm
The distance is : 4.08 cm

Press the key for seventh time and the remainder is 7. The shell will print

out the acceleration value

Shell 3

x: 183.3 y: 97.5 z: 947.7 uint:mg -
x: 195.0 w: 89.7 z: 963.3 uint:mg

x: 198.9 wy: 93.60001 =: 971.1 uint:mg

x: 179.4 wy: 101.4 =z: 947.7 uint:mg

x: 175.5 y: T8.0 =: 943.8001 uint:mg

x: 175.5 wy: 66.30001 =z: 951.6 uint:mg

x: 210.6 y: 97.5 =: 928.2 uint:mg

Press the key for eighth time and the remainder is 0. Then the RGB will flash.
If you press keys incessantly, remainders will change in loop way. So does

functions.

403

Ml
o

www.keyestudio.com

7. Resources

https://fs.keyestudio.com/KS3024

404

https://fs.keyestudio.com/KS0470

	1.Description
	2.Kit
	2.Raspberry Pi Pico & Thonny
	3.1 MicroPython IDE-----Thonny
	Download and Burn Firmware
	Download and Install Thonny IDE

	3.2 Install Drivers
	3.3 Thonny User Interface
	3.4 Add Modules

	5. Projects
	Project 1: Lighting up LED
	Project 2: Traffic Lights Module
	Project 3: Laser Sensor
	Project 4: Button Sensor
	Project 5: Capacitive Sensor
	Project 6: Obstacle Avoidance Sensor
	Project 7: Line Tracking Sensor
	Project 8: Photo Interrupter
	Project 9: Tilt Module
	Project 10: Collision Sensor
	Project 11: Hall Sensor
	Project 12: Reed Switch Module
	Project 13: PIR Motion Sensor
	Project 14: Active Buzzer
	Project 15: 8002b Audio Power Amplifier
	Project 16: 130 Motor
	Project 17: RGB Module
	Project 18: Potentiometer
	Project 19: Steam Sensor
	Project 20: Sound Sensor
	Project 21: Photoresistor
	Project 22: NTC-MF52AT Thermistor
	Project 23: Thin-film Pressure Sensor
	Project 24: Flame Sensor
	Project 25: MQ-2 Gas Sensor
	Project 26: MQ-3 Alcohol Sensor
	Project 27: Five-key AD Button Module
	Project 28: Joystick Module
	Project 29: Ultraviolet Sensor
	Project 30: SK6812 RGB Module
	Project 31: Rotary Encoder
	Project 32: Servo Control
	Project 33: Ultrasonic Sensor
	Project 34: IR Receiver Module
	Project 35: DS18B20 Temperature Sensor
	Project 36: XHT11 Temperature and Humidity Sensor
	Project 37: DS1307 Clock Module
	Project 38: ADXL345 Acceleration Sensor
	Project 39: TM1650 4-Digit Tube Display
	Project 40: HT16K33_8X8 Dot Matrix Module
	Project 41: LCD_128X32_DOT Module
	Project 42: RFID Module

	6. Comprehensive Experiments
	Project 43: Breathing LED
	Project 44: Button-controlled LED
	Project 45: Alarm Experiment
	Project 46: Ultraviolet Alarm
	Project 47: Intrusion Detection
	Project 48: Speaker Module
	Project 49: Extinguishing Robot
	Project 50: Rotary Encoder
	Project 51: Rotary Potentiometer
	Project 52: Smart Windows
	Project 53: Sound Activated Light
	Project 54: Fire Alarm
	Project 55: Smoke Alarm
	Project 56: Alcohol Sensor
	Project 57: 6812 Colorful LED
	Project 58: Ultrasonic Radar
	Project 59: IR Remote Control
	Project 60: Heat Dissipation Device
	Project 61: Intelligent Entrance Guard System
	Project 62: Comprehensive Experiment

	7. Resources

